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Abstract. We demonstrate that selective attention can improve learn-
ing. Considerably fewer samples are needed to learn a source separation
problem when the inputs are pre-segmented by the proposed model. The
model combines biased-competition model for attention with a habitua-
tion mechanism which allows the focus of attention to switch from one
object to another. The criteria for segmenting objects are estimated from
data and are shown to generalise to new objects.
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1 Introduction

Learning task-relevant feature and object representations is a crucial problem
for an autonomous agent trying to cope in a real-world environment. Sometimes
the problem can be facilitated by collecting data from controlled environments,
leading for instance to reduced noise and fewer objects present simultaneously.
Such simplifications allow even fairly difficult problems to be solved with the
current machine learning methods.

In many situations, however, these controlled environments cannot be pro-
vided due to cost, infeasibility of human intervention or other reasons. In those
cases, the system should be able to learn feature and object representations au-
tonomously. Furthermore, the learnt representations should be relevant for the
tasks the agent faces. For these really difficult cases, machine learning research
has provided us with painfully few methods.

The key problem is that the relevant associations and relations are complex
and dynamic. As an example, let us consider the interplay between the visual and
the motor system in picking up an object. There are many degrees of freedom
in the task: the object can be in several places with respect to the hand and the
head, the eyes can be viewing in several directions and the hand can be in several
orientations, just to name a few. Yet, the autonomous agent should be able to
learn the associations that are needed to perform the task of picking up the
object. In any particular context of hand, eye and object positions, there exist
many simple correlations between the needed motor output and the visual input.
However, averaged over all the contexts, the correlations cancel each other out.
Thus the agent needs a representational system that can learn and use dynamic
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associations and relations that describe the short-lasting correlations between
the different modalities.

The best example of a system that has been able to solve the above problems
is the human brain. In neuroscience, it is known that attention plays a key role
in perceptual learning [1]. The purpose of this paper is to discuss the information
processing mechanisms of attention and to show that it can facilitate learning
of feature and object representations.

2 Attention and learning

From psychophysical experiments it has become clear that attention plays a
significant role in learning. For instance, Ahissar et al. [1] showed that attention
guides low-level perceptual learning by focusing the representational capacity
(low-level perceptual discriminations) to features that are relevant for the task
at hand.

There is experimental evidence to support the idea that attention is realised
by a competitive binding process that forms functional networks dynamically [2].
This dynamical binding has been shown to gate the coherence between cortical
areas, thereby affecting the associations learnt between these areas [3].

Taken together, it seems plausible that selective attention and the formation
of dynamical bindings are the necessary ingredients by which a large learning
system can deliver training signals from distant areas, such as from motor cortex
to visual cortex [4].

In order to use attention for perceptual learning in machine learning context,
it is necessary to 1) implement a model which gives rise to attention, 2) learn the
parameters of the model, making attention adaptive, and 3) use it successfully
to facilitate perceptual learning. Although each of these three aspects have been
studied independently and in pairs, to our knowledge the model presented in
this article is the first to combine all three into a functional model.

2.1 Gestalt principles

When we humans see a new object, we may not know its identity but we can
nevertheless tell what is part of the object and what is not. In other words, we
are able to segment out an object without having seen it before.

In perceptual psychology, the rules of the organisation of perceptual scenes
are called Gestalt principles [5]. Psychologists have identified several principles,
such as proximity, common fate, similarity, continuity, closure, symmetry and
convexity. The Gestalt principle of continuity is illustrated in Figure 1a, where
the human visual system groups some of the line segments to form a circle.

What makes the Gestalt principles interesting in the current context is that
they can be learnt from data. In neural terms, the Gestalt principles can be
implemented by giving positive connections between certain neurons in one area
and some other neurons in an adjacent area. Learning the connections can be
based on simple correlations found in the data. For example, features responding
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(a) (b)

Fig. 1. a) Because of the Gestalt principles, a circle is perceived rather than some other
grouping of the lines. b) Gestalt grouping of the neurons. The lines are features coded
by different neurons. The shades of gray illustrate the connection strengths between
the neurons on the right and the neuron on the left, darker meaning stronger. The
lateral connections are stronger when the Gestalt principle is better fulfilled.

to lines of certain orientation in one part of the visual field are more probably
co-activated with features of similar orientation in some other part of the visual
field. This mechanism is illustrated in Fig. 1b.

These “neural” Gestalt rules can be learnt from the data and they operate
on the level on individual feature-coding neurons. The principle is therefore
applicable to any modality and also between modalities unlike, for example,
many segmentation procedures that make use of the spatial structure of visual
images. Moreover, the neural Gestalt rules can be learnt locally and in parallel. In
the visual domain this means that the local correlations found in familiar objects
generalise to new objects which have different overall shapes but nevertheless
obey the same local correlations.

2.2 Biased-competition model for attention

Contextual (predominantly top-down) biasing of local lateral competition had
been proposed as a model of covert attention in humans [6]. Usher and Nierbur [7]
then suggested a computational model for biased competition that has been
shown to replicate many attentional phenomena, for instance both bottom-up
and top-down aspects of attention [8].

Deco and Rolls [8] also showed that it is possible to learn the weights for
contextual biasing by the mechanism outlined in Sec. 2.1. In other words, the
neural Gestalt rules can be applied in a relatively straight-forward manner to
implement selective attention.
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2.3 Suggested model

One shortcoming of the previously suggested biased-competition models is that
they converge to a representation of one of the objects present in the inputs and
then will not switch attention to other objects unless the input changes. This is
in contrast with human covert attention which keeps switching between salient
objects even when the stimulus does not change.

Models with changing attention usually have some kind of habituation mech-
anism which assures that attention will not get stuck with one object (e.g., [9]).
Habituation means that active neurons gradually get “tired”, thereby decreasing
the stability of the currently active population of neurons. After the support for
a population erodes, another population of recovered neurons takes over and the
original tired population starts recovering.

Taken together the model has four key mechanisms:

1. Bottom-up input which mostly determines the activation level of the neuron,
2. Contextual (lateral or top-down) input which reflects learnt Gestalt princi-

ples,
3. Local competition which is biased by the contextual input and
4. Habituation which ensures that the winning population gradually gets tired

and makes room for the winning population.

A more detailed description of the implementation is given in Sec. 3. However,
it should be emphasised that the exact details of these mechanisms are not
important although they of course need to fit together.

2.4 Relation to previous work

Several systems have been suggested that segment objects and represent them
sequentially. Many of them are based on weakly coupled oscillators or other
related mechanisms (e.g., [10–13]). Biased competition has the added benefit
that it not only groups objects but can also select among them. This will be
important when scaling up the system.

There are only a few examples of tackling the problem of using attention to
improve learning. Selective attention was used for improving learning by Walther
et al. [14] but their selective attention specialised in the visual domain and did
not use learnable Gestalt rules which could be applied in any modality and
even across modalities. Learning associations between different features has also
shown to improve with attention by Kruschke [15], but his model has an external
teacher controlling the attention.

3 Experiments

In this section, we use artificially generated data to demonstrate that it is possi-
ble and useful to combine attentional mechanisms and learning of feature repre-
sentations in a single scheme. The Gestalt principles are first learnt on one data
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set. The resulting lateral connections are then used for segmenting new objects.
We show that this greatly improves learning at the next stage, for which we
used FastICA [16]. The MATLAB scripts for performing the experiments can be
downloaded at http://www.lce.hut.fi/research/eas/compneuro/
repository/attention learning.zip.

3.1 The data

We generated artificial data which had “objects” analogous to closed contours.
For instance, the closed contour in Fig. 1a (circle) consists of 12 line segments
which follow the local Gestalt rule of continuation. Our objects had five 100-
dimensional patches (analogous to line segments) that were connected cyclically
as shown in Fig. 2. Each object had one active element on each patch. In other
words, an object was a 500-dimensional binary vector with five ones and 495
zeros.

I I I I I

G

GGGG

Fig. 2. The structure of the data is an idealisation of the Gestalt rules for closed
contours (Fig. 1). Each of the five patches consists of 100 elements. According to the
Gestalt rules (G), each element has five permissible neighbours in the adjacent patch.
The model structure is similar, with local inhibitory connection (I) and excitatory
lateral connections (G).

The objects were generated as follows. First the Gestalt rules (G in Fig. 2),
which hold for all objects, were chosen randomly. Each element had five randomly
selected permissible neighbours in both the adjacent patches. The five active
elements of each object were selected in stages: 1) select one of 100 elements
on the first patch, 2) select one of the five permissible elements (out of 100) on
the second patch, 3) repeat for all the patches and finally 4) accept or reject
the object depending on whether the element on the last patch is a permissible
neighbour of the selected element on the first patch. On average there are 3,125
different objects that fulfil our continuity rules. The exact number depends on
the Gestalt rules which were randomised.

We used these objects to generate noisy data which follow a linear indepen-
dent component analysis (ICA [17]) model. Each 500-dimensional sample vector
was a sum of five randomly selected objects and additive binary noise with 25
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ones and 475 zeros. A noisy sample vector together with the five constituent
objects are depicted in Fig. 3a.

3.2 Learning the Gestalt principles

We selected 20 objects which were reserved as “new objects” for the testing
phase. We generated a data set with 10,000 samples using the remaining objects
(3,105 objects on average). The lateral connections where then set to the values
corresponding to the covariances between the input elements. Note that it would
be difficult to learn reliably any correlations between 3,105 objects from such
a small data set but it is perfectly feasible to estimate the correlations of the
constituent elements. The estimated covariances are noisy but good enough for
the next stage.

3.3 Biased-competition model with habituation

As explained in Sec. 2.3, the biased-competition model used for segmenting data
has four mechanisms: 1) bottom-up inputs drive the activations, 2) contextual
input, which biases 3) local competition, and 4) habituation. The structure of the
model (Fig. 2) reflects the structure of the data: there are five areas (each with
100 neurons) laterally connected by the weights learnt with the procedure ex-
plained in the previous section. Local inhibition operates within each individual
area and is denoted by I in the figure.

One of us has previously shown that biased competition is fully compatible
with competitive learning which can learn meaningful features from bottom-up
inputs [18]. Here we simplified the situation by assuming that the bottom-up
inputs are already the input features to be represented. The neurons thus get
bottom-up activations x which are simply the data samples.

Contextual lateral input from previous activations y(t − 1) modulates the
bottom-up activations as follows:

y∗

i (t) = [(gi(t) + αaiy(t − 1)) xi]+ , (1)

where ai is a row vector of lateral connections implementing the estimated
Gestalt rules and α = 0.1. The term gi(t) is a gain which implements the habit-
uation and will be explained shortly. The activations y∗

i (t) are restricted to be
positive.

After this, lateral competition selects the final activations

yi(t) = [y∗

i (t) − Iarea]
+

, (2)

where Iarea is a function of y∗

i (t) within an area. All the neurons in one area have
the same Iarea. This inhibitory term is adapted with a fast time-constant such
that the target sparseness would be reached. We use the following sparseness
measure for a local activation pattern yarea:

s(yarea) =
1

||yarea||

∑

i ∈ area

yi . (3)



Selective attention improves learning 7

Area
1

Area
2

Area
3

Area
4

Area
5

Noisy input

Noiseless input

Object 1

Object 2

Object 3

Object 4

Object 5

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7

t = 8

t = 9

t = 10

Area
1

Area
2

Area
3

Area
4

Area
5

Objects
1−5

(a) (b)

Fig. 3. a) A sample input, on the top row. The next row is the same input without noise.
This noiseless input is used to produce the segmentation on the right (b). This input
consists of the five shown objects. b) An example of segmentation of the noiseless input
on the left (a). The 10 consequent time steps are taken after 50 steps after introducing
the input. Two examples: In the first row, the 2nd and the 4th objects are seen. The
3rd object is growing from t = 1 until t = 4, and then starts to disappear.

On each time step, the local inhibition Iarea is adjusted to make the pattern
closer to the right sparseness level. We chose it to be the sparseness of the vector
in which there are three ones and 97 zeros.

Habituation was implemented as follows. The gains are adjusted on each time
step with a slower time-constant than the inhibition. The updates try to match
the average activity with the original input: E{yi} ≈ xi. On each time step, gi

is increased (decreased) a little if the moving average of yi is below (above) xi.

3.4 Results

An example of the segmentation dynamics is shown in Figure 3b. In the seg-
mented representations, individual objects can be seen to appear and disappear
more or less coherently. Note that for the sake of visual clarity, the segmentation
dynamics is shown for the noiseless input from Figure 3a although all data used
in the learning experiments contained noise.
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The success of the segmentation was measured by separating new objects
with the model. Recall that the lateral weights were estimated from data which
lacked the 20 objects reserved for testing. These previously unseen objects were
used for generating new samples, again with five objects added together with
noise.

The biased-competition model with habituation segmented each original in-
put sample into many new samples. First we let the network converge for 100
time steps and then we used the following 30 samples as inputs to FastICA. Each
original sample was therefore expanded into 30 segmented samples.

We measured the accuracy of separation by a modified Amari index (for the
original, see [19]):

a(C) =
1

N

N
∑

i





N
∑

j

C2
ij

maxk C2
kj

− 1



 , (4)

where Cij corresponds to the ith separated signal using the jth object as the
input. The Amari index is a standard way of measuring separation success.

ICA was done with different numbers of samples to both the original samples
and the segmented samples generated by the proposed model. We used FastICA
2.5 package [16] with deflatory estimation and pow3 non-linearity, which in this
case was more robust than the usually recommended tanh-nonlinearity. Because
of local minima, different initialisations give different results. We used 30 dif-
ferent initialisations for each number of samples, and for each object, chose the
component that gives the smallest Amari index.

The results are shown in Figure 4. ICA for the original non-segmented data
needs about a hundred times as much samples as does ICA for the segmented
data. For fine-tuning though, the non-segmented case seems to be better. The
segmentation gives rough guesses about what the objects could be, but can also
sometimes break them, and move the fixed points of the FastICA algorithm. The
segmented case Amari index saturated to 1 milliAmaris at about 200 samples.
The non-segmented case got better results with N > 7000.

4 Discussion

In this paper we demonstrated that selective attention can improve learning.
We concentrated on showing that, with pre-segmentation, considerably fewer
samples are needed to learn meaningful features. The segmentation was based
on lateral connections whose strengths were estimated from another data set.
The setting thus mimicked a situation where local Gestalt rules have already
been learnt from past experience, allowing new objects to be segmented and thus
greatly reducing the number of samples needed for learning about new objects.
In this paper the learning task was chosen to be independent component analysis
but reduced learning time should generalise to other types of associative learning
as well due to reduced amount of distractors.
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Fig. 4. Separation results with segmented and original data are shown. The separation
quality is measured with a modified Amari index which measures the deviation of the
unmixing matrix from optimal. Segmenting the data reduces the number of samples
needed for reaching a given value of Amari index by roughly a factor of 100.

In the reported experiment, the segmentation principles were learnt offline.
In actual use, it would be more useful to learn the object representations and the
segmentation principles at the same time in a feedforward-feedback loop. This
would, for instance, allow selective attention to guide the learning by discarding
some structure in the data and focusing the representational capacity to relevant
features. However, it will also be necessary to take into account the danger of
run-away learning of self-induced correlations. Similar problems arise in learning
any non-directed graphs, such as Markov fields [20]. A popular solution is to
have two separate learning stages: one driven by the input and another, sleep-
like, driven by expectations. The idea is to forget the unwanted representations
during the sleep stage. When learning and forgetting balance each other, the
learnt weights have captured the statistics of the input.

The model proposed in this article is based on biased-competition model
which has been shown to be able to implement attention in large hierarchical
networks. We have previously shown that the model is compatible with com-
petitive learning and thus can learn meaningful bottom-up features under the
guidance of selective attention [18]. In this paper, we added a mechanism for
habituation which allows the focus of attention to change from one object to
another and then showed that the resulting segmentation greatly improves asso-
ciative learning. We believe that this work provides a fruitful starting point for
future efforts in building a representational system flexible and powerful enough
for an autonomous agent to survive in a complex real-world environment.
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