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I. Introduction

Quantum-dot cellular automata (QCA) is a paradigm for 
nanoscale logic circuitry [1], which has been studied exten-
sively during the past two decades. It is a promising candidate 
for replacing the current complementary metal-oxide-semi-
conductor (CMOS) computing technology. The problem with 
CMOS is that it is reaching its fundamental size limitations: 
the heat generation and quantum effects interfere with the 
desired operation at extremely small scales. Conversely, QCA 
devices present the possibility to address both of these con-
cerns by minimizing power dissipation and using the ‘unde-
sirable’ quantum effects to actually perform its calculations. 
Since its discovery, QCA has inspired a huge number of pro-
posed structures [2–7] and experimental realizations [8–11].

While QCA is based on localization of single electrons 
inside cellular quantum dot (QD) structures, it is critically 
sensitive for such conditions as finite temperature, particle 

density, geometry and fabricational imperfections [12–14]. 
Thus, the operability and fabrication of QCA are subject to 
several fundamental restrictions, the most significant of which 
is the temperature. It is related to the geometrical scale of the 
device, so that room temperature operation is only expected 
from molecular [15–17] and magnetic [18] QCA concepts 
with  ∼1 nm features. Metal plate [19, 20] and semiconductor 
[10] techniques with  ∼10–100 nm features have also been 
demonstrated, but only at cryogenic temperatures.

The development of QCA gains a lot from the hier-
archy of computational simulation models. However such 
bistable and strongly correlated system is challenging to 
approach with iterative and mean-field approaches that are 
often used in electronic structure calculation. Thus, the most 
widely used models are the extended Hubbard model and 
Hartree approximation [21] and nonlinear two-state model, 
employed in the popular QCADesigner simulation tool [22]. 
However, accessing nonideal properties, such as tolerance 
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of fabricational imperfections, missing electrons, dot dis-
placement or finite temperature, calls for more sophisticated 
methods [6, 13, 15, 16, 23–25]. This kind of analysis and pur-
suit of more robust and more complicated QCA designs is an 
important step towards experimental feasibility [4, 26].

The focus of this work is not on the QCA paradigm, but 
rather on the fundamental thermal physics beyond quantum 
limit of the QCA building blocks, the four-site cell structures. 
This involves pushing the limits of modeling sophistication 
by employing path integral Monte Carlo (PIMC) method 
[27]. PIMC has inherent account of finite temperature equi-
librium and charge carrier correlation, and hence, it is most 
suitable tool to approach such strongly correlated QD systems  
[28–30]. By introducing QD overlap in our model parameters, 
we become the first to simulate high electronic delocalization 
in QCA. While this is not, pragmatically, the desired region 
for operation, the transition from trivial trends into novel 
quantum statistical phenomena is insightful, to say the least. 
Also, the methods established here could prove useful in the 
quantum physical aspects of QCA, such as exchange frequen-
cies, adiabatic switching and the ‘null’ state [21].

II. Model and methods

A single QCA cell consists of two excess electrons in a  
lateral array with four sites (or QDs), as shown schematically 
in figure 1. We model it with an external potential defined by

[ ( )]= rV Vmin ,
i

iQCA (1)

where the harmonic (or parabolic) potential of each site cen-
tered at ri is

( ) [ ( )]ω= ⋅ −∗r r rV m
1

2
,i i

2 (2)

where ∗m  is the effective mass of electrons and ( )ω ω ω ω= , ,x y z  
is the confinement strength. The side of the QCA square (lat-
tice constant) a varies between 20 nm … 100 nm. Most of this 
range is within the scope of current state-of-the-art semicon-
ductor quantum dot technology [31]. Indeed, the medium 
properties are chosen according to those of GaAs/InAs 
quantum dots (in 300 K [32]): effective mass is =∗m 0.063 
me, where me is the free electron mass, and (static) dielec-
tric constant ε = 12.9 is used to scale the exact 1/r Coulomb 
repulsion of electron–electron interaction.

The ‘size’ L of a single QD is estimated by comparing 
the ‘effective confinement’ induced by ω to that of a simple 
quantum well, where the concept size is obvious. By setting 
the ground state energies of these two equal in one dimen-
sional case, it is easy to see that it leads to condition

ω
π

= ∗
�

L m
.

2

2
 (3)

Alternatively, by using least squares fitting to minimize the 
difference between the ground state charge densities the same 
relation is found, but π is replaced with approx. 3.50. Thus, 
it is fair to notice that the concept of QD size is not free of 
ambiguity. The confinements used in this work are obtained 

from equation (3) and presented in table 1. The potential bar-
rier between adjacent sites varies between approximatively  
2 meV–57 meV with L  =  40 nm and 36 meV–920 meV with 
L  =  20 nm.

An ideal four-site QCA system is bistable, i.e. in the ground 
state the two electrons may occupy either one of the two pos-
sible combinations of opposite sites: sites 1 and 3, or 2 and 4 
in figure 1. The polarization of the state is defined [1] as

=
− + −
+ + +

P
p p p p

p p p p
,1 2 3 4

1 2 3 4
 (4)

where p1 is the electron occupation density at site 1, and so on. 
Here, the site boundaries (for occupation density) are those of 
the four quadrants about the center of the cell. By convention, 
polarization P  =  1 is labeled the ‘0’ bit and P  =  −1 the ‘1’ bit 
[1]. Deviation from these extreme values implies reduction in 
reliability, and vice versa.

Without external ‘driver bit’, the average polarization of 
single cell in thermal equilibrium is zero due to symmetry. 
Hence, we introduce fidelity to describe the occupation cor-
relation of two electrons localized in the four-site system:

   
   
     

⎧
⎨
⎪

⎩⎪
=
−

F
1 at opposite sites
0 at adjacent sites

1 at the same site.
 (5)

An equivalent formulation in terms of polarization is

Figure 1. (a) A visualization of harmonic confinement potential of 
our QCA cell model. (b) Schematic picture of an ideal QCA setup, 
where the two electrons occupy either ‘0’ bit (sites 1 and 3) or ‘1’ 
bit (sites 2 and 4). The site separation a and QD size L are marked.
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F P 2 ,δ= | |− (6)

where δ is an overlap term, i.e. δ = 1 if the two electrons 
occupy same site, and otherwise δ = 0. The bistable ground 
states give ⟨ ⟩ →F 1, whereas completely uncorrelated distri-
bution leads to ⟨ ⟩ →F 0. In the hypothetical case of attractive 
interaction, the electrons would tend to occupy the same sites, 
hence ⟨ ⟩ →−F 1.

Of course, in finite temperature, the average fidelity is 
between 0 and 1. This is described by the density matrix, 
which corresponds to wave function in zero Kelvin. Our 
approach is to simulate thermal equilibrium in a fixed temper-
ature and evaluate the density matrix and partition function for 
interacting electrons using Feynman path-integral approach 
to quantum statistical physics [33]. The partition function is 
given as the trace of the density matrix

  ˆ( ) ( )∫ ∏ρ β= = … τ
−

=

−
− +Z Tr dR dR dR e ,0 1 M 1

i 0

M 1
S R ,R ;i i 1 (7)

where ˆ( ) ˆρ β = β−e H, S is the action, β = k T1/ B , τ β= M/ , 
=R RM 0 and M is called the Trotter number. The simulation 

with singular electron–electron interaction is exact for the 
electronic correlations, but of course, within the numerical 
accuracy, which is given by the imaginary-time ‘time-step’ 
τ = 1 (au)−1 ≈ × −24 10 18 s.

The partition function description in equation (7) only holds 
for distinguishable particles as such. Thus, in two electron 
system, we assume opposite spins (singlet state; one spin-up 
and one spin-down) and treat the electrons as ‘boltzmannons’, 
i.e. they obey the Boltzmann statistics. Usually, the triplet state 
contribution is considered negligible due to the low electronic 
interaction [1]. However, in case of highly nonlocalized elec-
tron densities (weak confinement) the account of exchange 
interaction may become significant, especially when invoked 
with external magnetic control. Hence, we also consider the 
effects of the triplet state by using restricted path-integral 
Monte Carlo (RPIMC) with free-particle nodes [34, 35].

Using Metropolis procedure [36] with bisection sam-
pling [37] extended with an efficient displacement scheme, 
we obtain the exact thermal equilibrium quantum statistics. 
That is, the ensemble of all possible quantum paths of the two 
interacting electrons in the four-site system are sampled with 
the correct distribution. The numerical subtleties and details 
about PIMC can be found elsewhere [27, 38].

III. Results

The accuracy of PIMC description depends on imaginary 
time step τ. Hence, we start with a convergence consider-
ation for finding the appropriate values for simulation param-
eters. According to equation (7), this basically means finding 
the Trotter number M large enough to properly describe 
the ‘quantum nature’ of particles in each individual case. 
Curiously, the special case M  =  1 is considered the ‘classical’ 
limit, and will also be investigated as a reference.

To find the limiting time step τ, we consider the values of 
both total energy and fidelity as functions of M in our most 
challenging case: a  =  20 nm, T  =  0.85 K and L  =  40 nm. 
This is illustrated in figure 2 in both 2D (a) and 3D (b). Both 
curves exhibit monotonous convergence in total energy, and 
a vast drop in fidelity, followed by a slow adjustment to con-
vergence. Due to data fluctuations and error bars, the conver-
gence of fidelity in 3D is not perfectly pronounced, but we 
end up with =M 12 000, that is τ≈ 1 for two reasons. Firstly, 
=M 12 000 is computationally feasible and still amply suf-

ficient for any 2D simulation. Secondly, any error in fidelity is 
only a few percent in magnitude and also strongly localized in 
parameter space. Indeed, additional convergence calculations 
indicate no error while proceeding towards less demanding 
parameters, i.e. ⩾a 20 nm, ⩾T 0.85 K and ⩽L 40 nm. Thus, 
for consistency, we keep  τ ≈ 1 in all simulations.

The dominating effect on electronic correlation, i.e. the 
fidelity from equation (5), is that of the finite temperature. The 
mechanism of correlation decay is visualized in correlation 
density plots, figure 3. In these plots the density distribution 
of one electron is plotted according to the reference electron 
positioned at the bottom-left site of the cell (marked with a 
circle). In ideal (ground state) case the density distribution is 

Table 1. QD sizes L and corresponding confinements strengths ω.

L (nm) L (a.u.) ω (a.u.)

40 nm 756 0.000 274
30 nm 567 0.000 487
20 nm 378 0.001 10
10 nm 189 0.004 38
5 nm 94.5 0.0175

Figure 2. Convergence of total energy (blue circles) and fidelity 
(green triangles) as functions of Trotter number at T  =  0.85 K using 
2D (a) and 3D (b) models with L  =  40 nm at a  =  20 nm separation.

J. Phys. D: Appl. Phys. 49 (2016) 065103
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localized at the top-right site. High temperature induces delo-
calization, i.e. leakage of the electronic density to the neigh-
bouring cell sites. At low temperatures and weak confinement, 
this is also caused by quantum delocalization, which is dem-
onstrated by comparing L  =  20 nm and L  =  40 nm QDs at 
30 nm separation. Thus, strong confinement is more tolerant 
to delocalization.

Now, the thermal equilibrium values for fidelity are computed 
for different lattice constants a, QD sizes L, and temperatures T. 
The typical QCA picture with strictly localized electronic den-
sities is achieved by using longer separations a (60 nm, 80 nm, 
100 nm) for two different QD sizes, L  =  20 nm and L  =  40 nm, 
in figure 4, respectively. Results for both 2D and 3D are shown, 
the latter of which confines electrons with Lz  =  5 nm cavity 
along z-axis. Clearly, we can make the following trivial conclu-
sions: With large separations, fidelity increases with

 • decreasing temperature (strongly)
 • decreasing QD separation distance a at low temperatures
 • decreasing QD size L, i.e. increasing confinement

The effect of dimensionality is negligible.
Next, the same fidelity curves are repeated at shorter cell 

separations a. This allows for the investigation of conditions 

and implications of the seldom considered quantum delocali-
zation effects. Figure 5 illustrates how fidelity drops consider-
ably at low temperatures as the QDs are brought sufficiently 
close to each other. Obviously, the drop is due to the overlap 
in electron densities, which do not maintain localized single-
QD shape anymore. Instead, the particles are delocalized over 
QD potential barriers while still maintaining some correlation 
effect. It appears that the delocalization drop in fidelity

 • only appears at low temperatures
 • is decreased by increasing QD separation distance a at 

low temperatures
 • is increased by increasing QD size, i.e. decreasing con-

finement

The dimensionality makes a difference so that the 3D 
model is more localized, but only near the threshold value 
for a. This is the quantum limit for QCA fidelity, where the 

Figure 3. The density distribution of one electron is plotted 
according to the reference electron (blue circle) at T  =  0.85 K (left) 
and T  =  80 K (right) with different separation distances and QD 
sizes. The normalization is the same in both temperatures.

Figure 4. Fidelity with two QD sizes, L  =  20 nm (a) and L  =  40 nm 
(b), is computed at various long QD separations a and temperatures 
of 0.85 K, 1.25 K, 2.5 K, 5 K, 20 K, 80 K and 320 K. The 3rd 
dimension is a Lz  =  5 nm cavity.

J. Phys. D: Appl. Phys. 49 (2016) 065103
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quantum uncertainty exceeds the effects of confinement and 
correlation.

To better understand the results at overlapping QD geom-
etries, a closer inspection should be made on the origins of 
particle delocalization. In figure 6 the causes of total delocali-
zation are schematically divided into thermal and quantum 

contributions. The thermal component starts from zero 
and increases monotonically by temperature. The quantum 
component is only observed with overlapping electron den-
sities and decays at high temperatures due to the quantum 
decoherence [39]. Incidentally, the minimum delocaliza-
tion (maximum fidelity) is not at zero Kelvin but at some 
finite temperature. Conceptually, this could be exploited to 
achieve optimal performance, although the deviation from 
zero Kelvin is effectively nonexistent in any existing QCA 
implementation.

However, in our short separation data, this finite tempera-
ture peak in fidelity is indeed apparent, e.g. with a  =  20 nm, 
L  =  40 nm—this is the black curve in figure 5(b). The sig-
nificance of the quantum delocalization is demonstrated with 
comparison to classical limit calculations, i.e. using Trotter 
number M  =  1. These results do not exhibit the fidelity drop, 
hence the fidelity saturates unrestricted as the feature size 
decreases; this is also seen in the convergence figure 2 when 

→M 1. The difference between classical and quantum results 
in figure 7 is accounted for by the quantum-originated delo-
calization, figure 6. Thus, a word of caution is in order: poorly 
justified semi-classical calculations could lead to falsely posi-
tive expectations of fidelity.

Figure 7 also includes short distance curves for triplet 
systems, where electron spins are parallel instead of antipar-
allel. The computation is carried out with RPIMC approach 
using free-particle nodes. Consequently, the fidelity is slightly 
improved, because of the repulsive exchange interaction on 
the same spin particles. We do not sample the simultanous 
ensemble of the parallel and the antiparallel spin states, but 
the resulting curve should lie strictly between the curves of 
the separate cases. Technically, parallelization of spins (for 
example, using a strong magnetic field) should improve the 
performance in delocalized regime.

Figure 5. Fidelity results similar to those in figure 4 are repeated 
with shorter QD separations a. Again, we have L = 20 nm (a) and  
L = 40 nm (b).

Figure 6. A schematic separation of the total delocalization (solid 
line) to thermal part (dashed) and quantum mechanical part (dotted) 
as functions of temperature. The gray area causes the difference in 
fidelity between full quantum and classical data.

Figure 7. Comparison of computed fidelity curves for classical 
limit (C) and parallel (S) and antiparallel (T) spin states for 20 nm 
QDs in 2D.

J. Phys. D: Appl. Phys. 49 (2016) 065103
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Finally, the thresholds for quantum phenomena are 
sketched on L–a-plane. The fidelity output from certain 
models are investigated for absolute differences |∆ |F : (i) full 
quantum against classical in 2D, (ii) singlet spin state against 
triplet in full quantum 2D and (iii) 2D against 3D in full 
quantum. The computed differences are plotted, in respective 
order, in figure 8 at T  =  0.85 K and T  =  5 K so that the white 
color denotes the minimum difference in fidelity. With (i) and 
(ii), the relative error escalates in linear fashion the more the 
QDs overlap. Thus, the effects of quantum delocalization and 
exchange interaction should not be ignored outside the white 
region. Of course, the latter is only relevant, if the system is 
intentionally spin polarized. At higher temperatures the model 
may be chosen a little bit more deliberately because of the 
quantum decoherence. The third comparison (iii) shows that 
the choice of dimensionality only matters within a narrow 
band in the parameter space: the 3D model is not as eager 
to delocalize near the quantum threshold, but beyond that, 
yields the same results as the 2D model. However, the effects 
of z-dimension apart from Lz  =  5 nm have not been properly 
investigated.

IV. Conclusions

Path integral Monte Carlo method was used to study the single 
QCA cell fidelity, i.e. the capability of the cell to maintain 
bistable polarization states in finite temperature. The system 
consists of two electrons in a square array of four harmonic 
QDs. We investigated the effects arising from temperature, 
singlet and triplet spin configurations, and from geometry: we 
varied dot–dot separation from 20 to 100 nm, and the size of 
the dots from 20 to 40 nm. The choice of parameters introduced 
two main regimes according to the localization of electronic 
densities. The localized or long range regime is essentially 

corresponding to the QCA paradigm. Within this region the 
trivial conclusion can be drawn, i.e. fidelity is decreased by 
increasing temperature, QD size or site separation.

However, interesting quantum effects begin to contribute 
at the crossover from the localized regime to the delocalized 
one, where the QDs start to overlap, i.e. ≈a L. That is, the 
probability density of one electron, relative to the other, is dis-
tributed into more than just one QD, causing negative impact 
on the fidelity. The optimization of the effects from quantum 
uncertainty and thermal decoherence leads to a fidelity max-
imum at a nonzero temperature. This is only apparent in low 
temperatures. Delocalization of electrons gives rise to the spin 
effects, which is observed as an elevated fidelity in parallel 
spin calculations, compared to those of antiparallel spins.

By comparison of classical and quantum simulations, we 
confirm the validity of ‘classical limit’ calculations within 
the localized region, only. Thus, the regime of significant 
QD overlap should be averted for two independent reasons: 
the inaccuracy of traditional QCA models, and the reduced 
fidelity of practical implementations. However, as is shown 
by the discrepancy between the delocalization of our 2D and 
3D simulations, the crossover limit, or QD size, is not trivi-
ally identified even in the simplest of QD models. Moving on 
to more realistic potential shapes sustains the call for accu-
rate and robust black box method, and in path integral Monte 
Carlo, we have just introduced one.
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Figure 8. Comparison plots for the absolute differences between models, based on their fidelity output in L–a parameter space at 
temperatures of T  =  0.85 K (top) and T  =  5 K (bottom). From left to right: full quantum versus classical (2D), singlet spin versus triplet 
spin (2D) and 2D versus 3D (full quantum). Darkness describes the deviation from neutral, i.e. the importance of the appropriate choice of 
the model.
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