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Adiabatic and nonadiabatic static polarizabilities of H and H2
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The path-integral Monte Carlo method is employed to evaluate static (hyper)polarizabilities of small hydrogen
systems at finite temperature. Exact quantum statistics are obtained for hydrogen atom and hydrogen molecule
immersed in homogeneous electric field. The method proves to be reliable and yields perfect agreement with
known values of static polarizabilities in both adiabatic and nonadiabatic simulations. That is, we demonstrate
how electronic, rotational, and vibrational contributions can be evaluated either separately or simultaneously.
Indeed, at finite temperature and nonzero-field strengths we observe considerable rovibrational effects in the
polarization of the hydrogen molecule. Given sufficient computational resources, the path-integral Monte Carlo
method turns out to be a straightforward tool for describing and computing static polarizabilities for traditionally
challenging regimes.
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I. INTRODUCTION

Polarizability is a fundamental property of matter, de-
scribing its response to the external electric fields. It has
straightforward manifestations in linear and nonlinear optical
phenomena and thus it has a significant role in the interpreta-
tion of experimental data and development of new technology
[1]. Current ab initio methods for quantum scale modeling
of polarizability result from many decades of development.
Nevertheless, while these provide high accuracy at 0 K, their
applicability is limited in many central real-world aspects such
as high temperatures, finite particle densities, and rovibrational
effects. Here we propose a different approach, which could
overcome these problems in a straightforward manner for the
benefit of, e.g., cold-atom physics [1], astrophysics [2], and
spectroscopy [3] and thus make important bridges from ab
initio to the practical world.

The polarizability is conventionally divided into com-
ponents as a perturbation expansion. For example, in the
Buckingham convention [4] the total energy of a system in
a constant electric field (Stark effect) is expressed as

E(1) = E(0) − μ(0)
α Fα − 1

2ααβFαFβ − 1
6βαβγ FαFβFγ

− 1
24γαβγ δFαFβFγ Fδ − · · · (1)

with permanent dipole moment μ(0)
α , static dipole polarizability

ααβ , and first and second hyperpolarizabilities βαβγ and γαβγ δ ,
respectively. In addition, the expression for the induced dipole
moment reduces to

μ(1)
α = − ∂E(1)

∂Fα

=μ(0)
α + ααβFβ + 1

2βαβγ FβFγ + 1
6γαβγ δFβFγ Fδ + · · · ,

(2)

where indices α,β,γ,δ, . . . refer to Einstein summation of
distinct tensor components.

The polarizabilities are usually calculated with either sum-
over-states [5] or finite-field (FF) approaches [6]. Sum-over-
states formulas are exact, but they become extensively compli-
cated for higher-rank polarizabilities. Also, their computation
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typically involves limited basis sets. The FF principle is
based on calculating the perturbations in multiple finite-field
strengths and then extrapolating the differentials to zero field
[7], e.g.,

ααβ = ∂2E(1)

∂Fα∂Fβ

∣∣∣∣
F=0

. (3)

This can be done with a variety of methods. Basically, the
challenge is to approximate solutions to the system, which is
fundamentally unstable in any nonzero constant electric field.

Moreover, electron-nucleus coupling and internuclear mo-
tion have to be treated in order to obtain total polarizabilities.
This is commonly performed with the so-called clamped-
nucleus approximation, i.e., supplementing electronic polar-
izability with rotational and vibrational components [8]:

αtot = αel + αrot + αvib, (4)

where αtot is the total polarizability. This cumbersome sepa-
ration can be overcome with a nonadiabatic Hylleraas basis
approach, which, however, is limited to three particles only
[9].

Overall, the extent of the finite-field response is built
upon increasingly complicated series of properties. This com-
bined with finite-temperature statistics makes consideration of
electric-field phenomena a formidable task with conventional
methods. In this work we introduce a more holistic approach:
the path-integral Monte Carlo (PIMC) approach [10–13] ap-
plied in the study of electric-field phenomena and calculation
of polarizabilities. We were able to find only a couple of studies
[14,15] vaguely geared in this direction.

Thus, we present a comprehensive and accurate study
of static polarizabilities of neutral hydrogen atoms and
molecules. These two- and four-particle systems are consid-
ered both adiabatically and nonadiabatically, i.e., with and
without the Born-Oppenheimer (BO) approximation. Also,
it should be emphasized that with the PIMC approach all
the terms in Eqs. (1) and (2) are implicitly included. We
will demonstrate that the nonrelativistic PIMC approach is
a straightforward and efficient tool for studying electric-field
effects including the inherent temperature dependence.
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II. METHOD

For interacting distinguishable particles the Feynman for-
mulation of quantum-statistical mechanics [16] gives the
partition function as a trace of the density matrix

Z = Trρ̂(β) =
∫

dR0dR1 · · · dRM−1

M−1∏
i=0

e−S(Ri,Ri+1;τ ),

where ρ̂(β) = e−βĤ , S is the action, β = 1/kBT , τ = β/M ,
RM = R0, and M is called the Trotter number. We use the
pair approximation in the action [10,17] for the Coulomb
interaction of charges. For neutral systems the external
potential arising from the homogeneous finite electric field
yields an additional diagonal term in the action, i.e., [18]

Uext(R; τ ) = −τμαFα = −τFαqnrnα, (5)

where R is the configuration at given time slice, Fα is
the electric field, and qn is the charge of the nth particle,
where n denotes summation over all particles. Sampling in
the configuration space is carried out using the Metropolis
procedure [19] with multilevel bisection moves [20]. We use
both the thermal estimator [10] and the virial estimator [21] in
the calculation of total energy.

In our model all the particles are described as boltzmannons,
i.e., they obey the Boltzmann statistics. Since we are dealing
with the hydrogen atom and the ground state of the H2

molecule the particles involved can accurately be treated as
distinguishable particles. In the case of the hydrogen molecule
this is possible in the singlet state by assigning spin up to one
electron and spin down to the other one and applying the same
for the positive particles. This is accurate enough, as long as
the thermal energy is well below that of the lowest electronic
triplet excitation. At T ≈ 160 K this is the case for the
hydrogen molecule [11]. This fact can also be exploited in the
calculations of BO energetics at the equilibrium internuclear
distance. Therefore, within our BO simulations we may use
temperatures up to a few thousand Kelvin and still the system
remains in its electronic ground state (see, for example, the BO
results in Fig. 1 of Ref. [12]). The numerical gain is a smaller
statistical error in less time.

It should be emphasized that for systems consisting of
distinguishable particles the accuracy of the PIMC method
is determined only by the imaginary-time time step τ . As
τ approaches zero the exact many-body results are obtained
within the numerical precision.

We use atomic units in this work and thus the lengths,
energies, and masses are given in units of the Bohr radius a0,
hartree Eh, and free-electron mass me, respectively. Therefore,
we have me = 1 as the mass of the electrons and for the protons
we use mp = 1836.152 672 48me. We use the imaginary-time
time step τ = β/M = 0.03E−1

h , which ensures very good
accuracy [13]. Our Trotter number M = 216 together with
the time step τ result in a 160.6 K simulation temperature.
For the BO calculations we use higher temperature for
better statistics, but as discussed above we are still sampling
the correct electronic state. The statistical standard error of
the mean with 2σ limits is used as an error estimate for the
observables. The simulations are carried out in a periodic cubic
simulation cell V = (150a0)3, where we apply the minimum
image convention.

III. RESULTS

We present PIMC results for the hydrogen atom H and
hydrogen molecule H2 both adiabatically and nonadiabatically.
The adiabatic calculations are carried out with fixed nuclei and
will be referred as electronic BO calculations. The nonadia-
batic calculations with freely moving quantum nuclei include
full account of electron-nuclei coupling and are called all
quantum (AQ). In general, we are able to separate electronic,
rotational, and vibrational contributions by restricting motion
of the chosen degrees of freedom.

We have chosen a few finite-field strengths Fz (Ehe
−1a−1

0 ),
in which we compute the induced perturbations in dipole
moment and total energy. We confirm that a reasonably weak
strength of the field ensures a metastable equilibrium state,
where quantum statistics can be sampled without risk of
dissociation, i.e., electrons tunneling apart from the nuclei
due to the electric field.

The results are compared with finite-field reference models
constructed from Eqs. (1) and (2) (as in Ref. [7]) and known
values for polarizabilities from the literature [22–26]. For
atoms and molecules with a zero permanent dipole moment,
i.e., μ(0) = 0, also βzzz = 0 [8]. It should be emphasized that
the reference model is for 0 K temperature, it is only exact at
the zero-field limit, and while considered only up to γzzzz, it is
subject to a truncation error.

We begin with computation of the H atom. The only
difference between the BO and AQ cases is in the ground-state
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FIG. 1. (Color online) (a) Stark shift (in mhartree) and (b) in-
duced dipole moment (ea0) of the hydrogen atom as functions of
the external electric field. The energy shift is the difference between
perturbed and unperturbed total energies 
E(1) = E(1) − E(0). Blue
circles represent BO results, red triangles represent AQ results, and
the solid line is the reference model (see Table I).
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TABLE I. Energy shift 
E(1) = E(1) − E(0) (in mhartree) and induced dipole moment (ea0) of the H atom, also visualized in Fig. 1. The
column labeled “Difference” represents the difference between values from the closest available reference model [22,23] and the PIMC results.

Calculation Fz 
E(1) 
Eref Difference 
μ(1) × 102 
μref × 102 Difference

BO 0.0 0.000(52) 0.0 0.000(52) 0.004(15) 0.0 −0.004(15)
0.01 −0.227(39) −0.2256 0.002(39) 4.530(12) 4.5222 −0.008(12)
0.02 −0.898(39) −0.9089 −0.011(39) 9.197(14) 9.1778 −0.019(14)
0.03 −2.069(39) −2.0700 −0.001(39) 14.203(16) 14.099 −0.103(16)

AQ 0.0 0.000(50) 0.000(50) −0.008(17) 0.008(17)
0.01 −0.185(45) −0.040(45) 4.536(13) −0.013(13)
0.02 −0.939(45) 0.030(45) 9.195(15) −0.018(15)
0.03 −2.023(45) −0.047(45) 14.208(18) −0.109(18)

energy: With a virial estimator we get (in zero field)
E(0)(BO) = −0.499 97(5) and E(0)(AQ) = −0.499 71(5)
against exact Eref(BO) = −0.5 and Eref(AQ) =
−0.499 727 8, respectively. In Fig. 1(a) we present the
energy shift and in Fig. 1(b) we give the induced dipole
moment for a few finite-field values. We employ the same
BO reference model to both cases and they both yield
excellent agreement. However, in stronger fields, e.g.,
Fz = 0.03, the truncation error, i.e., exclusion of the fourth
hyperpolarizability εzzzzzz = 3.533 595 × 106 [23], is large
enough to be observed as a small difference between our result
and the reference. These results are also given numerically in
Table I.

The static (hyper)polarizabilities are obtained by nonlinear
regression on our results. We use the data for the induced
dipole moment because its estimator is statistically more
precise compared to those of the total energy. The fitted
polarizabilities for hydrogen are shown in Table II. Our static
dipole polarizabilities α are accurate within 95% confidence
estimates and second hyperpolarizabilities γ are slightly
overestimated due to truncation error. Generally, the static
dipole polarizabilities have much smaller error than the second
hyperpolarizabilities.

The adiabatic simulations of the H2 molecule are performed
at the equilibrium distance Re = 1.40a0 [24] and, unlike other
calculations, using a thermal estimator for the total energy [10].
To compensate for the high variance of the thermal estimator,
we boost the efficiency by computing at higher temperature
T = 2500 K, which, as argued earlier, is still close enough
to the low-temperature clamped-nuclei density matrix. Our

TABLE II. Static dipole polarizabilities and second hyperpolar-
izabilities of H with 95% confidence intervals are obtained using
nonlinear regression on our PIMC results. They are compared to the
0 K references found in the literature.

αzz (BO) ᾱ (AQ)

H 4.496(23)a 4.496(39)a

4.500b

γzzzz (BO) γ̄ (AQ)
1586(184)a 1592(316)a

1333.125c

aThis work (160 K).
bReference [22].
cReference [23].

ground-state energy without the external field is E(0)(BO) =
−1.174 34(18), which is close to the highly accurate quantum
chemistry estimate of Eref(BO) = −1.174 474 77 [25]. The
adiabatic hydrogen molecule is considered in the two extreme
orientations in laboratory coordinates: perpendicular ⊥ or
parallel ‖ to the external field. Computation of intermediate
orientation angles could be done just as easily, but it is not
considered here. Changes in total energy and induced dipole
moment are presented in Figs. 2(a) and 2(b), respectively, and
corresponding numerical values are given in Table III. These
results demonstrate good agreement in both orientations.
Using the procedure similar to that for the H atom, we obtain
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FIG. 2. (Color online) (a) Stark shift (in mhartree) and (b) in-
duced dipole moment (ea0) of the hydrogen molecule as functions of
the external electric field. The energy shift is the difference between
perturbed and unperturbed total energies 
E(1) = E(1) − E(0). Blue
circles represent BO (⊥) results, red triangle represent BO (‖) results,
green squares represent AQ results, and lines are the corresponding
reference models (see Table III).
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TIIHONEN, KYLÄNPÄÄ, AND RANTALA PHYSICAL REVIEW A 91, 062503 (2015)

TABLE III. Energy shift 
E(1) = E(1) − E(0) (in mhartree) and induced dipole moment (ea0) of the H2 molecule, also visualized in Fig. 2.
The column labeled “Difference” represents the difference between values from the closest available reference model [24–26] and the PIMC
results.

Calculation Fz 
E(1) 
Eref Difference μ(1)
z × 102 μref

z × 102 Difference

BO‖ 0.0 −0.048(317) 0.0 0.048(317) −0.003(11) 0.0 0.003(11)
0.01 −0.211(316) −0.3196 −0.109(316) 6.399(11) 6.3984 −0.001(11)
0.02 −1.141(316) −1.2820 −0.141(316) 12.867(11) 12.865 −0.002(11)
0.03 −2.841(316) −2.8972 −0.057(316) 19.468(11) 19.468 −0.034(11)

BO⊥ 0.0 0.048(317) 0.0 −0.048(317) 0.002(11) 0.0 −0.002(11)
0.01 −0.181(317) −0.2292 −0.048(317) 4.590(11) 4.5886 −0.002(11)
0.02 −0.717(317) −0.9196 −0.202(317) 9.236(11) 9.2348 −0.001(11)
0.03 −2.006(317) −2.0800 −0.074(317) 13.996(11) 13.996 −0.022(11)

AQ 0.0 0.000(170) 0.000(170) 0.019(48) −0.019(48)
160 K 0.005 −0.054(179) −0.013(179) 2.699(28) −0.012(28)

0.01 −0.443(165) 0.172(165) 5.453(41) −0.010(41)
0.02 −1.095(166) 0.000(166) 11.205(91) −0.143(91)
0.03 −2.554(163) 0.058(163) 17.453(138) −0.419(138)

AQ 0 0.000(296) 0.0 0.000(296) 0.037(47) 0.0 −0.037(47)
295 K 0.005 −0.082(322) −0.0677 0.014(322) 2.738(53) 2.7106 −0.028(53)

0.01 −0.494(250) −0.2714 0.222(250) 5.443(51) 5.4433 0.001(51)
0.02 −1.316(253) −1.0945 0.222(253) 11.063(81) 11.063 −0.052(81)
0.03 −2.686(247) −2.4958 0.190(247) 17.148(131) 17.035 −0.113(131)

static dipole polarizabilities and second hyperpolarizabilities,
which are shown in Table IV. The error bars can be made
smaller by additional computational labor.

Nonadiabatic calculations of H2 include rovibrational ef-
fects arising from the chosen finite temperature and influenced
by the external electric field. It should be pointed out that with
the nonadiabatic PIMC approach the electron-nuclei coupling
is exactly included and thus in our simulations we sample an
accurate many-body density matrix at finite temperature and
in an external electric field. For the nonadiabatic molecule the
equilibrium distance is slightly larger compared to the case
of static nuclei and this is also accurately taken into account
[11]. To compare ground-state energies, we extrapolate our
finite-temperature energy to 0 K, which yields E

(0)
0 K(AQ) =

−1.163 87(18), which coincides with the 0 K reference

TABLE IV. Static dipole polarizabilities and second hyperpolar-
izabilities of H2 with 95% confidence intervals are obtained using
nonlinear regression on 160 K PIMC results. They are compared to
the 0 K references found in the literature.

αzz (BO)‖ αxx (BO)⊥ ᾱ (AQ)

H2 6.382(13)a 4.577(10)a 5.417(37)a

6.387493c 4.57861c 5.4139d

5.428(59)b

γzzzz (BO)‖ γxxxx (BO)⊥ γ̄ (AQ)
787(100)a 640(73)a 2678(298)a

682.5c 575.9c 1763e

1918(479)b

aThis work (160 K).
bThis work (295 K).
cReference [24].
dReference [25].
eReference [26] (295 K).

value Eref(AQ) = −1.164 025 018 5 [27]. Our simulations at
T = 160.6 K demonstrate good agreement in the shift of the
total energies, in the induced dipole moment, and in the fitted
polarizabilities (see Fig. 2 and Tables IV and III).

It is important to understand that the exact polarizabilities in
finite-temperature equilibrium obey the Maxwell-Boltzmann
distribution of excited-state contributions. With the adiabatic
and the monatomic cases, these reduce to electronic ground
states at low temperatures, but this is not the case with
H2(AQ), whose excited rotational states are considerably
occupied at T = 160.6 K. By thermal averaging [8] it can be
shown that the total hyperpolarizability may vary significantly
with temperature. This can be seen from from Fig. 2 and
Table III, where the induced dipole moment of H2(AQ) has
a slightly higher value at 160.6 K (PIMC approach) than at
the 295 K reference [26]. Indeed, comparison of the obtained
hyperpolarizabilities in Table IV shows that γ̄ (160.6 K) =
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FIG. 3. (Color online) Orientation parameter of H2 plotted
against the external field strength at different temperatures. Blue
circles represent 40 K, green squares 160 K, and red triangles 640 K
results. Solid lines are quadratic fits to guide the eye.
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TABLE V. Orientation parameter of the hydrogen molecule H2

as a function of T (visualized in Fig. 3).

Fz

T (K) 0.01 0.02 0.03

H2 40 0.007(14) 0.064(15) 0.173(18)
160 0.009(8) 0.054(8) 0.135(9)
640 0.005(3) 0.021(3) 0.050(3)

2678(298) is considerably higher than γ̄ (295 K) = 1918(479)
or the reference value γ̄ ref(295 K) = 1763 [26], which is
estimated according to Eq. (4). Static dipole polarizability ᾱ

is predicted to increase slightly with the temperature [25],
however, the effect is lost here within error boundaries.

The rotational coupling with the electric field can be further
examined by the orientation parameter

S = 1
2 〈3 cos2 θ − 1〉, (6)

where θ is the angle between the laboratory axis (electric field)
and that of the diatomic H2. The perpendicular configuration
gives the lower limit S = − 1

2 and the parallel configuration the
upper limit S = 1; random orientation gives the expectation
value of 〈S〉 = 0. The parameter is computed for H2(AQ) in
different field strengths and temperatures using lower accuracy
(τ ≈ 1) for feasible efficiency. Our results are presented in
Fig. 3 and in Table V. While the static total polarizability peaks
at parallel orientation, the estimate of S increases towards 1
in stronger fields and more so at lower temperatures, where
thermal distortion is smaller.

IV. CONCLUSION

In this work we presented a path-integral Monte Carlo
study of the hydrogen atom and hydrogen molecule in a
weak homogeneous static electric field. We demonstrated
accurate finite-field results for the Stark shift and induced
dipole moment, which agree excellently with the Buckingham
perturbation expansion, i.e., Eqs. (1) and (2) in the low-
temperature regime. Also, our extrapolated values for static
(hyper)polarizabilities match within confidence bounds the
most accurate ones found in the literature.

We showed that with path integrals it is straightforward
to extend the conventional analysis by taking into account
the nonadiabatic effects and those from finite temperature.
This also supports the extensive work by Bishop on finite-
temperature effects on polarizabilities [8]. To this end, we also
demonstrated how the orientation of the hydrogen molecule
behaves as a function of the electric-field strength. While we do
not yet report any nonequilibrium statistics or comprehensive
finite-temperature dependences, it is evident that this approach
permits access to ab initio study of unexplored electric-field
phenomena.
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