Cerebellar Model Tested in Control of a Load-Carrying Robot or On the Importance of Representing One's Dynamics

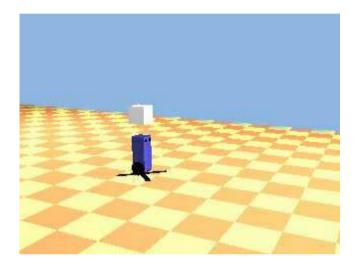
lina Aaltonen and Harri Valpola

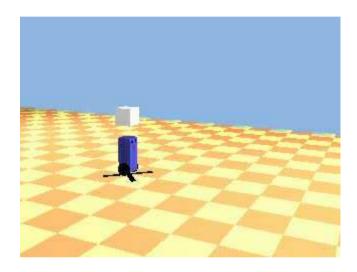
Laboratory of Computational Engineering Helsinki University of Technology TKK

Motor control

• Motor cortex

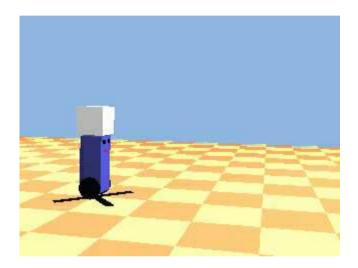
- motor command execution

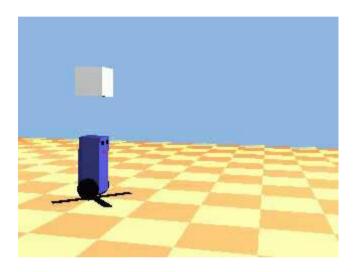

- Cerebellum
 - motor learning and regulation
 - timing and prediction
- Sensory systems
 - feedback


Cerebellar model

- Supervised learning using a reflex
- Prediction and timing
- Adaptive part is linear
- Inputs
 - motor efference copies
 - sensory systems
 - position, tilt angle and derivatives
 - sigmoidal nonlinearities included

Robot with stationary load

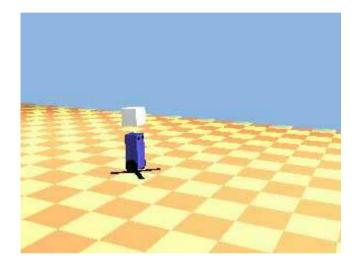

No sensory delay

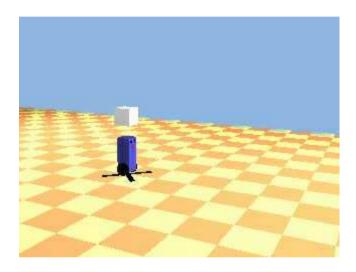

With delay

Changing context

- Representation of body and dynamics
 essential for motor control
- If the context, e.g. body dynamics, changes, can cerebellum still control?
 - theoretical analysis suggests: dynamics affect the optimal control in a multiplicative manner
 - multisensory processing required

Passive dynamics (no control)





Load low

Load high

Robot with moving load



Without delay

With delay

Results

- Without delay, cerebellum learned to keep the load-carrying robot upright
- With delay, changing the dynamics was critical
 - using a linear combination of the inputs the cerebellum cannot achieve stable control

Conclusion

- Contextual information is needed to account for changed dynamics
 - current inputs cannot provide context
 - multisensory brain regions modulating unisensory regions?
- Future work
 - how to provide the cerebellum with the context?

Thank you

