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General polarizability and hyperpolarizability estimators for the path-integral Monte Carlo method
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The nonlinear optical properties of matter have a broad relevance and many methods have been invented to
compute them from first principles. However, the effects of electronic correlation, finite temperature, and break-
down of the Born-Oppenheimer approximation have turned out to be challenging and tedious to model. Here we
propose a straightforward approach and derive general field-free polarizability and hyperpolarizability estimators
for the path-integral Monte Carlo method. The estimators are applied to small atoms, ions, and molecules with one
or two electrons. With the adiabatic, i.e., Born-Oppenheimer, approximation we obtain accurate tensorial ground
state polarizabilities, while the nonadiabatic simulation adds in considerable rovibrational effects and thermal
coupling. In both cases, the 0 K, or ground-state, limit is in excellent agreement with the literature. Furthermore,
we report here the internal dipole moment of PsH molecule, the temperature dependence of the polarizabilities
of H−, and the average dipole polarizabilities and the ground-state hyperpolarizabilities of HeH+ and H3

+.
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I. INTRODUCTION

Obtaining nonlinear optical properties (NOP) of matter
by computational simulation is particularly important in such
environments that are out of reach with experimental studies.
For instance, this applies to exotic light-nucleus molecules like
H3

+ and HeH+ in hot and dense stars and gas planets [1–3], or
short lifetime particles like Ps or PsH [4–6]. Quite a different
but trending regime is that of computational biophysics, where
the accurate effects of polarization, finite temperature, and
dielectric solvents are required of the molecular interaction
models [7]. Motivations for the computational study of the
NOP are diverse, and they are properly summarized in
dedicated reviews [8–11].

The first-principles treatment of dielectric response comes
down to dipole and multipole moments and polarizabilities.
Basically, the computation of tensorial polarizabilities is
straightforward, and a lot of methods have been developed
for this purpose over the years, e.g., Refs. [12–23]. The
significance of polarizabilities is pronounced in many physical
scales starting from microscopic interactions, such as van der
Waals [24], to macroscopic properties, like dielectric constant
and refractive index. Transformation from the molecular to the
optical level is typically an emergent procedure that loses some
of the tensorial detail to statistical averaging of properties. The
density of the effective polarizable medium is then related to
the bulk with Clausius-Mossotti or Lorentz-Lorenz relations.
Thus, in principle, one could build up macroscopic NOP in
specific conditions simply by computing and combining the
right set of microscopic polarizabilities. In practice, this can
get tedious.

For example, consider a diatomic homonuclear molecule,
like H2, that has two distinct dipole polarizabilities αzz and
αxx . Combined, they make up a rotationally averaged, effective
polarizability ᾱ that is well suited for the macroscopic trans-
formation. However, anisotropy of the electronic polarizability
is strongly coupled with the rovibrational state of the system,
and to address this, the breakdown of the Born-Oppenheimer
approximation is needed. The conventional way is to form
the total polarizability out of the electronic, rotational, and

vibrational parts [8], the latter of which are unique for every
rovibrational state. When it comes to modeling the thermal
coupling of properties, the relevant ensemble of excited
states is required. This has lead to systematic tabulation of
rovibrational state contributions, e.g., Ref. [25], which is
surely informative but becomes quickly overwhelming with
higher temperatures and more complicated systems. Thus, for
simulating the NOP in thermal conditions, the most reasonable
course of action is to reduce complexity. This can be done by
making approximations or using semiempirical methods, e.g.,
Refs. [26,27]. The more controllable way is to give up the
tensorial character and concentrate directly on the average
properties [28] or the exact thermal ensemble.

In this paper, we provide a tangible interface between
tensorial distinction and thermal averaging of molecular polar-
izabilities. We perform a series of path-integral Monte Carlo
(PIMC) simulations on a variety of small atoms and molecules:
H, Ps, He, H−, Li+, PsH, H2

+, H2, H3
+, and HeH+. Similar

study for H and H2 was done earlier with finite field approach
[29], but this time we propose field-free static polarizability
and hyperpolarizability estimators for imaginary-time path-
integral methods. The exact account of particle correlations in
PIMC is a useful feature for two reasons: electronic correlation
is important to the accurate evaluation of polarizabilities [30],
and nuclear correlation allows a controlled breakdown of the
Born-Oppenheimer approximation. Also, inherent account of
thermal ensemble allows direct sampling in finite temperature
and, in principle, at finite density. That being said, PIMC is
probably the most straightforward way to simulate thermal
coupling of polarizabilities from first principles.

II. THEORY

Consider a quantum statistical system with N distinguish-
able particles in phase space R. The state of the system is
described by finite-temperature density matrix ρ. The density
operator is

ρ̂ = e−Ĥ /kBT , (1)
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where Ĥ is the Hamiltonian operator. In the path-integral
picture, we identify �/kBT = β = i(t − t0) as an imaginary-
time interval, so that we can write Eq. (1) in terms of action
Ŝ = βĤ . Any diagonal observable 〈O〉 can be obtained by
integrating the relevant operator Ô over the phase space

〈O〉 = Z−1
∫

dR〈R|ρ̂|R〉O(R), (2)

where

Z =
∫

dR〈R|ρ̂|R〉 (3)

is the partition function.
Now, consider a perturbation caused by a uniform external

electric field Fα , where indices α,β,γ,δ, . . . , follow the
Einstein summation over the axes x, y, and z. In uniform field,
the perturbation of the Hamiltonian is completely described
by

Ĥ (1) = Ĥ (0) − μ̂αFα, (4)

where Ĥ (0) is the unperturbed Hamiltonian and μ̂α is the dipole
moment operator. According to the Buckingham convention

[31], the change in total energy is written as a perturbation
expansion of coefficients

E(1) = E(0) + μαFα + 1
2ααβFαβ + 1

6βαβγ Fαβγ

+ 1
120γαβγ δFαβγ δ + · · · . (5)

Hence, in the zero-field limit, we can solve the individual
properties:

μα = lim
F→0

∂

∂Fα

E(1), (6)

ααβ = lim
F→0

∂

∂Fα

∂

∂Fβ

E(1) = lim
F→0

∂

∂Fβ

μα, (7)

βαβγ = lim
F→0

∂

∂Fα

∂

∂Fβ

∂

∂Fγ

E(1) = lim
F→0

∂

∂Fγ

ααβ, (8)

γαβγ δ = lim
F→0

∂

∂Fα

∂

∂Fβ

∂

∂Fγ

∂

∂Fδ

E(1) = lim
F→0

∂

∂Fδ

βαβγ , (9)

and so on. Bearing in mind that ∂Ŝ
∂Fα

= βμ̂α , direct differ-
entiation eventually leads to the following exact tensorial
estimators:

ααβ = β[〈μαμβ〉 − 〈μα〉〈μβ〉], (10)

βαβγ = β2

⎡
⎣〈μαμβμγ 〉+2〈μα〉〈μβ〉〈μγ 〉−

∑
αβ,γ

〈μαμβ〉〈μγ 〉
⎤
⎦, (11)

γαβγ δ = β3

⎡
⎣〈μαμβμγ μδ〉−6〈μα〉〈μβ〉〈μγ 〉〈μδ〉−

∑
αβγ,δ

〈μαμβμγ 〉〈μδ〉 −
∑
αβ,γ δ

〈μαμβ〉〈μγ μδ〉+2
∑

αβ,γ,δ

〈μαμβ〉〈μγ 〉〈μδ〉
⎤
⎦,

(12)

where shorthand notation is used for unique terms with cyclic
permutation over comma-separated indices, e.g.,

∑
αβ,γ

〈μαμβ〉〈μγ 〉 = 〈μαμβ〉〈μγ 〉

+ 〈μγ μα〉〈μβ〉 + 〈μβμγ 〉〈μα〉.

It should be pointed out that the bracketed terms on the
right-hand side, e.g., 〈uα〉, are the relevant observables for a
path-integral simulation. That is, in this form the polarizability
estimates, e.g., 〈ααβ〉, cannot be computed directly from a
single sample trajectory. Rather, they emerge from the correct
addition of the long-time expectation values of different dipole
moment products.

III. METHOD

In path-integral Monte Carlo scheme, integration of phase
space is carried out by Monte Carlo sampling of discrete
imaginary-time paths. The path of length β is discretized
according to the expansion [32], which divides the length
into small intervals: β = Mτ , where M is the Trotter number.
Calculation of diagonal properties can then be done by taking

average of each time slice:

〈O〉 = M−1Z−1
M∑
i=1

〈Ri−1|ρ(Ri−1,Ri ; τ )|Ri〉O(Ri), (13)

where Ri are the coordinates of particles at the ith time slice,
and R0 = RM . This is exact in the limit of τ → 0, or M → ∞,
but for practical reasons finite time step is used. The best
accuracy is obtained by using the so-called pair approximation
to describe Coulomb interaction [33]. Correct and efficient
sampling of the density operator ρ(Ri−1,Ri ; τ ) near the
thermal equilibrium is obtained by Metropolis Monte Carlo
with multilevel bisection procedure [34]. In this paper, only
systems with up to two electrons are considered. Thus opposite
spins are assumed, and all the particles obey Boltzmann
statistics [5].

The total energies are obtained by thermal or virial
estimators [35]. The virial estimator is preferred, because it
has smaller variance. However, for convenience the thermal
estimator is used for adiabatic simulations with more than one
fixed nucleus. The polarizabilities are computed according to
the dipole moment products that appear in Eqs. (10)–(12).
The dipole moment is unambiguously defined for the neutral
systems, where the effect of the origin cancels out. For the
systems with a nonzero net charge, we set the origin at the
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center-of-mass of the nuclei, or that of all the particles, in
adiabatic or nonadiabatic simulations, respectively.

IV. RESULTS

We investigate a few well-known small atoms, ions, and
molecules with up to two electrons by performing parallel
PIMC simulations. By fixing or freeing the nuclear motion
we demonstrate the breakdown of the Born-Oppenheimer
approximation. The inclusion of the electron-nuclei coupling
reveals the rovibrational effects, and thus, together with finite
temperature, also the thermal coupling of properties. This
allows us to report the total energies and relevant tensorial
polarizabilities corresponding to both the electronic ground
state and the finite-temperature rovibrational ensemble. Due
to the exponential nature of thermal effects, we approach
the observed thermal trends with an ad hoc exponential
least-squares fit of the form

O = a exp(bT ) + c, (14)

where O is the observable and a, b, and c are the fitting
parameters.

In any case, the number of nonvanishing and distinguishable
tensor properties is greatly reduced by symmetry. To best
convey with the literature, we use z to mark the principal
direction, and, when suitable, x for a perpendicular direction.
None of the studied systems require more than two simulta-
neous directions. Capital Z is used to denote the laboratory
axis, which is used in freely rotating nonadiabatic simulations.
Statistical standard error of the mean (SEM) with 2σ , i.e.,
2SEM confidence boundaries are used unless otherwise stated.

When relevant, we use mp = 1836.15267248me for proton
mass and mHe = 7294.2995363me for that of He nucleus.
Generally, the time step of τ = 0.03 is sufficient for the
systems with only hydrogen, and any small discrepancy with
the literature is due to the high temperature. For heavier nuclei,
i.e., He and Li+, also smaller time step of τ = 0.01 is used,
but it accounts for a small error in total energy. In some
simulations, especially the nonadiabatic, τ = 0.1 is used for
computational feasibility, but also to demonstrate the time-step
effect, or lack thereof.

A. Adiabatic simulations

The adiabatic, i.e., fixed-nuclei calculations, are good to
begin with, since they exhibit no thermal coupling by default:
the most stable systems, i.e., the neutral and the positive, are
effectively at their electronic ground states at thousands of
kelvins [48]. High temperature is preferred for computational
feasibility, and thus 2000 K is used for the simulation of H,
Ps, He, H2, Li+, H2

+, H3
+, and HeH+. PsH is less stable

because of the highly mobile positron and is simulated at
1000 K. The most special case is the hydrogen negative ion,
whose polarizabilities show notable temperature dependency
at relatively low temperatures; H− is simulated at 25–500 K
and the results are extrapolated to 0 K.

For each adiabatic simulation we report the time step,
the total energy, and all the relevant polarizability tensors
depending on the symmetry. Also, the best available 0 K
references from the literature are shown for comparison

TABLE I. Time steps τ , total energies E, and static dipole
polarizabilities αzz and second hyperpolarizabilities γzzzz obtained
from the adiabatic calculations of atoms and ions are matched with
suitable literature references.

τ E αzz γzzzz

Ps 0.03 −0.24999(2)a 36.00(4)a 1.70(4) × 105a

−0.25b 36b 1.7067 × 105b

H 0.03 −0.49996(2)a 4.502(4)a 1331(28)a

0.03 −0.49997(5)c 4.496(23)c 1586(184)c

−0.5d 4.5d 1333.1e

H− 0.1 −0.52799(6)f 206(2)f 7.4(2.9) × 107f

0.03 −0.52781(7)f 209(5)f 5.9(7.0) × 107f

−0.52775g 206.15h 8.03 × 107i

PsH 0.03 −0.78932(7)a 42.27(7)a 1.60(8) × 105a

−0.78913j 42.2836k

He 0.01 −2.9036(2)a 1.382(4)a 42(6)a

−2.90372l 1.38319217m 43.104m

Li+ 0.01 −7.2810(4)a 0.1923(4)a 0.24(8)a

−7.279913n 0.192453n 0.2427p

aThis work.
bE, αzz, and γzzzz of Ps are half, 8-fold, and 128-fold of those of H,
respectively.
cTiihonen et al. [29].
dWaller [36].
eSewell [37].
fThis work (extrapolated to 0 K).
gLin [38]; Nakashima et al. [39].
hKar et al. [40].
iPipin et al. [41].
jFrolov et al. [42].
kYan [43].
lPekeris [44]; Nakashima et al. [39].
mCencek et al. [45].
nJohnson et al. [46].
pGrasso et al. [47].

[29,36–47,49–59]. The simplest group is presented in Table I;
atoms and ions with a single fixed nucleus are isotropic and
have no permanent dipole moment, and thus they only have
nonvanishing dipole polarizability αzz and second hyperpolar-
izability γzzzz. The total energies match at least with three, and
most of the polarizabilities at least with two significant digits.
The biggest discrepancies are with the extrapolated values of
H−, which could stem from the choice of the extrapolation
function (14). The temperature dependencies of αzz and γzzzz

of H− are presented in Fig. 1, and it is likely that instead of
exponential decay, αzz would saturate towards the reference
value. Also, to our knowledge, γzzzz has been reported
for neither of the positron systems, Ps and PsH, prior to
this work.

Table II contains homonuclear molecules and molecular
ions made of protons and electrons. They also lack the
permanent dipole moment, but now the geometry gives rise
to optical anisotropy, i.e., difference between the response
in z and x directions. Consequently, the nonvanishing terms
are αzz �= αxx and γzzzz �= γxxxx �= γzzxx �= γxxyy [31]. The
simulations of the diatomic molecules were carried out at
the approximate equilibrium bond lengths RH2

+ = 2.0a0 and
RH2 = 1.4a0 so that the nuclei were connected by the z axis.
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FIG. 1. Finite temperature data for αzz and γzzzz of H− is plotted
against temperature for two time steps: τ = 0.1 (blue circle) and
τ = 0.03 (red triangle). Exponential fit is used to extrapolate to 0 K.
The black dashed lines mark reference values at 0 K [40,41].

The nuclei in triangular H3
+ molecule were fixed equilaterally

RH3
+ = 1.65a0 apart so that the z axis was perpendicular

to the plane. Again, the agreement of the total energy is
good. With H2

+ and H2, the agreement is also good with
the polarizabilities. The latest and the only references of the
dipole polarizability of H3

+ are from Ref. [57], where they are

assumed inaccurate lower-bound estimates. Indeed, our results
for αzz and αxx are somewhat larger. We also present estimates
for the higher static polarizabilities of H3

+.
The most complicated of our systems is HeH+, because it

contains a permanent dipole moment μz, which also induces
nonzero first hyperpolarizabilities βzzz �= βzxx . With nonzero
net charge, the choice of origin for the dipole moment is
ambiguous. Here, we use the center-of-mass of the nuclei,
which places the origin 0.293609a0 apart from the He nucleus
with the equilibrium bond length of RHeH+ = 1.46a0. All
of the properties are presented in Table III, and up to the
dipole polarizabilities they match well with the literature.
None of the hyperpolarizabilities have been reported before,
although the error boundaries are very dominant with any of
the z-dependent components.

Vaguely in the spirit of Ref. [60], we also performed a
simulation of PsH as sort of a molecule consisting of two
electrons and two “nuclei,” proton and positron. By replacing
the laboratory axis with the local axis between the nuclei,
we were able to compute a nonzero dipole moment of μz =
0.0305(6). In principle, such treatment of PsH causes slight
alterations to the properties of PsH found in Table I and a
symmetry similar to that of HeH+. To demonstrate such small
effects, more laborious calculations would be required, but
we omit the opportunity for now. The essence of this work
is to show that the proposed estimators give decent values
for polarizabilities and hyperpolarizabilities, and so far this
requirement has been amply met.

B. Nonadiabatic simulations

An important step towards realistic and more meaningful
simulation of nonlinear optical properties is the breakdown of
the Born-Oppenheimer approximation. In PIMC, this is done
by allowing quantum statistical description of the nuclei, i.e.,
replacing fixed-point charges with imaginary-time trajectories
similar to the electrons. Besides reduced mass correction to
electron-nucleus interaction, this enables the exact account

TABLE II. Time step τ , total energies E, and static anisotropic dipole polarizabilities αzz �= αxx and second hyperpolarizabilities γzzzz �=
γxxxx �= γzzxx �= γxxyy obtained from the adiabatic calculations of homonuclear molecules and molecular ions are matched with suitable literature
references.

τ R E αzz αxx γzzzz γxxxx γzzxx γxxyy

H2
+ 0.03 2.0 −0.60259(10)a 5.080(4)a 1.7586(8)a −43(17)a 73(2)a 27(2)a 24.2(5)a

−0.602634214b 5.0776490c 1.757648c −193.76d 83.87d 29.73d

H2 0.03 1.4 −1.1746(4)a 6.388(7)a 4.574(5)a 700(49)a 572(26)a 211(10)a 191(7)a

0.03 −1.17434(18)e 6.382(13)e 4.577(10)e 787(100)e 640(73)e

−1.17447477f 6.387493g 4.57861g 682.5g 575.9g 211.9g 192.0g

H3
+ 0.03 1.65 −1.3438(3)a 2.202(2)a 3.549(3)a 51(4)a 58(11)a 19(2)a 19(3)a

−1.3438356h 1.7322i 3.2923i

aThis work.
bTurbiner et al. [49]; Laaksonen et al. [50]; Madsen et al. [51].
cTsogbayar et al. [52].
dBishop et al. [53].
eTiihonen et al. [29].
fKolos et al. [54].
gBishop et al. [55].
hTurbiner et al. [56].
iKawaoka [57].
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TABLE III. Permanent dipole moment and static dipole polarizabilities and hyperpolarizabilities from the adiabatic simulation of HeH+

molecular ion with τ = 0.01.

E μz αzz αxx βzzz βzxx γzzzz γxxxx γzzxx γxxyy

−2.9785(6)a 0.6788(1)a 1.544(21)a 0.8515(7)a −2(4)a −0.17(7)a 11(507)a 7.2(8)a 3(8)a 2.4(2)a

−2.978706b 0.655b 1.5421c 0.85070c

aThis work.
bPachucki [58].
cPavanello et al. [59].

of rovibrational motion in thermal bath. On the downside,
we are not able to distinguish between rotational, vibrational,
and electronic components directly, unless we use artificial
constraints and internal coordinates. Yet, here we aim at
skipping the tedious tabulation and explicit summation of
rovibrational properties and, instead, get the accurate and
thermally averaged estimates served on a silver platter.

We simulated four isolated molecules, namely H2
+, H2,

H3
+ and HeH+, in various temperatures. The maximum

temperature was 1600 K (3200 K for H2), where molecular
stability is still sustained; dissociation of molecules would
result in an undesired explosion in the variance of the dipole
moment products. In Table IV we summarize the obtained
total energies and make polynomial extrapolations to 0 K.
Comparison with the literature [28,58,61–65] shows that the
agreement in total energies is good at least with the smaller
time step τ = 0.03, although the results of HeH+ might be
improved by a smaller time step still. The average bond
lengths are altered by the rovibrational motion. Extrapolation
to 0 K gives RH2

+ = 2.0630(9)a0, RH2 = 1.4482(4)a0, RH3
+ =

1.7231(6)a0, and RHeH+ = 1.5167(4)a0 with τ = 0.03.
In laboratory coordinates with freely moving nuclei, all the

odd terms, i.e., μ and β, vanish due to symmetry and the
anisotropic properties, i.e., α and γ , reduce to orientational

averages. In Fig. 2, we present the temperature dependen-
cies of the average dipole polarizability αZZ and second
hyperpolarizability γZZZZ for each molecule. The data points
are accompanied with a least-squares nonlinear fit according
to Eq. (14). Extrapolated values, i.e., αZZ(0) = a + c, are
presented in Table V and compared with the literature, when
possible. It appears that all of the homonuclear systems exhibit
similar behavior: αZZ increases by the temperature in linear or
quadratic fashion, and the effect is to some extent countered
with exponential decay of γZZZZ . The explanation is simple,
if we assume that the primary contribution to γZZZZ is given
by the rotational states. The rotational hyperpolarizability
emerges from the anisotropy between αzz and αxx : the
molecule has a tendency to assume more favorable orientation,
which is that of higher α. Typically, the lowest rotational
states have the highest hyperpolarizabilities [25], and thus the
dominant part γZZZZ is decreased as the thermal ensemble
shifts towards higher temperatures. Out of the homonuclear
systems, H2

+ goes through the most drastic change in γZZZZ ,
and it has indeed the highest anisotropy.

HeH+ has different response to the temperature: αZZ decays
by the temperature and γZZZZ seems to tend to zero as the
temperature is increased. This is surely influenced by the
permanent dipole moment μz. Even though μZ and βZZZ

TABLE IV. Total energies from nonadiabatic calculations of molecules with two time steps τ = 0.1 and τ = 0.03. The values are
extrapolated to 0 K and compared values from the literature.

τ 0 K 200 K 400 K 800 K 1600 K 3200 K

H2
+ 0.1 −0.5972(8)a −0.59668(6)b −0.59599(6)b −0.59445(9)b −0.59007(9)b

0.03 −0.5975(12)a −0.59682(9)b −0.59599(9)b −0.59438(12)b −0.59006(15)b

−0.597139c

H2 0.1 −1.16518(12)a −1.16456(9)b −1.16394(10)b −1.16256(8)b −1.15952(16)b −1.15050(13)b

0.03 −1.16436(16)a −1.16374(15)b −1.16300(12)b −1.16163(12)b −1.15850(19)b −1.14340(21)b

−1.164025d

H3
+ 0.1 −1.3245(2)a −1.3239(2)b −1.3228(2)b −1.3207(2)b −1.3133(3)b

0.03 −1.3233(3)a −1.3226(3)b −1.3217(3)b −1.3192(3)b −1.3118(3)b

−1.323568e

HeH+ 0.1 −2.9827(3)a −2.9823(3)b −2.9815(2)b −2.9803(2)b −2.9761(3)b

0.03 −2.9722(5)a −2.9717(4)b −2.9712(4)b −2.9697(4)b −2.9656(5)b

−2.96627f

aThis work (extrapolated to 0 K).
bThis work.
cTang et al. [28].
dStanke et al. [61].
eKylänpää et al. [62] ([63]).
fCalculated based on Refs. [58] and [64].
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FIG. 2. Nonadiabatic dipole polarizabilities αZZ and second hyperpolarizabilities γZZZZ are plotted against the temperature. Blue circles
and red triangles mark the simulated data points associated with τ = 0.1 and τ = 0.03, respectively. Least-squares nonlinear fits have been
made according to Eq. (14). When available, the black dashed lines mark reference values at 0 K [28,65] or 295 K [25].

vanish in the nonadiabatic ensemble, the existence of μz

induces large rotational component for αZZ , likewise to the
previous paragraph. Thus, when the anisotropy of μ gets
decreased by higher-order rotational motion, so does the
rotational part of αZZ .

At this point it is fair to note, however, that any qualitative
ideas concerning the rotational or vibrational components are
inspired by previous works, and no such conclusions can be
drawn solely from the raw simulation data of this work. What
is evident, though, is that the difference between the adiabatic
and the nonadiabatic results is huge. This is not an implication
of error but of the importance of nonadiabatic effects and
thermal coupling.

V. SUMMARY

We have derived general estimators of static dipole po-
larizabilities and hyperpolarizabilities for the path-integral

TABLE V. Polarizabilities and hyperpolarizabilities from nonadi-
abatic calculations of atoms are extrapolated to 0 K by using Eq. (14).

τ αZZ γZZZZ

H2
+ 0.1 3.175(34)a 12674(1006)a

0.03 3.168(49)a 12750(1403)a

ref. 3.168725b 11479.805b

H2 0.1 5.397(19)a 3012(604)a

0.03 5.424(24)a 2839(894)a

ref. 5.4139c

H3
+ 0.1 3.873(24)a 3738(642)a

0.03 3.884(39)a 3656(950)a

HeH+ 0.1 529(8)a −1.128(8)×109a

0.03 528(23)a −1.202(21)×109a

aThis work (extrapolated to 0 K).
bTang et al. [28].
cKolos et al. [65].

Monte Carlo method. Using the field-free estimators is
straightforward in any kind of molecular simulation, and it
surpasses our previous finite-field approach in simplicity and
speed [29]. In principle, the computation of nonlinear optical
properties of matter can be done with PIMC directly at any
finite temperature.

As a reference, a variety of well-known one- and two-
electron atoms and molecules were simulated with PIMC:
H, Ps, H−, He, Li+, H2

+, H2, PsH, H3
+, and HeH+.

Agreement with the literature is mostly excellent, with the
exceptions of H− and H3

+, whose static dipole polarizabil-
ities are being improved in this work. Also, we provide
tensorial estimates of the second hyperpolarizabilities of
PsH, H3

+, and HeH+ and hyperpolarizabilities of HeH+.
While our list of two-electron systems is not exhaustive,
the efficiency and universality of our method is still amply
demonstrated.

Beyond the computation of adiabatic, or fixed-nuclei po-
larizabilities, we take two important steps with unprecedented
ease: the breakdown of the Born-Oppenheimer approximation
brings in dielectric contributions emerging from nuclear
motion, and the sampling of thermal ensemble couples them
directly to finite temperature. We estimate the temperature
dependencies of the polarizabilities of four molecules: H2

+,
H2, H3

+, and HeH+ between 0 and 1600 kelvin (3200 K
for H2). Again, we demonstrate good agreement with the
literature, if one exists. The explicit treatment of thermal
averaging gives rise to interesting relationships between
the anisotropic and the average quantities, e.g., anisotropy
αzz �= αxx induces large rotational component to γZZZZ , which
then decays rapidly by the temperature.

Clearly, PIMC is a special method that allows exact
simulation of polarizabilities in novel regimes. The accuracy
of results is controllable by computational effort, whose
limitations are evident but not really imminent in the scope
of our work. Partly for this reason but mainly for the
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simplicity, the higher multipole properties and the effects
of finite density and pressure were left out of this work.
Same goes for solids and more complicated molecules,
such as H2O or CO2, even though the power of PIMC
resides in the accurate many-body correlations. This work
is best reviewed as a necessary first step on the path of
understanding the quantum statistical dielectric properties with
PIMC.
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In our recent work we derived field-free estimators for static polarizabilities and hyperpolarizabilities for the path-integral
Monte Carlo method. Our derivation contained some unconventional practices of notation and sign. For example, we had replaced
FαFβ with Fαβ , etc., whereas the latter is commonly used for a field gradient, i.e., Fαβ = (∇Fα)β . Also, in Eqs. (5)–(9) there
were some sign errors in contrast to Ref. [1]. However, these signs cancel out in either case, leaving the resulting estimators and
the data unaffected. The correct way to write the equations would be the following:

E(1) = E(0) − μαFα − 1
2ααβFαFβ − 1

6βαβγ FαFβFγ − 1
24γαβγ δFαFβFγ Fδ − · · · , (5)

μα = − lim
F→0

∂

∂Fα

E(1), (6)

ααβ = − lim
F→0

∂

∂Fα

∂

∂Fβ

E(1) = lim
F→0

∂

∂Fβ

μα, (7)

βαβγ = − lim
F→0

∂

∂Fα

∂

∂Fβ

∂

∂Fγ

E(1) = lim
F→0

∂

∂Fγ

ααβ, (8)

γαβγ δ = − lim
F→0

∂

∂Fα

∂

∂Fβ

∂

∂Fγ

∂

∂Fδ

E(1) = lim
F→0

∂

∂Fδ

βαβγ . (9)

Furthermore, we want to publish one more nonvanishing property that was left out in the original article. Namely, βyyy = 1.12(14)
for H+

3 in the adiabatic (fixed-nuclei) simulation.
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