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ABSTRACT

This Thesis is a review of polarizability and different means to estimate it from path-
integral Monte Carlo (PIMC) simulations. Polarizability is the quantum mechanical
equivalent of electric susceptibility: it describes the electric field response of atoms and
molecules. The static and dynamic multipole polarizabilies are, arguably, the most im-
portant electronic response properties and multipurpose parameters for physical mod-
eling. Computing them from first principles is challenging in many ways, and in this
Thesis we focus on a few particular aspects: exact many-body correlations, nonadiabatic
effects and thermal coupling.

The Thesis contains an introduction to polarizability in the framework of nonrelativis-
tic Feynman path integrals and thermal density matrices. The electric field interactions
due to electric multipoles is associated with causal time-correlation functions and non-
linear response theory. The original scientific contribution manifests in various strate-
gies to obtain the polarizabilities from PIMC simulations: we demonstrate finite-field
simulations, static field-derivative estimators, and analytic continuation of imaginary-
time correlation functions. The required analytic continuation of Matsubara frequen-
cies is a common but ill-posed numerical challenge, which we approach with the Maxi-
mum Entropy method.

For data, we provide the most important polarizabilities and hyperpolarizabilities of
several one- or two-electron systems: H, H+2 , H2, H+3 , HD+, He, He+, HeH+, Li+,
Be2+, Ps, PsH, and Ps2. Our benchmark simulations within the Born–Oppenheimer
approximation (BO) agree with the available literature and complement it in many cases.
Beyond BO, we are able to demonstrate weak and strong thermal effects due to, e.g.,
rovibrational coupling. We also estimate the first-order multipole spectra, dynamic po-
larizabilities and van der Waals coefficients. The simulations show unprecedented accu-
racy in terms of exact many-body correlations and fully nonadiabatic coupling of the
electronic and nuclear quantum effects.
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TIIVISTELMÄ

Väitöskirja käsittelee polarisoituvuutta ja erilaisia keinoja sen laskemiseksi polkuinteg-
raali–Monte Carlo -menetelmällä (PIMC). Polarisoituvuus on kvanttimekaaninen suu-
re, joka vastaa sähköistä suskeptibiliteettiä: se kuvaa atomien ja molekyylien vastetta
sähkökenttään. Staattiset ja dynaamiset multipoli-polarisoituvuudet ovatkin yksiä tär-
keimmistä elektronien vasteominaisuuksista ja näin ollen monikäyttöisiä parametrejä
fysikaalisessa mallinnuksessa. Polarisoituvuuksien äärimmäisen tarkka laskeminen on
kuitenkin haasteellista. Väitöskirjassa keskitytään siksi muutamaan erityiseen ongel-
maan: tarkkaan monen kappaleen korrelaatiokuvaukseen, ei-adiabaattisiin efekteihin
sekä lämpötilan vaikutuksiin.

Tässä työssä polarisoituvuuksien laskemista tarkastellaan ei-relativistisesti Feynmanin
polkuintegraalien ja termisten tiheysmatriisien avulla. Sähkökentän ja sähköisten mul-
tipolien välinen vuorovaikutus kytketään kausaalisiin korrelaatiofunktioihin sekä epäli-
neaarisen vasteen teoriaan. Uusi tieteellinen ansio muodostuu muutamasta erilaisesta
keinosta määrittää polarisoituvuus PIMC-laskuista: äärellisen kentän simulointi, staat-
tiset kenttä-derivaatan estimaattorit, sekä imaginääriajan korrelaatiofunktioiden ana-
lyyttinen jatkaminen. Vaadittu Matsubara-taajuuksien analyyttinen jatkaminen on ylei-
sesti esiintyvä mutta huonosti määritelty numeerinen ongelma, jota lähestytään tässä
työssä maksimientropiamenetelmällä.

Tärkeimmät laskennalliset tulokset ovat seuraavien yhden tai kahden elektronin sys-
teemien polarisoituvuudet ja hyperpolarisoituvuudet: H, H+2 , H2, H+3 , HD+, He, He+,
HeH+, Li+, Be2+, Ps, PsH, ja Ps2. Born–Oppenheimer-approksimaatiossa (BO) laske-
tut referenssitulokset vastaavat tunnettuja kirjallisuuden arvoja ja monessa tapauksessa
myös täydentävät niitä. BO-approksimaation ulkopuolelta voidaan osoittaa mm. rovib-
raatiosta johtuvia heikkoja sekä voimakkaita lämpötilaefektejä. Muut tulokset käsit-
tävät multipoli-spektrejä, dynaamisia polarisoituvuuksia sekä van der Waals-vakioita.
Simulaatioiden kvanttimekaaninen kuvaus monen kappaleen korrelaatioista sekä elekt-
ronien ja ytimien ei-ediabaattisesta kytkennästä on poikkeuksellisen tarkka.
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1 INTRODUCTION

The last century has been a celebration of modern physics and technology. Quantum
physics has redefined our understanding of the nature: quantization of light, matter
and state – and fundamental uncertainty. The implications have unleashed a plethora of
technologies, such as quantum chemistry, semiconductors, and materials design. Maybe
the most important is the light–matter interaction: Optical fibers, spectroscopy, and
lasers, to name a few, have become irreplaceable corner stones of modern science, com-
munication and infrastructure. The eve of quantum computers and photonics only
accentuates that this is the era of nonlinear optics.

The precursor of modern technology is the combination of scientific theory and com-
putation. Most problems in electronic structure theory are so complex that a practical
solution is only given by extensive computer simulations. Computing is often a cost-
effective and complementary alternative to the experiment, and it can provide insight
even beyond the measurable realm. Thus, there are supercomputers designed for the
sole purpose of heavy scientific computation. The design of efficient simulation meth-
ods, algorithms and approximations is a universal challenge and also the future for most
natural sciences.

This Thesis combines quantum mechanics, nonlinear optics and heavy computation. In
particular, means are developed to study electric field response properties of quantum
systems, atoms and molecules, using path integral simulations. The path integration is
an accurate but computationally intensive way to approach quantum mechanics. On
the other hand, the standard measure of electric field response is induced polarization:
the polarizability.
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1.1 The importance of polarizability

Polarizability is, arguably, the most important electronic response property. It models
the effects of electric fields on microscopic quantum systems, such as atoms and small
molecules. To give an exhaustive review is virtually impossible, but the following will
hopefully outline the importance of polarizability and the main challenges it poses to
computational sciences.

The famous evidence of polarizability was the discovery of Stark in 1914 [1]: the shift-
ing of atomic energy levels in response to static electric fields. The Stark shift is still one
of the standard ways to characterize a quantum system [2]. Namely, from early empir-
ical models [3, 4] to the first quantum mechanical explanations [5], it was clear that the
field-response was dominated by a characteristic constant: the polarizability. During
the following decades, more advanced theories were established to account for higher
order properties and more exotic symmetries [6, 7, 8, 9, 10]. Today, the fundamental
theory of nonlinear optical properties has matured for almost 100 years. Since the dis-
covery of laser, the endeavor to understand, calculate and utilize the polarizabilities has
never ceased.

The first-order polarizability α is an important parameter in many physical models.
Conceptually, α relates the response of a microscopic particle to the perturbing field,
i.e.

P= αFloc, (1.1)

where P is an induced electric polarization and Floc is a local electric field. At the macro-
scopic level, the polarizability is related to the bulk electric susceptibility χ by

χF=NV αFloc, (1.2)

where NV is the number of particles per unit volume and F denotes the applied electric
field, which may differ from the local field. A familiar bulk property is the refractive
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index n, which is related to the polarizability by the Lorentz–Lorenz relation

n2− 1
n2+ 2

=
4π
3

NV α. (1.3)

Optical dispersion is only one illustrative example, however, a more comprehensive
definition of polarizability is given in Ch. 3. Applications of the first-order polarizabil-
ities include ultracold molecule alignment [11], diffusion of adatoms [12, 13], stellar
spectroscopy [14, 15], atomic clocks [16], quantum information technology [17], and
method benchmarking in general. On the other hand, polarizabilities can be used for
empirical understanding and prediction of chemical properties, such as softness/hard-
ness [18], acidity/basicity, and ionization potential [19, 20].

The higher-order response, the so-called hyperpolarizability, is even more diverse in
terms of definitions and applications. It describes processes involving multiple fields,
and in essence, lays foundations of the nonlinear optics. Particularly interesting phe-
nomena are nonlinear spectroscopy and many-harmonic generation, that is, multiply-
ing the frequency of a laser using optically active media. For instance, second-order po-
larizabilities are involved in the second-harmonic generation [21], birefringence [22],
and Raman spectroscopy [9]. The third-order polarizabilities are involved in the Kerr
effect [23, 24], four-wave-mixing [25], third-harmonic generation [26], piezo-electric
phenomena [27], and so on.

In the end, polarizability is an emergent property, meaning that heavy quantum me-
chanical calculations can be efficiently replaced by a single object, a scalar or tensor α.
In that sense polarizability resembles the bulk susceptibility. However, the polarizabil-
ities are still inherently atomistic and therefore able to describe microscopic dielectric
processes. Indeed, an important application of polarizability is related to atomic and
molecular long-range interactions: the van der Waals forces (vdW). Multipole polariz-
abilities are involved in the attractive interaction between quantum fluctuating electric
moments, called the London dispersion [28, 29]. The corrections due to the long-range
attraction are important in large-scale simulation models of, e.g. biological systems [30,
31] and liquid water [32]. Indeed, effects of the first and higher-order dispersion can
be crucial [33], and the research on polarizable force-field models has increased rapidly
during the past few years [34, 35, 36, 37] .
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1.2 Computational challenge

In this Thesis, polarizability is studied with computer simulations. The agreement be-
tween experiment and first-principles simulation is the foremost measure of theoretical
integrity. However, while the experiments struggle to measure pure systems, the on-
going computational challenge is to make realistic simulations. Unfortunately, solving
quantum mechanical problems is inherently challenging, and simulating the electric
field response is no exception. Depending on the approach, the main difficulties are
related to quantum many-body correlations, sensitivity of time evolution, and non-
equilibrium nature of the field interaction. In any case, striving for better accuracy
requires decomposition of the problem, method development and excessive amounts of
computing.

Accurate polarizability is a powerful benchmark, and indeed a lot of literature exists
on the computation of polarizabilities using the wide variety of electronic structure
methods and their dedicated variations. Generally, the electric field response is more
sensitive to electron density than total energy, while the latter is often used to optimize
simulation methods [38]. The many-body correlation plays an important role [39],
and thus, among the most popular high-accuracy approaches are the coupled-cluster
method (CC) [40, 41, 42] and the configuration interaction method (CI) [43]. CI aug-
mented with many-body perturbation theory (MBPT) has also been demonstrated [44,
45]. Furthermore, using CI with semi-empirical core potentials is relatively accurate,
because the core only contributes several percents to the total polarizabilities [16]. Big-
ger systems can be studied, for instance, with the Derivative Hartree-Fock method, but
the accuracy is not as good [46]. Alternatively, one can pursue better accuracy by de-
veloping basis sets that are adjusted for reference data [47]. Density functional theory
(DFT) is a very popular approach for its high scalability [48, 49], and time-dependent
DFT can be used to study the dynamic response properties and long-range dispersion
[50]. However, DFT-based methods have fundamental problems with uncontrollable
approximation, and the incorrect asymptotic behavior of xc-functionals is a particu-
lar problem for the polarizabilities [51]. Explicitly correlated methods, such as diffu-
sion Monte Carlo (DMC) [52], are probably the most rigorous but computationally
demanding ways to simulate quantum many-body systems. Finally, the most explicit
way to study polarizability is the finite-field approach [53], which can be utilized with
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almost any quantum mechanical simulation method.

This Thesis is focused on thermal and nonadiabatic effects on polarizabilities. For
atoms, these effects are usually small, but the topic is also largely unexplored. On one
hand, experimental data is difficult to obtain for other than inert species, such as xenon
[54]. On the other hand, simulation with ab initio methods is restricted to the pure
state, 0 Kelvin. Some studies exist that model the effects of finite density with confine-
ment to a sphere [55] or harmonic potential [56].

Molecules are known to have strong electric field response due to orientational coupling
[21, 29], which is also subject to thermal effects [57]. One usually studies this by mak-
ing the adiabatic approximation, i.e., decoupling of the nuclear and electronic degrees
of freedom. This allows one to estimate electronic and rovibrational polarizabilities
and their thermal coupling by various analytic approximations [10], explicit summa-
tion [58], and numerical methods such as the derivative Numerov–Cooley approach
(DNC) [59]. Unfortunately, such approaches often become tedious and inaccurate for
more complicated problems. The nuclear quantum effects give rise to microwave, in-
frared (IR) and Raman spectroscopy, which can be studied experimentally, but also with
molecular dynamics (MD) [60]. Even better accuracy of quantum effects can be ob-
tained with path integral MD (PIMD) [61, 62]. Yet, the lack of accurate electron–ion
coupling is a fundamental limitation, which we aim to resolve in this work.

1.3 Objectives and structure of the Thesis

Objective of the Thesis is to study and utilize different means of estimating atomic
and molecular polarizabilities with a particular computational method, path integral
Monte Carlo (PIMC). We focus on exact thermal and nonadiabatic effects related to
the polarizabilities, as they arise naturally from PIMC simulations. In particular, we
study how the electron–ion coupling and the nuclear degrees of freedom – the molecular
rovibration – respond to electric fields in higher orders of perturbation. The problem
is often decoupled in the Born–Oppenheimer approximation, but in this Thesis we aim
for the exact coupling.

Apart from a few studies, the computation of polarizabilities is a novel feat in the com-
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munities of path integral methods and quantum Monte Carlo. For instance, Caffarel et
al. successfully used DMC to study real and imaginary-domain polarizabilities and van
der Waals coefficients at the ground state [52]. A PIMC approach was demonstrated
by Shin et al. [63], but only in the imaginary domain. Neither of the studies involved
quantized nuclei or electron–nucleus coupling. On the other hand, many PIMD studies
exhibit nuclear quantum phenomena [61, 62, 64], but they mainly neglect the electronic
response and nonadiabatic effects. The nonadiabatic response properties have been sim-
ulated with the coupled electron–ion Monte Carlo (CEIMC) [65, 66, 67, 68], but not
the polarizabilities.

There are many variations of PIMC, and the one used in this work [69, 70, 71, 72]
is fully nonadiabatic and extremely accurate in terms of exact Coulomb interactions.
The biggest challenge is the usual difficulty of all the real-space QMC methods: the so-
called Fermion sign problem (FSP), which arises from the quantum statistics of identical
particles. However, this work is not focused on developing the core method, and thus,
the study is limited to few-electron systems.

Instead, we focus on estimating the field-response, i.e., multipole polarizability from
PIMC simulations. We demonstrate three approaches: finite field simulation, static
field-derivative estimators, and transformation of imaginary-time correlation functions.
The field-derivative estimators are efficient in the estimation of the static higher-order
polarizabilities. The correlation functions are the most capable approach, providing an
interface to dynamic properties. However, the required analytic continuation is an ill-
posed numerical problem and a challenge of its own. We provide an ample demonstra-
tion and a workflow description for a particular approach called the Maximum Entropy
method (MaxEnt) [73, 74].

Besides advances in the methodology, we report static and dynamic multipole polar-
izabilities of a range of one- and two-electron systems: H, He, H+2 , H2, H+3 , He+,
Li+, Be2+, Ps, Ps2, PsH, HeH+ and HD+. We successfully benchmark our approaches
against pre-existing data, but we also complement them at unprecedented accuracy. Es-
pecially, we provide exact numerical evidence to some thermal effects, which used to be
known only at a qualitative or approximate level.

The Thesis is structured as follows: In Chapter 2, we establish the basic definitions of
quantum mechanics, path integrals and linear response theory. In Chapter 3 we spec-
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ify perturbation due to electric field and consider the emergence of polarizabilities and
their basic properties. In Chapter 4 we outline some of the more practical aspects of the
PIMC simulation and emphasize the different strategies to obtain polarizabilities. In
Chapter 5 we discuss thermal effects in atomic and molecular higher-order polarizabil-
ities using the proposed static estimators. In Chapter 6 the focus is on the properties of
dynamic response functions: correlation functions, analytic continuation and van der
Waals coefficients. We conclude with a summary and outlook. Comprehensive sets of
results are found in the original publications, whose reprints are provided at the end.
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2 QUANTUM MECHANICS AND PATH INTEGRALS

Quantum physics is the foundation of most properties of matter. The purpose of this
chapter is to view generalized dynamic susceptibilities in the framework of nonrela-
tivistic quantum mechanics. The narrative is dedicated to understanding the connec-
tion between ground state wavefunctions and the Feynman path-integral formalism for
thermal density matrices. In particular, we are focused on associating linear and non-
linear response properties with quantum time-correlation functions, whose definitions
and analytic properties we consider in both real and imaginary times.

This chapter lays the abstract and theoretical foundations of this Thesis. It is based
on, e.g., Refs. [72, 75, 76, 77, 78], which also allow for more verbose and educational
introduction for nonexpert readers.

2.1 The Schrödinger equation

Throughout this Thesis we are concerned with a quantum state and its time evolution.
In nonrelativistic quantum mechanics, the time-evolution is defined by the time-depen-
dent Schrödinger equation

Ĥ |Ψ(t )〉= i ħh ∂
∂ t |Ψ(t )〉, (2.1)

where Ĥ is the Hamilton operator and |Ψ(t )〉 is a normalized wavefunction. The Hamil-
tonian in Eq. (2.1) is a Hermitian operator and independent of the basis. The wavefunc-
tion is a solution to Eq. (2.1) in an abstract vector space, and it uniquely defines the state
of the system.

In the following, we denote by Ĥ0 that the Hamiltonian is independent of time and
unperturbed. The stationary eigenstates of Ĥ0 are given by the time-independent Sch-
rödinger equation

Ĥ0|n〉= En |n〉, (2.2)

where En is an eigenenergy associated with an eigenstate |n〉. The eigenstates span a
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complete and orthonormal basis set. That is, the set of eigenstates obeys orthonormal-
ity

〈n|m〉= δnm , (2.3)

where δ is the Kronecker delta, and resolution of the identity

∑

n
|n〉〈n|= 1̂, (2.4)

where 1̂ is the identity operator, for which 1̂P̂ = P̂ for any operator P̂ .

2.1.1 Propagator

Let us now consider the propagation of the wavefunction to another time t ′. The time-
evolution is given by

|Ψ(t ′)〉= Û (t , t ′)|Ψ(t )〉, (2.5)

where the propagator Û (t , t ′) is a unitary operator that satisfies Û (t , t ) = 1̂, Û (t , t ′) =
Û †(t ′, t ) and Û (t , t ′) = Û (t , t ′′)Û (t ′′, t ′). Its explicit form can be solved from Eq. (2.1)
as

Û (t , t ′) = e−i/ħh
∫ t ′

t d t̄ Ĥ0( t̄ ) (2.6)

= e−i(t ′−t )Ĥ0/ħh (2.7)

≡ Û (t ′− t ), (2.8)

provided that Ĥ0 is time-independent. That is, the propagation only depends on the
time differences, and an arbitrary t can be chosen without loss of generality.

Let us consider a general operator P̂ and its expectation value, which is denoted P̄ (t ) at
a given time and defined by

P̄ (t ) = 〈Ψ(t )|P̂ |Ψ(t )〉 (2.9)

≡ 〈Ψ|P̂ (t )|Ψ〉. (2.10)

Equation (2.9) is called the Schrödinger picture, where we propagate the wavefunction. It
is equivalent to Eq. (2.10), which is the Heisenberg picture, where the time-propagation
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is encoded in the operator P̂ (t )≡ Û (t )P̂ Û (−t ). In the following, the standard conven-
tion will be the Heisenberg picture.

2.1.2 Representation of the wavefunction

So far, the wavefunction |Ψ(t )〉 has been treated in the abstract vector space. However,
the actual mechanical problem is usually treated in the Hilbert spaceH , such that R ∈
H , where R is a set of real-space coordinates that span the phase-space of the system.
Projection of the wavefunction is denoted

Ψ(R, t )≡ 〈R|Ψ(t )〉= 〈Ψ(t )|R〉. (2.11)

For practical reasons, R represents degrees of freedom of the mechanical system, such
as the positions and generalized momenta of the particles. In quantum mechanics, po-
sitions r̂ and momenta p̂ are connected by the canonical commutation relations

[ r̂i , p̂ j ]≡ r̂i p̂ j − p̂ j r̂i = i ħhδi j , (2.12)

where the brackets denote a commutator. Consequently, only either set of coordinates
is needed to fully express the state. We can thus summarize the choices of basis in the
resolution of the identity

∑

n
|n〉〈n|=
∫

dR |R〉〈R|=
∫

d p |p〉〈p|= 1̂. (2.13)

This also implies orthonormality, i.e.

〈n|m〉= 〈Rn |Rm〉= 〈pn |pm〉= δnm . (2.14)

For the remainder of this work, we will denote a many-body state in real space by R≡
{r1 . . .rN }, where rn are the Cartesian coordinates of N distinguishable particles. The
real-space projection of the Schrödinger equation is written as [72]

H (R)Ψ(R, t ) = i ħh ∂
∂ tΨ(R, t ), (2.15)
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and the projection of any operator as

P (R)≡ 〈R|P̂ 〉. (2.16)

So far, we have omitted the spin degree of freedom, which is critical for the complete
quantum-mechanical representation of state. Adding the spin is straightforward, but
also redundant for the purposes of this Thesis.

2.1.3 Fermion, boson and boltzmannon statistics

Let us briefly consider the many-body wavefunction of identical, indistinguishable par-
ticles. By indistinguishability it is implied that we cannot tell apart Ψ(R) and Ψ(P R),
where the permutation operatorP has permuted some of the one-particle coordinates:
e.g. P {r1,r2, . . .} → {r2,r1, . . .}. The statistical properties of identical particles arise
from the particle density measurement. The probability amplitude ρ is given by the
squared norm of the wavefunction:

ρ(R) = |Ψ(R)|2 = 〈Ψ(R)|Ψ(R)〉, (2.17)

which leads to a conclusion
Ψ(R) = eiφΨ(P R), (2.18)

whose square solves φ either as 0 or π. Based on experiments, those particles obeying
φ = 0 are defined as bosons (integer spin; e.g. photons, gluons and composites with an
even number of fermions) and those obeying φ = π as fermions (half-integer spin; e.g.
electrons, protons and neutrons). The consequence can be summarized in

Ψ(R) = (±1)P Ψ(P R), (2.19)

where plus is for bosons, minus is for fermions andP in the exponent refers to the total
number of permutations.

The seemingly simple property of Eq. (2.19) has vast implications in both the theoretical
and practical aspects of quantum mechanical simulations. In large systems, the number
of identical particles increases inevitably, and thus, the number of permutations also
grows rapidly. Many approaches related to explicit integration over spatial dimensions
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R or permutation determinants suffer from the exclusive nature of the minus sign of
fermions: subtraction of almost but not quite identical permutations leads to numeri-
cal problems that are commonly referred to as the Fermion sign problem (FSP). While
FSP is a significant challenge, we make no attempts to solve it or further study its con-
sequences in this Thesis. This is a major trade-off, which is made for convenience and
the focus on response properties – for now.

Consequently, we only study small systems that obey the so-called boltzmannon statis-
tics. There is no need to consider identical fermions, if all the particles are distinguish-
able: either they are different species or opposite spins. Thus, up to two electrons or
identical nuclei are allowed to appear in one simulation. We elude this restriction in a
few simulations, because the interaction of identical nuclei is negligible at high temper-
atures. Mostly, it is natural to simulate two-electron systems as boltzmannons, because
the singlet spin state is also the ground state.

2.1.4 Density matrix and thermal ensemble

The wavefunction Ψ(R, t ) represents a pure quantum state, but a density matrix ρ rep-
resents a state that is mixed in the statistical sense. The normalized density matrix is
defined by the density operator

ρ̂=
∑

n
Pn |n〉〈n|, (2.20)

where Pn is a nonnegative probability describing the relative occupation at the given
pure state n. The dynamics of a density matrix are given by the von Neumann equation

i ħh
∂

∂ t
ρ̂(t ) =
�

Ĥ (t ), ρ̂
�

. (2.21)

If Ĥ = Ĥ0 is time-independent, the solution is ρ̂(t ) = e−i t Ĥ0/ħhρ(0)ei t Ĥ0/ħh .

An expectation value of some physical property P is given by a weighted trace:

〈P 〉= Z−1Tr
�

ρ̂P̂
�

, (2.22)
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where
Z =Tr [ρ̂] =
∑

n
Pn (2.23)

is the partition function.

A usual mixed state is the Boltzmann distribution in thermal equilibrium:

ρ̂(β)≡ e−βĤ0/ħh , (2.24)

where β= 1/kB T is the inverse temperature. The partition function is then given by

Z ≡Tr [ρ̂] =
∑

n
e−βEn . (2.25)

Clearly, the equilibrium density matrix ρ̂(β) commutes with Ĥ0 and Û : the equilib-
rium is time-invariant.

In real-space projection, the normalized density matrix is defined and denoted

ρ(R, R′;β)≡ Z−1〈R|ρ̂(β)|R′〉= Z−1
∑

n
ψn(R)ψ

∗
n(R
′)e−βEn , (2.26)

where ψn(R) = 〈R|n〉. Analogous to Eq. (2.21), the thermal density matrix uniquely
solves the Bloch equation [72]

�

Ĥ0+
∂
∂ β

�

ρ(R, R′;β) = δ(β)δ(R−R′) (2.27)

for a set of boundary conditions.

2.1.5 Measurements and observables

A quantity is an observable, if it can be measured. That is, if P is an observable, there
exists a self-adjoint operator P̂ = P̂ † that produces real-valued results P out of the wave-
function:

P̂ |Ψ(R, t )〉= P |ΨP (R, t )〉, (2.28)
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where the system has collapsed to an eigenstate ΨP (R, t ) of P̂ . This is the widely de-
bated Copenhagen interpretation of the quantum measurement. Nevertheless, empiri-
cal evidence suggests that the expectation value P̄ (t ) taken over repeated measurements
follows Eq. (2.9). If the state is time-invariant, i.e., |Ψ(R, t )〉 ≡ |Ψ(R)〉, we can without
loss of generality choose t = t ′, which leads to

P̄ (t ′) = 〈Ψ(R, t ′)|P̂ |Ψ(R, t ′)〉 (2.29)

= 〈Ψ(R)|P̂ |Ψ(R)〉 (2.30)

≡ P̄ , (2.31)

that is, the expectation value is also time-independent.

A particular stationary state is the thermal equilibrium. According to Eq. (2.22), a one-
time observable yields a thermal expectation value

〈P (t ′)〉= Z−1Tr[ρ̂(β)Û (t ′)P̂ Û †(t ′)]

= Z−1Tr[Û †(t ′)ρ̂(β)Û (t ′)P̂ ]

= Z−1Tr[ρ̂(β)Û †(t ′)Û (t ′)P̂ ]

= 〈P 〉, (2.32)

which is also time-invariant. That is, based on the cyclic property of the trace and the
fact that ρ̂ and Û commute. The same equation in the coordinate representation is

〈P 〉= Z−1Tr[ρ̂(β)P̂ ] (2.33)

= Z−1
∫

dRdR′ 〈R|ρ̂(β)|R′〉〈R′|P̂ |R〉] (2.34)

= Z−1
∫

dRdR′ρ(R, R′;β)〈R′|P̂ |R〉. (2.35)

Moreover, if P̂ is an operator that is local or diagonal in R, it follows that

〈R′|P̂ |R〉= P (R)〈R′|R〉= P (R)δ(R−R′),
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and thus,

〈P 〉= Z−1
∫

dRρ(R, R;β)P (R). (2.36)

Most operators are diagonal in the coordinate space R except, e.g., the Hamiltonian Ĥ0

and the momentum p̂. For the remainder of this Thesis, we prefer the thermal expecta-
tion value for density matrices. Transformation to the wavefunction representation is
possible in some cases by taking the limitβ→∞, but that is not always straightforward
or rigorous.

2.1.6 Causal time-correlation and Green’s functions

Diagonal observables are time-independent in the equilibrium, but the situation is more
complicated for correlated measurements: when two or more events occur in succes-
sion, they affect each other. In the following, we summarize the most important def-
initions of 1-time correlators and beyond. The higher-order formalism is rare in the
literature, but we will follow Ref. [79]. The framework may appear daunting, but the
motivation is recovered in Sec. 2.2, where the general n-time correlators are associated
with higher-order response functions.

Let us adopt a notation for a series of consecutive interactions, according to Fig. 2.1.
That is, operator P̂ (t ) in the Heisenberg picture denotes the final measurement of P ,
which responds to interactions Q̂1(t

′), Q̂2(t
′′), etc, whose indices are ordered backwards

in time. The reverse ordering may appear confusing at first, but it allows adding an
arbitrary number of steps. It turns out that the process only depends on the relative

{ { {

Figure 2.1 Denotation of the few lowest real-time arguments and the associated interactions and
time-differences in causal scenario.
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time-differences, which are denoted t1 = t − t ′, t2 = t ′′− t ′, t3 = t ′′′− t ′′, and so on.

Thus, let us define the correlator, or the Green’s function operator, between P̂ and Q̂:

Ĝ(t ; t ′) =
1

i ħh
T P̂ (t )Q̂(t ′) (2.37)

where T is a time-ordering operator on the so-called Keldysh contour [78]. A proper
way to implement the time-ordering is to define lesser and greater correlators, i.e.

Ĝ>(t ; t ′) =
1

i ħh
P̂ (t )Q̂(t ′) (2.38)

Ĝ<(t ; t ′) =± 1
i ħh

Q̂(t )P̂ (t ′), (2.39)

where the latter plus/minus refer correlators of bosonic/fermionic symmetry, respec-
tively. Observable measurements in this Thesis are categorically bosonic, and we will
use the bosonic sign from this point on. We can further define the retarded and advanced
correlators as

ĜR(t ; t ′) = θ(t − t ′)
�

Ĝ>(t ; t ′)− Ĝ<(t ; t ′)
�

= θ(t − t ′)
1

i ħh

�

P̂ (t ), Q̂(t ′)
�

(2.40)

ĜA(t ; t ′) = θ(t ′− t )
�

Ĝ>(t ; t ′)− Ĝ<(t ; t ′)
�

= θ(t ′− t )
1

i ħh

�

Q̂(t ′), P̂ (t )
�

(2.41)

where θ(t ) is the Heaviside step function. The retarded correlator is also causal: P̂
happens after Q̂.

The correlator Ĝ(t , t ′) is associated with the thermal Green’s function

G(t ; t ′) = Z−1Tr
�

ρ̂(β)Ĝ(t ; t ′)
�

= Z−1Tr
�

ρ̂(β) 1
i ħhT P̂ (t )Q̂(t ′)
�

= Z−1Tr
�

ρ̂(β) 1
i ħhT P̂ (0)Q̂(t ′− t )

�

= Z−1Tr
�

ρ̂(β)Ĝ(0,−t1)
�

(2.42)

≡G1(t1), (2.43)

where the 1-time Green’s function G1(t1) only depends on the time-difference t1 = t− t ′.
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Similarly, an n-time correlator

Ĝn

�

t ; t ′, . . . , t (n)
�

=
1
(i ħh)n
T P̂ (t )Q̂1
�

t ′
�

. . . Q̂n

�

t (n)
�

, (2.44)

produces an n-time Green’s function

Gn

�

t ; t ′, . . . , t (n)
�

= Z−1Tr
�

ρ̂(β)Ĝn

�

t ; t ′, . . . , t (n)
��

= Z−1Tr
�

ρ̂(β)Ĝn

�

0; t ′− t , . . . , t (n)− t
��

≡Gn(t1, . . . , tn). (2.45)

That is, the n+ 1 instances of time can be reduced to n time-differences.

Causality in higher orders

We are interested in the retarded n-time Green’s function, so let us construct one using
the advanced correlators. The advanced 1-time correlator ĜA

1 (t , t ′) starts from P̂ (t )
and reverts back in time to Q̂1(t

′). Now, according to Eq. (2.41), the advanced 2-time
correlator is defined with respect to ĜA

1 (t , t ′):

ĜA
2 (t , t ′, t ′′) = θ(t ′′− t ′)

1
i ħh

�

Q̂2(t
′′), Ĝ1(t , t ′)
�

(2.46)

= θ(t ′− t )θ(t ′′− t ′)
1
(i ħh)2
�

Q̂2(t
′′),
�

Q̂1(t
′), P̂ (t )
��

. (2.47)

It is easy to generalize this by repeating n times:

ĜA
n

�

t ; t ′, . . . , t (n)
�

=
1
(i ħh)n

θ
�

t ′− t
�

. . .θ
�

t (n)− t (n−1)
�

(2.48)

×
�

Q̂n

�

t (n)
�

,
�

. . .
�

Q̂1
�

t ′
�

, P̂ (t )
�

. . .
��

.
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Finally, the retarded n-time correlation function is obtained by flipping the arguments
of θ-functions, and shifting the time by −t inside the trace:

GR
n

�

t ; t ′, . . . , t (n)
�

=
1
(i ħh)n

θ
�

t − t ′
�

. . .θ
�

t (n−1)− t (n)
�

Tr
�

ρ̂(β)
�

Q̂n(t
(n)),
�

. . .
�

Q̂1(t
′), P̂ (t )
�

. . .
���

=
1

(−i ħh)n
θ(t1) . . .θ(tn)
¬�

. . .
�

P̂ , Q̂1(−t1)
�

, . . . Q̂n(−(t1+ . . .+ tn))
�¶

(2.49)

≡GR
n (t1, . . . , tn), (2.50)

where flipping all the commutators produces and extra factor of (−1)n .

Correlation functions and frequency domain

In dynamic simulations, it is sometimes more natural to consider time-correlation func-
tions instead of the Green’s functions. The difference is a small matter of definition: the
time-correlation function is based on correlator

Ĉ (t , t ′) =T P̂ (t )Q̂(t ′), (2.51)

and thus, it is easy to see that the thermal n-time correlation functions are defined as

Cn(t , t ′, . . . , t (n))≡Cn(t1, . . . , tn) = (i ħh)
nGn(t1, . . . , tn). (2.52)

The same also holds for the retarded and advanced variations.

In physical understanding, the point of interest is usually in the frequency domain. This
calls for Fourier transform, which is defined for the 1-time correlation function as

C1(ω1) =FC1(t1)≡
∫ ∞

−∞
dt e−iω1 t1C1(t1). (2.53)
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and, generally to an n-time correlation function as

Cn(ω1, . . . ,ωn) =FCn(t1, . . . , tn) (2.54)

=
∫ ∞

−∞
dt1 . . .
∫ ∞

−∞
dtn e−iω1 t1 . . . e−iωn tn Cn(t1, . . . , tn). (2.55)

The same definition applies to retarded functions, whose lower integration limit is zero
instead of negative infinity.

2.2 Linear response theory

We are now equipped to consider the response of the system to weak perturbations.
The general idea is that the linear response of a property P to a perturbing field F is

δP = χ F , (2.56)

where δP is the linear deviation, F is the field strength and χ is a generalized sus-
ceptibility. For convenience, we will consider responses that are normal ordered, i.e.
δP = 〈P 〉 − 〈P 〉0, where 〈P 〉0 denotes an unperturbed expectation value. That is, we
consider the induced fluctuations of properties with respect to their equilibrium values.

2.2.1 External perturbation

Let us consider the case, where an arbitrary number of weak time-dependent perturba-
tions ĥ are introduced to the equilibrium Hamiltonian Ĥ0. The total Hamiltonian is
then written as

Ĥ (t ) = Ĥ0+ ĥ(t ) = Ĥ0+
∞
∑

n=1
ĥn(t ) (2.57)

where
ĥn(t ) =−Q̂n · Fn(t ), (2.58)

19



and the minus sign follows the standard convention. Q and F are typically vector fields
or tensor fields, whose evaluation involves inner products and spatial integrals, in prin-
ciple. It is not relevant for this Thesis, and thus, the interaction will be treated in simple
real-space projection given by

hn(R; t ) =−Qn(R; t ) · Fn(R; t ), (2.59)

whose evaluation out of a real-space state R will be considered later.

The interaction according to Eq. (2.57) leads to a non-equilibrium density matrix ρ(t ).
It can be solved from the von Neumann equation (2.21) with the boundary condition
ρ(−∞) = ρ0. Writing a perturbation expansion in the powers of the field amplitudes
Fn , the solution is [79]

ρ(t ) = ρ0+
∞
∑

n=1
ρ(n)(t ), (2.60)

where

ρ(n)(t ) =
1
(i ħh)n

∫ t

−∞
dt ′
∫ t ′

−∞
dt ′′ · · ·
∫ t (n−1)

−∞
dt (n)

×Tr
h

ĥ(t ′),
h

ĥ
�

t ′′
�

, . . .
h

ĥ
�

t (n)
�

,ρ0

i

. . .
ii

, (2.61)

where the time-arguments follow the definitions from Sec. 2.1.6.

2.2.2 Response function

According to Eq. (2.56), the linear and normal ordered response to a set of perturbations
is given by

δP (t ) = P (t )− P (0) = Z−1Tr
�

P̂ ρ̂(t )
�

−〈P 〉0 = Z−1Tr
�

P̂ (ρ(t )−ρ0)
�

.

Using Eq. (2.60), the difference becomes

δP (t ) =
∑

n
P (n)(t ), (2.62)
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where

P (n)(t ) =Z−1 1
(i ħh)n

∫ t

−∞
dt ′
∫ t ′

−∞
dt ′′ · · ·
∫ t (n−1)

−∞
dt (n)

×Tr
h

P̂ ĥ
�

t ′
�

,
h

ĥ
�

t ′′
�

, . . .
h

ĥ
�

t (n)
�

,ρ0(t )
i

. . .
ii

(2.63)

=Z−1 1
(i ħh)n

∫ ∞

−∞
dt ′
∫ ∞

−∞
dt ′′ · · ·
∫ ∞

−∞
dt (n)θ(t − t ′) . . .θ

�

t (n−1)− t (n)
�

×Tr
h

P̂ (−t )ĥ(t ′− t ),
h

ĥ(t ′′− t ), . . .
h

ĥ(t (n)− t ),ρ0(0)
i

. . .
ii

. (2.64)

Usually, one does not study the full summation at once, but the term of a particular
order n. At each degree, we can separate a linear response property

P (n)(t ) =Z−1 1
(−i ħh)n

∫ ∞

−∞
dt ′
∫ ∞

−∞
dt ′′ · · ·
∫ ∞

−∞
dt (n)θ
�

t − t ′
�

. . .θ
�

t (n−1)− t (n)
�

×Tr
�

P̂ (−t )Q̂1
�

t ′− t
�

,
�

Q̂2
�

t ′′− t
�

, . . .
�

Q̂n

�

t (n)− t
�

,ρ0

�

. . .
��

× F1(t
′) . . . Fn(t

(n)) (2.65)

=
∫ ∞

0
dt1

∫ ∞

t1

dt2 . . .
∫ ∞

tn−1

dtn χ
(n)(t1, . . . , tn)F (t − t1) . . . F (t − tn), (2.66)

where we have substituted t1 = t − t ′, . . ., tn = t (n−1) − t (n). Furthermore, we have
identified the causal response function as

χ (n)(t1, . . . , tn)

=Z−1 1
(−i ħh)n

θ(t1) . . .θ(tn)

×Tr
�

P̂ (0)
�

Q̂1(−t1),
�

Q̂2(−t1− t2), . . .
�

Q̂n(−(t1+ . . .+ tn)),ρ0

�

. . .
���

=Z−1 1
(i ħh)n

θ(t1) . . .θ(tn)
¬�

. . .
�

P̂ (0), Q̂1(−t1)
�

, . . . , Q̂n(−(t1+ . . .+ tn))
�¶

(2.67)

=(−1)n GR
n (t1, . . . , tn), (2.68)

where GR
n is the retarded n-time Green’s function from Eq. (2.49). This is rather a de-

sign than a coincidence: the retarded Green’s functions in equilibrium are interesting
precisely because they are associated with out-of-equilibrium properties, the causal re-
sponse functions.
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2.2.3 Frequency-dependent response

For physical applications, χ (n) is most interesting in the frequency representation. Let
us define

F (ω1) =F F (t1) =
∫ ∞

−∞
dt1 eiω1 t1 F (t1) (2.69)

F (t1) =F
−1F (ω1) =
∫ ∞

−∞

dω1

2π
eiω1 t1 F (ω1). (2.70)

Then, Eq. (2.66) can be rewritten as

δP (t ) =
∫ ∞

−∞

dω1

2π
. . .
∫ ∞

−∞

dωn

2π

∫ ∞

0
dt1 . . .
∫ ∞

0
d tn

×χ (n)(t1, . . . , tn)e
iω1(t−t1) . . . eiω1(t−tn)F (ω1) . . . F (ωn) (2.71)

=
∫ ∞

−∞

dω1

2π
. . .
∫ ∞

−∞

dωn

2π
χ (n)(ω1, . . . ,ωn)e

i(ω1+...+ωn)t F (ω1) . . . F (ωn) (2.72)

≡
∫ ∞

−∞

dω
2π

eiωt P (ω) (2.73)

whereω =ω1+ . . .+ωn and we have defined the frequency-dependent susceptibility

χ (n)(ω1, . . . ,ωn) =
∫ ∞

0
dt1 . . .
∫ ∞

0
dtn e−iω1 t1 . . . e−iωn tnχ (n)(t1, . . . , tn). (2.74)

The composition of Eqs. (2.68) and (2.74) is the foundation of the general order linear
response theory.
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2.2.4 Explicit formulas

For reference, let us define the susceptibility in the eigenstate basis |n〉 of the equilibrium
system. The first-order response is given by

χ (1)(ω1) =
∫ ∞

0
dt1 eiω1 t1χ (1)(t1)

=
1

i ħh

∫ ∞

0
dt1 eiω1 t1

D

P̂ei Ĥ0 t1/ħhQ̂1e−i Ĥ0 t1/ħh − Q̂1ei Ĥ0 t1/ħh P̂e−i Ĥ0 t1/ħh
E

=Z−1
∑

n,m

1
i ħh

∫ ∞

0
dt1 eiω1 t1

×Tr
�

exp(−βEn)〈n|P̂ |m〉〈m|Q̂1|n〉exp(−i(Em − En)t1/ħh)

−exp(−βEn)〈n|Q̂1|m〉〈m|P̂ |n〉exp(i(Em − En)t1/ħh)
�

=Z−1
∑

m 6=n

e−βEn

�

P nmQ mn
1

ω1−ωmn
+

Qnm
1 P mn

ω1+ωmn

�

, (2.75)

where ωmn = (Em − En)/ħh is a transition frequency and Anm = 〈n|Â|m〉 denotes a
matrix element. Similarly, the second-order response function can be written as

χ (2)(ω1,ω2) =
∫ ∞

0
dt1

∫ ∞

t1

dt2 ei(ω1 t1+ω2 t2)χ (2)(t1, t2)

=Z−1
∑

n,m,k

∫ ∞

0
dt1 ei(ω1+ω2)t1e−βEn

×
�

P nmQ mk
1 Qkn

2

ω2−ωkn
−

Qnm
1 P mkQkn

2

ω2−ωkn
−

Qnm
2 P mkQkn

1

ω2−ωnm
+

Qnm
2 Q mk

1 P kn

ω2−ωnm

�

=Z−1
∑

n 6=m,n 6=k

e−βEn

�

P nmQ mk
1 Qkn

2

(ω2−ωkn)(ω−ωmk )
−

Qnm
1 P mkQkn

2

(ω2−ωkn)(ω−ωnm)

−
Qnm

2 P mkQkn
1

(ω2−ωnm)(ω−ωkn)
+

Qnm
2 Q mk

1 P kn

(ω2−ωnm)(ω−ωmk )

�

, (2.76)
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whereω =ω1+ω2, and the third-order response is

χ (3)(ω1,ω2,ω3) =
∫ ∞

0
dt1

∫ ∞

t1

dt2

∫ ∞

t2

dt3 ei(ω1 t1+ω2 t2+ω3 t3)χ (3)(t1, t2, t3)

=Z−1
∑

n 6=m,n 6=k ,n 6=l

e−βEn

×
�

P nmQ mk
1 Qk l

2 Q l n
3

(ω3−ωl n)(ω3+ω2−ωk l )(ω−ωmk )
−

Qnm
1 P mk Qk l

2 Q l n
3

(ω3−ωl n)(ω3+ω2−ωk l )(ω−ωnm)

−
Qnm

2 P mk Qk l
1 Q l n

3

(ω3−ωl n)(ω3+ω2−ωnm)(ω−ωk l )
+

Qnm
2 Q mk

1 P k l Q l n
3

(ω3−ωl n)(ω3+ω2−ωnm)(ω−ωmk )

−
Qnm

3 P mk Qk l
1 Q l n

2

(ω3−ωnm)(ω3+ω2−ωl n)(ω−ωmk )
+

Qnm
3 Q mk

1 P k l Q l n
2

(ω3−ωnm)(ω3+ω2−ωl n)(ω−ωmk )

+
Qnm

3 Q mk
2 P k l Q l n

1

(ω3−ωnm)(ω3+ω2−ωmk )(ω−ωl n)
−

Qnm
3 Q mk

2 Qk l
1 P l n

(ω3−ωnm)(ω3+ω2−ωmk )(ω−ωk l )

�

,

(2.77)

whereω =ω1+ω2+ω3. Clearly, the explicit formulas build up in a hierarchical man-
ner and become rather complicated at higher orders. On the other hand, if the eigenstate
basis and the matrix elements are accurate, the response of arbitrary degree can be calcu-
lated just by deriving the proper sum-over-state formulas. This will be briefly discussed
in Sec. 3.2.3.

2.2.5 Additional properties of response functions

In the previous, we have summarized the fundamentals of general order linear response
theory. Not all the properties will be used in this Thesis, but comprehensive references
are hopefully useful for future endeavors. For this reason, let us briefly discuss a few
additional properties of the response functions.

First, formulas for the higher order perturbations can be sensitive to definitions and
assumptions. In the first order, the familiar zero Kelvin limit is reproduced by taking
the limit β→∞. This is demonstrated in Publication IV and Sec. 3.2.3. In higher or-
ders, linking the linear response framework at finite temperature to the time-dependent
perturbation theory of pure states is neither straightforward nor relevant, which can be
seen by studying different derivations in the literature, e.g. Refs. [7, 77, 79]. Another
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particular feature is the treatment of symmetry: whether the higher-order interactions
are distinguishable or not affects the way they are symmetrized. Using the symmetry
properties one can reduce the number of terms involved in the explicit formulas.

Second, a typical way to enforce boundary conditions is to add a small imaginary factor
to the exponential propagators. It then appears in the denominators of the spectral rep-
resentations, Eqs. (2.75)-(2.77), and models phenomenological damping. The intuition
of the damping is that the system eventually recovers its equilibrium state.

Third, the physical spectra are always bounded from above, which suggests a sum rule
over the total spectral moment. If one is able to derive what is called an f -sum rule
[79], it can be used to renormalize a spectrum that may otherwise be ill-behaving or
incomplete.

2.3 Path integrals and imaginary time

The exact many-body density matrices are formidable to evaluate in any representa-
tion of the basis. However, it turns out that the so-called path integral formalism is well
suited for describing the many-body correlation in thermal conditions. The name stems
from the famous interpretation by Richard Feynman: a quantum particle traveling in
space and time not only takes the shortest trajectory – the classical path of extremal
action – but in fact goes through every path simultaneously within the limits of quan-
tum uncertainty [75]. The path integral is the evaluation of this process. Integrating
over infinite paths is obviously challenging in its own ways, but it also provides unique
perspective and an interface for stochastic approximations.

First, let us derive the path integral formalism from the Schrödinger equation. How-
ever, it could be done the other way, too [80]; for the purposes of this Thesis, the two
are equivalent descriptions of the quantum physics. We quickly proceed to so-called
imaginary time, because it turns out to be a stable domain for numerical recipes and
controllable approximations. Especially, we will consider the computation and analytic
properties of the time-correlation functions in imaginary time.
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2.3.1 Discrete path integral

The Feynman path integrals are based on a postulate, which states that the quantum-
mechanical propagation amplitude is proportional to an integral of the exponential ac-
tion [75]

ρ(R, R′; t ) =
∫

dq(R, R′; t )ei S(R,R′;t )/ħh , (2.78)

where dq(R, R′; t ) is a differential of paths q with the given boundary conditions: from
R to R′ in time t . The classical action is

S(R, R′; t ) =
∫ t

0
d t̄ L (q( t̄ ), q̇( t̄ )) , (2.79)

where L= 1
2 mq̇2−V (q) is the Lagrangian function. The classical limit arises as ħh→ 0,

and only the paths with extremal action, i.e. the classical trajectories, persist. That is, the
exact quantum propagation involves integral over all possible paths in the order of ħh.

Generally, the quantum propagation amplitude can be equated with Eq. (2.6):

ρ(R, R′; t ) =
D

R
�

�

�e−i t Ĥ0/ħh
�

�

�R′
E

=
­

R
�

�

�

�

e−i t (T̂+V̂ )/ħh
�

�

�

�

R′
·

, (2.80)

where we have distinguished the kinetic energy T̂ and the potential energy V̂ . This
is often reasonable, because the kinetic part is known analytically. Unfortunately, T̂
and V̂ do not generally commute. A usual way to separate the exponential is using the
Trotter’s formula [81, 82]

e−i t (T̂+V̂ )/ħh = lim
M→∞

h

e−i∆t T̂ /ħhe−i∆tV̂ /ħh
iM

. (2.81)

The separation is exact at the limit of short time-step ∆t = t/M → 0, where M is the
Trotter number. Thus, using Eq. (2.81), one can redefine the path integral in Eq. (2.78)
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over a discrete path [75]:

ρ(R, R′; t ) = lim
M→∞

(4iπλ∆t )−dN M/2
∫

dR1 . . . dRM−1

× exp





i∆t
ħh

M−1
∑

j=0



−
ħh2(R j+1−R j )

2

4λ∆t
−∆tV (R j )







 , (2.82)

where λ= ħh2/2πm, d is spatial dimensionality, and N is the number of distinguishable
particles. To simplify the expression, we have assumed that the particles are distinguish-
able with the same mass, but the definition is straightforward to generalize, if necessary.

2.3.2 Imaginary-time propagator and thermal density matrix

The quantum real-time propagator with the exponential i Ĥ t is difficult to utilize in
probabilistic schemes, because it is complex-valued and spuriously oscillating. On the
other hand, analytic continuation to imaginary time t − t ′→−i ħhτ makes for a much
better behaving propagator

Û (t − t ′)→ Ûτ(−i ħhτ) = exp
�

−τĤ
�

, (2.83)

which is always real and positive-semidefinite. A physical interpretation arises, when
we choose τ = ħhβ = ħh/kB T , i.e., we associate the (unnormalized) thermal density
operator with a retarded imaginary-time propagator

ρ̂(β) = θ(β)exp
�

−βĤ
�

≡ U R
τ (β), (2.84)

where θ(β) follows from β > 0 at finite temperature, T > 0. Similarly, we can define
the Heisenberg picture for operators in the equilibrium as [76]

P̂ (τ)≡ eτĤ P̂e−τĤ = ρ̂(τ)P̂ ρ̂(−τ) (2.85)

where 0≤ τ ≤β.
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Primitive approximation

We can further rewrite the thermal propagator in the Trotter expansion:

ρ̂(β) = lim
M→∞

�

e−∆τK̂ e−∆τV̂
�M

, (2.86)

where ∆τ = ħhβ/M . This is called the primitive approximation, and it is valid, when
K̂ and V̂ are self-adjoint operators and bounded from below [82]. A controllable error
in the order of O (∆τ2) arises, when one uses finite but sufficiently large M instead of
M →∞, which is the exact limit.

Now, we can define the thermal partition function as a discrete imaginary-time path
integral over closed paths, i.e. R= R′:

Z =Tr[ρ̂(β)] (2.87)

= lim
M→∞

∫

dR0 . . . dRM−1

D

R0

�

�

�e−∆τK̂ e−∆τV̂
�

�

�R1

E

. . .
D

RM−1

�

�

�e−∆τK̂ e−∆τV̂
�

�

�R0

E

,

(2.88)

where it generally holds for potentials bounded from below [82] that

D

Ri

�

�

�e−∆τK̂ e−∆τV̂
�

�

�Ri+1

E

= ρK (Ri , Ri+1;∆τ)e−∆τV (Ri ), (2.89)

since V̂ is diagonal. The free-particle density matrix is

ρK �Ri , Ri+1;∆τ
�

= (4πλ∆τ)−dN/2 exp

�

−
(Ri+1−Ri )

2

4λ∆τ

�

, (2.90)

which contains no many-body interactions by definition. The total action is then given
by

S(Ri , Ri−1;∆τ) =
dN
2

ln(4πλ∆τ)+
(Ri+1−Ri )

2

4λ∆τ
+∆τV (Ri ), (2.91)

which reproduces the imaginary-time counterpart of the path integral in Eq. (2.82).
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Pair approximation

In order to evaluate the potential action for a propagation between many-body configu-
rations R and R′, let us consider the pair approximation. That is, let us assume that the
full interaction is a sum of pairwise interactions, i.e.

U (R, R′;∆τ) =
∑

i> j

u
�

ri ,r
′
i ,r j ,r

′
j ,∆τ
�

, (2.92)

and thus, the many-body density matrix is a product of pairwise density matrices:

ρ(R, R′;∆τ)≈
∏

i< j

ρi j

�

ri ,r
′
i ,r j ,r

′
j ,∆τ
�

, (2.93)

where i and j refer to different particles and r to their coordinates. The pair approx-
imation is motivated by the fact that all natural interactions, such as Coulomb forces
are fundamentally pairwise. The pair approximation is also exact for a pair of particles,
and in the limit∆τ→ 0. Yet, a many-body error emerges from correlated propagations
of three or more particles [72, 83].

2.3.3 Measurement over the discrete path

Measurement over the discrete imaginary-time path is straightforward, and it involves
some important symmetry properties. First, the thermal expectation value of a static
observable P̂ is given by

〈P 〉=Tr
�

ρ̂(∆τ)M P̂
�

(2.94)

= Z−1
∫

dR0 . . . dRM−1〈R0|ρ̂(∆τ)|R1〉 . . . 〈RM−1|ρ̂(∆τ)|R0〉P (R0) (2.95)

= Z−1M−1
M
∑

m=1

∫

dR0 . . . dRM−1ρ(R0, R1;∆τ) . . .ρ(RM−1, R0;∆τ)P (Rm), (2.96)

where the last line utilizes the symmetry properties of equilibrium. Thus, all the time-
slices are equivalent, i.e. 〈P (τ)〉= 〈P (0)〉= 〈P 〉, and their average can be used to produce
a more precise estimate of the measurement.
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The Green’s functions are also defined for imaginary-time arguments. An n-time cor-
relator analogous to Eq. (2.44) is [76]

Ĝn

�

τ;τ′, . . . ,τ(n)
�

=
�

− 1
ħh

�n
Tτ P̂ (τ)Q̂1(τ1) . . . Q̂n(τn), (2.97)

where Tτ is time-ordering operator in imaginary time and 0 ≤ τ ≤ ħhβ must hold for
τ,τ′ . . .τ(n). The associated Green’s function is

Gn

�

τ;τ′, . . . ,τ(n)
�

= Z−1
�

− 1
ħh

�n
Tr
�

Tτρ̂(β)P̂ (τ)Q̂1
�

τ′
�

. . . Q̂n

�

τ(n)
��

(2.98)

= Z−1
�

− 1
ħh

�n
Tr
�

Tτρ̂(β)P̂ Q̂1(−τ1) . . . Q̂n(−(τ1+ . . .+τn))
�

(2.99)

≡Gn(τ1, . . . ,τn) (2.100)

where we have made a shift of −τ and defined τ1 = τ − τ′, τ2 = τ
′′ − τ′, and so on.

Moreover, we have imposed causal conditions, i.e. τ1 . . .τn ≥ 0 and also τ1 + . . .τn ≤
ħhβ. This is only necessary, if the interactions P̂ , Q̂1, . . . , Q̂n are distinguishable.

The n-time Green’s functions defined in Eq. (2.99) are diffusive and real-valued, as op-
posed to the complex and oscillating real-time correlators from Eq. (2.49). Let us incor-
porate the time-ordering and expansion to the discrete path:

Gn(τ1, . . . ,τn)≡Z−1θ(τ1) . . .θ(τn)Tr
�

ρ̂(β)P̂ Q̂1(−τ1) . . . Q̂n(−(τ1+ . . .+τn))
�

=Z−1θ(τ1) . . .θ(τn)Tr
�

ρ̂(β− (τ1+ . . .+τn))P̂ ρ̂(τ1)Q̂1 . . . ρ̂(τn)Q̂
�

.

=Z−1
∫

dR0 . . . dRM−1ρ(R0, R1;∆τ) . . .ρ(RM−1, R0;∆τ)

× P (Rp )Q1(Rq1
) . . .Qn(Rqn

) (2.101)

=Z−1
∫

dR0 . . . dRM−1ρ(R0, R1;∆τ) . . .ρ(RM−1, R0;∆τ)

×M−1
M
∑

m=1
P (Rm+p )Q1(Rm+q1

) . . .Qn(Rm+qn
) (2.102)

where R j = R j mod M , qn = 0, and m, p, q1, . . . , qn−1 are nonnegative integers with p +
∑

n qn ≤M . The indexing may appear complicated until it is implemented in a tractable
algorithm for measuring the sample trajectory R.
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The imaginary-time correlation function is defined in terms of the n-time correlator

Ĉn(τ,τ′, . . . ,τ(n)) =Tτ P̂ (τ)Q̂1(τ
′) . . . Q̂n(τ

(n)), (2.103)

and the associated n-time correlation function is

Cn(τ1, . . . ,τn) =
¬

Ĉn(τ,τ′, . . . ,τ(n))
¶

, (2.104)

whose connection to the Green’s function is simply

Cn(τ1, . . . ,τn) = ħh
nGn(τ1, . . . ,τn), (2.105)

which also inherits the causality of Gn .

2.3.4 Fourier transform and imaginary time

Imaginary-time Green’s functions are only defined for time-arguments between 0 and
ħhβ. However, the symmetry property Gn(. . . ,τ+β, . . .) = ±Gn(. . . ,τ, . . .) applies to
each of the arguments, where plus and minus refer to bosonic and fermionic correlators,
respectively. As a consequence of this (anti)symmetry, the Fourier transform is given
by

G1(iωn) =FβG1(τ)≡
∫ ħhβ

0
dτ e−iτωn G1(τ), (2.106)

where iωn are discrete Matsubara frequencies given by

ωn =
2π
βħh

n bosons

ωn =
2π
βħh
(n+ 1

2 ) fermions

where n is an integer. In this Thesis, we will only consider correlators that obey the
bosonic distribution. Without going into details, this follows from the fact that the
representation of the measurement operators in the framework of second quantization
is even in terms of creation and annihilation operators.
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2.3.5 Analytic properties and the spectral function

So far we have considered Green’s functions in terms of arguments that are either strictly
real or imaginary. However, the causal or retarded Green’s function is analytic for any
argument in the upper complex plane, Im[z]≥ 0. This is a well-known and important
isomorphism: causality in the real time implies correlation in the imaginary time [84].

A useful consequence of the analytic property is the Kramers–Kronig relation [6]:

GR
1 (ω) =P
∫ ∞

−∞

dω′

iπ

GR
1 (ω
′)

ω′−ω
,

where P denotes Cauchy principal value. A practical implementation of the Cauchy
Principal value is [73]

GR
1 (ω) =
∫ ∞

−∞

dω′

π

Im[GR
1 (ω
′)]

ω′−ω− iη
(2.107)

where η is a positive infinitesimal. Now, let us define the spectral function:

A(ω) = i
�

G>
1 (ω)−G<

1 (ω)
�

= i
�

GR
1 (ω)−GA

1 (ω)
�

=−2Im[GR
1 (ω)], (2.108)

which follows from the fact that GR
1 =
�

GA
1

�†. Equations (2.107) and (2.108) lead to

GR
1 (ω) =−
∫ ∞

−∞

dω′

2π
A(ω′)

ω′−ω− iη
. (2.109)

The important physical relevance of the spectral function is related to the absorptive
properties associated with the perturbation, and it will be discussed in more detail later.

The definition Eq. (2.109) can be extended to imaginary arguments, which gives [73]

G1(iωn) =
∫ ∞

−∞

dω′

2π
A(ω′)

iωn −ω′
, (2.110)

where causality of the imaginary-domain correlation function is implicit, and the in-
finitesimalη can be neglected. Using the properties of Matsubara frequencies and Fourier
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series, an equivalent definition in the imaginary-time domain is [73]

G1(τ) =
∫ ∞

−∞

dω′

2π
e−τω

′

1± e−βω′
A(ω′). (2.111)

That is, the real-frequency spectrum A(ω) can be mapped to imaginary time. Unfor-
tunately, the inverse mappings from G1(τ) or G1(iωn) to A(ω) are ill-posed numerical
problems.

Alternatively, the mapping between real- and imaginary-time correlation functions is
called the Kubo transform [85]. It is given in the first order by

G1(t ) =
∫ ħhβ

0
dτ
¬�

Q̂(−τ), Ĥ0

�

P̂ (t )
¶

. (2.112)

The Kubo transform is useful for approaches that utilize complex propagators. It is
used in centroid molecular dynamics (CMD) also in higher orders [86, 87], but such
approaches will not be pursued in this Thesis.
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3 ELECTRIC FIELD RESPONSE

It is time to focus on the response to a specific perturbation: external electric field. The
electric field is one of the fundamental interactions in the standard model, and, as already
noted, central to numerous physical phenomena. Interaction with a finite electric field is
formally a difficult out-of-equilibrium problem. However, it is quite tractable and even
straighforward to consider within the framework of linear response theory. Thus, we
shall start by briefly discussing the virtues and limitations of the perturbative approach.

However, the main purpose of this chapter is to introduce and define the concept of
multipole polarizability. The standard way to define polarizability arises from the mul-
tipole expansion of electric moments: it is in essence a multipole–multipole susceptibil-
ity. The multipole expansion is a common and practical way to treat localized quantum
systems, such as atoms and small molecules. This is exactly the scope of this Thesis, and
thus, the multipole polarizability remains the standard unit of electric field response
from this point on.

The chapter is rather a glossary of labels and definitions related to polarizability. There
are different combinations of multipoles, computation strategies, and various conse-
quences of symmetry and thermal averaging. The reader is not expected to memorize
all the different combinations, but rather refer back to this chapter in order to under-
stand the results and developments to come.

3.1 Electric field perturbation

In real-space, a general field-interaction is given in the form of Eq. (2.59). Let us assume
that a perturbing electric field is spatially invariant within the size scale of atoms and
small molecules, i.e. F(R) = F. Thus, the interaction for a given configuration R can be
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conveniently encoded in terms of electric multipole moments [88]:

h(R) =−
∞
∑

n=0

2n n!
(2n)!

�

Q(n)(R)
�

(n) [∇nF] , (3.1)

where Q(n)(R) is the nth electric moment and∇ is the gradient operator. The terms are
vector or tensor fields, and the (n)-product means an element-wise inner product. In the
following, it will be treated using the Einstein notation, i.e. µαFα ≡µx Fx+µy Fy+µz Fz ,
and so on. The first four elements of the series are thus

h(R) =−qφ−µα(R)Fα−
1
3
Θαβ(R)Fαβ−

1
15
Ωαβγ (R)Fαβγ − . . . , (3.2)

where q is the net charge, and µ, Θ and Ω are the dipole, quadrupole and octupole mo-
ments, respectively. Similarly, φ is the electrostatic potential, which is usually chosen
to be zero. Fα is a homogeneous field and Fαβ... denote field-gradient components, e.g.

Fαβ ≡
∂
∂ βFα. As argued earlier, all the field components are independent of R. As-

suming a discrete set of point charges q i at positions ri , traceless forms of the four first
moments are calculated as

q(R) =
∑

i

q i (ri ) = q (3.3)

µα(R) =
∑

i

r i
αq i (R) (3.4)

Θαβ =
∑

i

q i

3

�

3r i
α r i
β−δαβ r 2
�

(3.5)

Ωαβγ =
∑

i

q i

2

�

5r i
α r i
β r i

γ − r 2
�

r i
αδβγ + r i

βδαγ + r i
γδαβ
��

, (3.6)

where r = (r 2
x + r 2

y + r 2
z ) and δαβ is the Kronecker delta. The choice of origin is

important, because it affects the magnitudes of all the higher moments beyond the first
non-zero moment. The standard choice is the center-of-mass, or in case of fixed-nuclei
simulations, the center-of-mass of the nuclei.

Let us consider the time-dependence of the field. The physical field is required to be Her-
mitian and solve the classical wave-equation. In fact, any such field can be superposed
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out of standing harmonic waves of the form [89]

F (r, t ) = F (r)
�

eiωt + e−iωt �/2. (3.7)

Thus, the spectrum of the actual perturbation can be arbitrary, but for convenience we
will characterize it in terms of the harmonic frequency ω. When ω → 0, the field is
static and it is denoted F , i.e., without theω-argument.

Last, let us briefly acknowledge the main limitations of our approach. In this Thesis,
we only consider perturbations due to weak electric fields, since the linear response
theory diverges in strong perturbations. We also assume that in absorptive processes
there are no cascade effects or meaningful occupations of the excited states [7]. This is
generally a safe assumption in atomic and molecular problems. Furthermore, the field
is treated as semiclassical, as opposed to quantized field, while the latter is more rigorous
in describing absorption. More comprehensive models include Hopfield dielectric [90]
or similar frameworks involving quantum electrodynamics [91] and path integrals [92].

3.2 Multipole polarizability

The dynamic response properties that are defined in terms of Eq. (3.2) are called multi-
pole polarizabilities or simply polarizabilities. The polarizabilities are tensorial proper-
ties, whose magnitude maps particular perturbations to induced electric moments, such
as those in Eqs. (3.4)–(3.6). Generally, many different definitions exist for the multipole
polarizabilities, some of which have emerged more popular than others. In the follow-
ing, we are not trying to give an exhaustive display, but rather define the polarizabilities
as they are used and labeled throughout this Thesis.
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3.2.1 Foundations and common notation

In the static limit, one often uses the Buckingham notation [8]. Expressions for the
induced dipole, quadrupole and octupole moments are respectively the following:

µ(1)α =µ
(0)
α +αα,βFβ+

1
2βα,β,γ FβFγ +

1
6γα,β,γ ,δFβFγ Fδ (3.8)

+ 1
3 Aα,βγ Fβγ +

1
3 Bα,β,γδFβFγδ +

1
15 Eα,βγδFβγδ + . . .

Θ(1)
αβ
=Θ(0)+Aαβ,γ Fγ +Cαβ,γδFγδ +

1
2 Bγ ,δ,αβFγ Fδ + . . . (3.9)

Ω(1)
αβγ
=Ω(0)+ Eαβγ ,δFδ +Gαβγ ,δεζ Fδεζ + . . . (3.10)

where (0) denotes a permanent moment. Other symbols denote different multipole
polarizabilities, whose common nomenclature is found in Table 3.1. The effects of
induced multipole moments affect the total energy, too. The Stark energy shift can be
written in the static limit as [8, 93]

E (1) =E (0)−µ(0)α Fα−
1
2αα,βFαFβ−

1
6βα,β,γ FαFβFγ −

1
24γα,β,γ ,δFαFβFγ Fδ

− 1
3Θ
(0)
αβ

Fαβ−
1
3 Aα,αβFαFβγ −

1
6 Bα,β,γδFαFβFγδ −

1
15 Eα,βγδFαFβγδ

− 1
6 Cαβ,γδFαβFγδ −

1
15Ω

(0)
αβγ

Fαβγ −
1
30 Gαβγ ,δεµFαβγ Fδεµ− . . . (3.11)

Appending the series to arbitrary degrees is very systematic. Main reason for the given
truncation is that the interaction beyond the aforementioned terms is usually weak and
scarcely covered in the literature.

The dynamic polarizabilities are usually defined in terms of the generalized susceptibil-
ities. Essentially, they can be produced by populating Eqs. (2.75)–(2.77) with combina-
tions of the multipole operators µ̂, Θ̂, Ω̂. Most studies, including this Thesis, only con-
sider first-order correlators that are also symmetric, i.e., P̂ = Q̂. The resulting polariz-
abilities are denoted α1(ω) for dipoles, α2(ω) for quadrupoles, α3(ω) for octupoles, and
so on. We will omit the tensorial notation for convenience. One should note that using
this definition, the static properties are related to the corresponding dynamic properties
by α1(0) = α, α2(0) = 3C and α3(0) = 15G.
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Table 3.1 Names and definitions of the most common static multipole polarizabilities.

Polarizability Symbol Operators Definition
Dipole αα,β µ̂α, µ̂β

∂
∂ Fβ
〈µα〉

First hyper- βαβγ µ̂α, µ̂β, µ̂γ
∂
∂ Fβ

∂
∂ Fγ
〈µα〉

Second hyper- γα,β,γ ,δ µ̂α, µ̂β, µ̂γ , µ̂δ
∂
∂ Fβ

∂
∂ Fγ

∂
∂ Fδ
〈µα〉

Dipole–quadrupole Aα,βγ µ̂α, Θ̂βγ
∂

∂ Fβγ
〈µα〉

Dipole–dipole–quadrupole Bα,β,γδ µ̂α, µ̂β, Θ̂γδ
∂
∂ Fβ

∂
∂ Fγδ
〈µα〉

Quadrupole–quadrupole Cαβ,γδ Θ̂αβ, Θ̂γδ
∂

∂ Fγδ
〈Θαβ〉

Octupole–octupole Gαβγ ,δεζ Ω̂αβγ , Ω̂δεζ
∂

∂ Fδεζ
〈Ωαβγ 〉

Dipole–octupole Eα,βγδ µ̂α, Ω̂βγδ
∂

∂ Fβγδ
〈µα〉

3.2.2 Correlation functions

The response property is by definition a measurement of induced polarization: Based
on Eqs. (2.55) and (2.68) the polarizability is readily obtained from correlation func-
tions. For instance, the first-order multipole–multipole polarizability can be presented
in alternative forms as

α(ω) = χ (1)(ω) =−FGR
1 (t1) =

i
ħh
FC R

1 (t1) (3.12)

where the functions are defined in terms of electric multipole operators. The retarded
correlation functions at arbitrary orders, C R

n (t1, . . . , tn), are most easily obtained from
real-time simulations. In that case, the polarizability is given by a simple Fourier trans-
form, as shown in Eq. (2.74). The numerical transformation is straightforward, but the
time-dependent simulation is not: the real-time propagator Û (t ) = exp(−i Ĥ t/ħh) is
complex and oscillatory in the coordinate basis. This is a problem for stochastic meth-
ods that rely on positive-semidefinite probability amplitudes [94, 95]. In 0 Kelvin, the
Fourier transform requires an infinite time, in principle, yet in thermal conditions the
real-time correlation eventually dissipates back to the equilibrium and the simulation
can be truncated. For instance PIMD has been successful in capturing quantum effects
in real-time thermal simulations [64, 96]. However, we shall not consider the real-time
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propagation or popular real-time methods more deeply in this work.

However, the equilibrium response properties are also contained in the imaginary-time
correlation. Based on Eqs. (2.99) and (2.105) the first-order polarizability in the imagi-
nary domain can be expressed as

α(iωn) = χ
(1)(iωn) =FβG1(τ1) =

1
ħh
FβC1(τ1), (3.13)

where ωn =
2πn
β are the bosonic Matsubara frequencies. The real- and imaginary-time

polarizabilities coincide at the static limit, i.e. iωn = ω = 0. The causal response
properties are analytic [84], and thus, the real-time response properties can be obtained
by using suitable integral transformations.

Especially, the 1-time Green’s functions produce the associated spectral functions, if
Eqs. (2.110) or (2.111) are inverted. The inversion is an infamous numerical problem,
which is discussed more in Sec. 6.3.1 and Appendix A. Based on Eq. (2.109), the polar-
izability can also be expressed in terms of the spectral function:

α(ω) =
∫ ∞

−∞

dω′

π

A(ω′)
ω′−ω− iη

, (3.14)

where ω′ is a real frequency variable and η is a real positive infinitesimal. Equation
(3.14) gives away some general properties of the dynamic polarizability. Since A(ω) is
positive-semidefinite, α(ω) must be complex-valued. The real part dominates at off-
resonant frequencies, giving the dielectric response in terms of virtual excitations. This
is the dispersive or non-absorptive picture of polarizability: the magnitude of induced
electric moment. The imaginary part emerges straight from the spectrum and is indeed
related to the absorption and emission of a particular kind of radiation.

3.2.3 Sum-over-states definition

The sum-over-states (SOS) definitions of polarizability follow, when electric multipole
operators defined in Eqs. (2.75)–(2.77) are correlated in the eigenstate basis |n〉. For
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example, the dynamic dipole polarizability is defined by

αα,β(ω) = Z−1
∑

n 6=m

e−βEn/ħh
� 〈n|µ̂α|m〉〈m|µ̂β|n〉

ω−ωnm
+
〈n|µ̂β|m〉〈m|µ̂α|n〉

ω+ωnm

�

. (3.15)

The first term is the so-called resonant polarizability, which peaks at positive frequen-
cies corresponding to the eigenenergies. The second term is the anti-resonant polariz-
ability, which is purely dispersive. Usually, the incident waves are Hermitian, and thus,
they consist of positive and negative frequencies symmetrically. In the 0 Kelvin limit,
β→∞, we recover a familiar definition

αα,β(ω) =
∑

m

¬

0
�

�

�µ̂α−µ
(0)
α

�

�

�m
¶

D

m
�

�

�µ̂β−µ
(0)
β

�

�

�0
E

ω−ω0m

+

D

0
�

�

�µ̂β−µ
(0)
β

�

�

�m
E

¬

m
�

�

�µ̂α−µ
(0)
α

�

�

�0
¶

ω+ω0m
(3.16)

where ω0m is transition energy to the ground state. We refrain from displaying the
higher-order formulas for polarizabilities, but they can be found elsewhere, e.g. Refs. [7,
77].

Instead, let us briefly review the main features of the SOS approach. As the name sug-
gests, the formulas involve sums over energy eigenstates, whose number is, in principle,
infinite. In practice, the summation must be truncated, and the main contribution of-
ten comes from the few lowest energy eigenstates [16, 97, 98]. As the system grows,
solving for the many-body eigenstates becomes increasingly difficult or approximate.
The SOS approach is relatively stable for low-ω response, but the near-resonant regions
and the continuum (i.e. continuous spectrum beyond the first dissociation energy) are
very sensitive to the exact spectral properties. A phenomenological way to deal with
the resonant divergences is to introduce a complex denominatorωnm→ωnm+iΓ/2. If
Γ is the natural line width, this models the natural spectral broadening. In higher-order
denominators, there are also secular divergences, which must be dealt with by other
means [7].
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3.2.4 Static field-derivative polarizability

The so-called field-derivative approach stems from identifying

χ = lim
F→0

∂
∂ F 〈P 〉, (3.17)

where χ denotes an arbitrary polarizability associated with P and responding to F .
Equation (3.17) or its higher-order variations can be readily generalized to extract spe-
cific polarizabilities from Eqs. (3.8)–(3.11). For instance,

ααβ =−2
∂

∂ Fα

∂

∂ Fβ
〈E〉= ∂

∂ Fβ
〈µα〉.

Field-derivative definitions for the rest of the static polarizabilities are presented in Ta-
ble 3.1. The estimators thus produced are original contributions of this Thesis, so they
are presented in the following in ample detail.

The idea is to perform the differentiation analytically, and thus obtain an estimator for
the equilibrium. Let us consider a perturbed density operator

ρ̂F (β) = e−ŜF (β)/ħh

where
ŜF (β) =βĤ =βĤ0−βQ̂αFα (3.18)

is the imaginary-time action operator perturbed by the static field. Now, taking the
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derivative of the perturbed expectation value of Pα is given by Eq. (2.36) as

χα,β =
∂

∂ Fβ
〈Pα〉

=
∂

∂ Fβ

Tr
�

e−SF (β)/ħh P̂α
�

Tr
�

e−SF (β)/ħh
�

=
Tr
h�

∂
∂ Fβ

ρ̂F (β)
�

P̂α
i

Z
−

Tr
h�

∂
∂ Fβ

ρ̂F (β)
�i

Tr
�

ρ̂F (β)P̂α
�

Z2
(3.19)

=−
Tr
h

ρ̂F (β)
�

∂ SF (β)
∂ Fβ

�

P̂α
i

Z
+

Tr
h

ρ̂F (β)
�

∂ SF (β)
∂ Fβ

�i

Tr
�

ρ̂F (β)P̂α
�

Z2
.

Furthermore, let us consider the short time-step expansion of the density operator,
Eq. (2.86). The total field-derivative is the sum over all time-slices

∂
∂ Fβ

ρ̂F (β) = ∂
∂ Fβ

�

ρ̂F (∆τ)
�M

=
M
∑

i=1

�

ρ̂F (∆τ)
�i
�

− ∂ SF (∆τ)
∂ Fβ

�

�

ρ̂F (∆τ)
�M−i

=
M
∑

i=1

�

ρ̂F (∆τ)
�i �
∆τQ̂β

�

�

ρ̂F (∆τ)
�M−i

≡ ħhβQ̂δτ
β , (3.20)

where we denote by ∂ τ the sample average over differential time-slices. Next, we take
the limit F → 0, which has the following consequences:

lim
F→0







Ĥ (F ) = Ĥ0

ρF (β) = ρ(β)
. (3.21)

Combining Eqs. (3.19), (3.20) and (3.21), we conclude that

χα,β = ħhβ
�

〈PαQ∂ τ
β 〉− 〈Pα〉〈Q

∂ τ
β 〉
�

, (3.22)
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where the sample average over time-slices is indeed

Q∂ τ
β (R) =∆τ

M−1
∑

m=0
Qβ(Rm). (3.23)

At the limit M →∞, the operator Q̂ is to be integrated over the imaginary-time trajec-
tory from 0 to ħhβ. The second term in Eq. (3.22) arises from the fact that the normal
ordering of observables, i.e. 〈P 〉0 = 〈Q〉0 = 0, was never enforced in this definition.

Using the symmetry property Eq. (2.96), similar averaging can be utilized with P , so
that Eq. (3.22) can be conveniently written as

χα,β = ħhβ
�¬

P̂ ∂ τα Q̂∂ τ
β

¶

−
¬

P̂ ∂ τα
¶¬

Q̂∂ τ
β

¶�

. (3.24)

Higher-order expressions can be worked out systematically, for instance

χα,β,γ =
∂
∂ Fγ

∂
∂ Fβ

Pα

= ∂
∂ Fγ
χα,β

= ∂
∂ Fγ
β
�

〈P̂ ∂ τα Q̂∂ τ
β 〉− 〈P̂

∂ τ
α 〉〈Q̂

∂ τ
β 〉
�

=(ħhβ)2
�

〈P̂ ∂ τα Q̂∂ τ
β Q̂∂ τ

γ 〉+ 2〈P̂ ∂ τα 〉〈Q̂
∂ τ
β 〉〈Q̂

∂ τ
γ 〉

−〈P̂ ∂ τα Q̂∂ τ
γ 〉〈Q̂

∂ τ
β 〉− 〈P̂

∂ τ
α Q̂∂ τ

β 〉〈Q̂
∂ τ
γ 〉− 〈P̂

∂ τ
α 〉〈Q̂

∂ τ
β Q̂∂ τ

γ 〉
�

,

and so on. Static field-derivative estimators of the most important polarizabilities can
be found in Table 3.2.

Finally, let us consider the basis dependence of the field-derivatives. While computing
the trace in some incomplete basis |R̃〉, we end up differentiating terms of the form

∂
∂ F

¬

R̃
�

�

�ρ̂F
�

�

� R̃
¶

=
�

∂
∂ F

¬

R̃
�

�

�

�

ρ̂F
�

�

�R̃
¶

+
¬

R̃
�

�

�

�

∂
∂ F ρ̂

F
�
�

�

� R̃
¶

+
¬

R̃
�

�

�ρ̂F
�

∂
∂ F

�

�

� R̃
¶�

. (3.25)

The formulas found in Table 3.2 only consider the middle term and regard the rest as
zero: the basis has no field-dependence. This is analogous to the Hellman–Feynman
theorem [99]. It holds true for complete and variational bases, such as the real-space
|R〉, which is mostly used in quantum Monte Carlo. On the other hand, truncated
bases require corrections for the left and right-hand side terms of Eq. (3.25). These are
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Table 3.2 Field-derivative estimators for the most common static multipole polarizabilities from
Publications II and III. All the multipole operators measure the sample average, although the
notation with ∂ τ is omitted for convenience. The names and definitions are found in Table 3.1.

Polarizability Formula

αα,β ħhβ
�

〈µαµβ〉− 〈µα〉〈µβ〉
�

βα,β,γ (ħhβ)2


〈µαµβµγ 〉+ 2〈µα〉〈µβ〉〈µγ 〉−
∑

αβ,γ

〈µαµβ〉〈µγ 〉





γα,β,γ ,δ

(ħhβ)3
�

〈µαµβµγµδ〉− 6〈µα〉〈µβ〉〈µγ 〉〈µδ〉

−
∑

αβγ ,δ

〈µαµβµγ 〉〈µδ〉−
∑

αβ,γδ

〈µαµβ〉〈µγµδ〉

+2
∑

αβ,γ ,δ

〈µαµβ〉〈µγ 〉〈µδ〉





Aα,βγ ħhβ
�

〈Θαβµγ 〉− 〈Θαβ〉〈µγ 〉
�

Bα,β,γδ

(ħhβ)2
�

〈Θαβµγµδ〉+ 2〈Θαβ〉〈µγ 〉〈µδ〉

−〈Θαβµγ 〉〈µδ〉− 〈Θαβµδ〉〈µγ 〉
�

Cαβ,γδ
ħhβ
3

�

〈ΘαβΘγδ〉− 〈Θαβ〉〈Θγδ〉
�

Eα,βγδ ħhβ[〈µαΩβ,γ ,δ〉− 〈µα〉〈Ωβ,γ ,δ〉]

Gαβγ ,δεζ
ħhβ
15 [〈Ωα,β,γΩδ,ε,ζ 〉− 〈Ωα,β,γ 〉〈Ωδ,ε,ζ 〉]
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called the Pulay forces [100], and they must be taken into account, e.g., in fixed-node
schemes [101].

3.2.5 Finite-field simulation

The finite-field approach (FF) is also based on Eq. (3.17), but it utilizes the electric field
explicitly. That is, the actual response P of the system is simulated in an external poten-
tial due to an actual finite field F 6= 0. Usually, the simulation is repeated for variable
field-strengths, and then fitted to a curve or otherwise extrapolated to the zero-field limit
[53].

One characteristic of the FF approach is the full account of all orders of the response:
there is no error from truncation of the perturbative expansion. On the other hand, it
becomes increasingly difficult to tell apart different orders of the response. Practically,
the number of independent samples for F must be higher than that of the meaningful
polarizabilities. For instance, at least three values of Fz are needed to fit

µ(1)z = αz,z Fz + γz,z,z,z F 3
z +O (F

5
z ), (3.26)

where the odd terms (in terms of the tensorial indices) are assumed to be zero and the
terms proportional to F 5

z and beyond are assumed to be negligible. This only holds true,
if the fields are weak enough: in strong static fields the FF simulation is bound to break
down due to a truncated basis or dissociation, i.e. irreversible separation of charges. Iso-
lated quantum systems in static homogeneous fields are pathological problems, which
can only be solved within the metastable regime.

Overall, the FF approach is not the most straightforward, but it is very explicit and
suitable for complex environments [102, 103]. We only exercise the FF approach in
Publication I, but some more details can be found in Refs. [53, 104].
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3.3 Scalar and tensorial polarizability

The susceptibility and polarizability are tensorial quantities, whose tensorial rank de-
pends on the induced property and the incoming perturbation. The rank equals to the
number of lower indices α, β, γ etc. Naturally, it follows that the response tensor of a
particular system follows its symmetry properties: a system with high symmetry has a
low number of independent tensor elements. The ultimate limit is the spherical sym-
metry, where the number is one, i.e., the tensor becomes scalar. For general purposes, a
comprehensive review on symmetry point groups and independent polarizability ten-
sors is given in Ref. [8].

3.3.1 Internal and laboratory coordinates

Let us make distinction between the so-called internal coordinates and laboratory coor-
dinates. The internal coordinates will be denoted by lowercase x, y and z, referring to
specific orientations of the system. For instance, atoms are always spherically symmet-
ric and thus independent of the choice of z. On the other hand, diatomic molecules are
defined by their principal axis of rotation, which is by convention denoted by z. Less
symmetric molecules generally have more independent tensor components.

The internal orientation of a molecule may or may not be known to an external ob-
server. The laboratory coordinates will be denoted by capital X , Y and Z . For instance,
the orientation of a crystal structure or a surface are bulk quantities that can be fixed
in the laboratory. Indeed, condensed matter and interfaces are generally more diverse
and interesting in terms of nonlinear optical phenomena. On the other hand, species
in isolation or fluid phases are always isotropic, because their orientation in thermal
conditions is random on average. That is, regardless of the internal geometry, all results
in the laboratory coordinates reduce to spherical symmetry, denoted with Z .

However, internal anisotropy of spherically symmetric systems can be inherited to the
higher orders in perturbation. This is crucial for the understanding of the results of this
Thesis. Let us consider a homonuclear diatomic molecule, which has two independent
terms in the dipole polarizability tensor: αz,z (along the principal axis) and αx,x = αy,y .
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The measure of anisotropy is given by

∆α= αz,z −αx,x .

That is, the electric moment induced in response to a field Fα is not centrosymmetric.
Due to the anisotropic induced moment, there is an energetically favorable orientation
for the coupling of another incident field. Thus, if more fields should emerge, they
would cause a strong orientational effect in the favor of the optimal orientation. This
is a qualitative explanation of a large orientational effect, which is discussed in better
detail in Chapters 5 and 6.

3.3.2 Isotropic averaging

The internal coordinates can be important for the holistic understanding of the electric
field response. For practical purposes, such as FF simulation or benchmarking, it is of-
ten convenient and insightful to fix the molecule in space and calculate the full internal
polarizability tensor. However, the experiments are restricted to the laboratory coor-
dinates, and thus, the ultimate aim should be at the measurable realm. For this reason,
isotropic averaging of high-rank tensor, such as polarizabilities, has been studied in great
detail [105, 106].

The trace and parity of the tensor has important consequences in terms of the isotropic
averaging. First, the order of the tensor coincides with its rank. The isotropic averages
are always zero by symmetry for the odd-ordered electric moments and polarizabilities,
such as µα,βα,β,γ and Aα,βγ . The quadrupole moment Θαβ is also zero even though it
has even parity, because it is defined as traceless. The induced moments are not trace-
less, and thus, the even-ordered polarizabilities are nonzero. However, their diagonal
elements are symmetric and the response is essentially scalar.

The isotropic average can be calculated from properties of the internal coordinates. The
spherically symmetric properties are trivially χZ ··· = χα···, where α · · · denotes an ar-
bitrary diagonal element. For diatomic molecules, the isotropic averages of the most
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important polarizabilities are [10]

αZ ,Z =
1
3 (2αx,x +αz,z ) (3.27)

γZ ,Z ,Z ,Z =
1
15

�

3γz,z,z,z + 12γx,x,z,z + 8γx,x,x,x
�

(3.28)

BZZ ,Z ,Z =
2
15

�

Bz z,z,z + 4Bx z,x,z +Bx x,z,z + 4Bx x,x,x
�

(3.29)

CZZ ,ZZ =
1
15

�

Cz z,z z + 8Cz x,z x + 8Cx x,x x
�

. (3.30)

The expressions become more complicated for more exotic symmetries, but it is not the
intention of this Thesis to provide an exhaustive reference. Using Eqs. (3.27)–(3.30) and
alike, one can easily estimate the average polarizability based on a single fixed-nuclei
simulation. However, a word of caution is in order: the fixed-nuclei simulation only
yields the average electronic polarizability. However, the total polarizability also in-
volves diverse contributions from nuclear quantum phenomena.

3.4 The adiabatic approximation

The adiabatic approximation stems from the complete separation of the electronic and
nuclear degrees of freedom: reaction of the electronic structure to changes in the nuclear
geometry is assumed to be immediate, or rather, adiabatic. Loosely, the adiabatic ap-
proximation is also known as the clamped-nuclei approach or the Born–Oppenheimer
approximation. However, detailed treatment of the perturbation is complicated and
somewhat unambiguous [107], and thus, this section serves as a qualitative background
for understanding the results to come.

In the following, we will denote the adiabatic approximation by BO for Born–Oppen-
heimer, and the exact nonadiabatic simulation with AQ for all-quantum. Generally, BO
is a good approximation, but not perfect. Light nuclei, such as protons, show nonadia-
batic effects, meaning that the electronic and nuclear motions are coupled. The magni-
tude is related to the reduced mass: thus, the effect is roughly 1/2000 for an electron–
proton pair and less for heavier nuclei. Indeed the nonadiabatic effects usually show
up in the fourth meaningful digit. For the remainder of this section, we will neglect
the aforementioned nonadiabatic recoil effect and focus on the remaining degrees of
freedom: the nuclear rovibration.
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3.4.1 Polarizability of a diatomic molecule

The following is an outline of a detailed review on rovibrational effects on polarizabili-
ties given in Refs. [10, 108]. Let us consider the polarizability of a diatomic molecule in
the adiabatic approximation. The wavefunction is |ΦvJ M 〉 = |v(J )〉Y M

J (θ,φ), where v,
J and M are, respectively, quantum numbers for vibration, total angular momentum,
and magnetic moment. Y M

J (θ,φ) is a spherical harmonic function. The ket |v(J )〉 is
the ground state electronic wavefunction for a particular rovibrational state v(J ).

Using perturbation theory, one can show that the dynamic dipole polarizability can be
written as

α(v, J , M ;ω) = αe (v, J , M ;ω)+αv (v, J , M ;ω)+αr (v, J , M ;ω), (3.31)

whereω is the incident frequency and the separate terms are electronic, vibrational and
rotational polarizabilities, respectively. They are given by

αe (v, J , M ;ω) = 〈v(J )|αx,x (ω)|v(J )〉+(CJ M +DJ M )〈v(J )|∆α(ω)|v(J )〉 (3.32)

αv (v, J , M ;ω) =
∑

v ′ 6=v

2CJ M
|〈v(J )|µ̂|v ′(J + 1)〉|2

Ev ′,J+1− Ev,J − ħhω
+ 2DJ M

|〈v(J )|µ̂|v ′(J − 1)〉|2

Ev ′,J−1− Ev,J − ħhω
(3.33)

αr (v, J , M ;ω) = 2CJ M
|〈v(J )|µ̂|v(J + 1)〉|2

Ev,J+1− Ev,J − ħhω
+ 2DJ M

|〈v(J )|µ̂|v(J − 1)〉|2

Ev,J − Ev,J−1− ħhω
(3.34)

where

CJ M =
(J + 1)2−M 2

(2J − 1)(2J + 3)

DJ M =
J 2−M 2

(2J − 1)(2J + 1)
.

For the thermal expectation value, let us consider the Boltzmann distribution over the
rotational states:

ρ(v, J ) =
(2J + 1)gJ e−(EvJ−Ev0)β

∑

J ′(2J ′+ 1)g ′J e−(EvJ ′−Ev0)β
, (3.35)

where gJ is the nuclear spin-degeneracy factor needed for homonuclear diatomics. This
approximation neglects the possibility of electronic and vibrational excitations, but it
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will enable us to write the ensemble polarizability as

〈α(v;ω)〉=
∑

J

ρ(v, J )
2J + 1

∑

M
α(v, J , M ;ω)

= 〈αe (v;ω)〉+ 〈αv (v;ω)〉+ 〈αr (v;ω)〉, (3.36)

where

〈αe (v;ω)〉= 1
3

∑

J
ρ(v, J )〈v(J )|αz,z (ω)+ 2αx,x (ω)|v(J )〉 (3.37)

〈αv (v;ω)〉= 1
3

∑

J

2ρ(v, J )
2J + 1

∑

P

∑

v ′ 6=v
�

(J + 1)|〈v(J )|µ̂α|v ′(J + 1)〉|2

Ev ′,J+1− Ev,J − ħhω
+

J |〈v(J )|µ̂α|v ′(J − 1)〉|2

Ev ′,J−1− Ev,J − ħhω

�

(3.38)

〈αr (v;ω)〉= 1
3

∑

J

∑

P

2ρ(v, J )
2J + 1

�

|(J + 1)〈v(J )|µ̂α|v(J + 1)〉|2

Ev,J+1− Ev,J − ħhω
+

J |〈v(J )|µ̂α|v(J − 1)〉|2

Ev,J − Ev,J−1− ħhω

�

, (3.39)

where
∑

P denotes a permutation between ω and −ω. The argument v emphasizes
that the vibrational and electronic levels are considered unchanged. At this point, it is
apparent that the rotational and vibrational effects require a permanent dipole moment
to be non-zero in the first place.

One is able to study the effects of rovibration in the SOS approach simply by comput-
ing a sufficient number of energies, wavefunctions and matrix elements. In practice,
such pragmatic approach grows tedious very quickly, because of the complexity of the
quantum many-body problem.

3.4.2 Thermal limits

Without further ado let us make a few approximations in order to study some thermal
limits of the given polarizabilities. First, one can make a semiempirical approximation
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[10]

〈v(J )|P (r )|v(J )〉= 〈v(0)|P (r )|v(0)〉+ 4J (J + 1)
�

Be

ωe

�2 dP
dζ

, (3.40)

where Be and ωe are the rotational constant and harmonic vibrational frequency, re-
spectively. Furthermore,

ζ = (r − re )/re ,

where re is the equilibrium distance. Using the high-temperature approximation

∑

J
ρ(v, J )J (J + 1)≈ kT

ħhBe
, (3.41)

one can estimate that the high-temperature limit for the electronic polarizability is

〈αe (v;ω)〉T = 〈v(0)|(αz,z (ω)+ 2αx,x (ω))|v(0)〉

+
4J (J + 1)

3

�

Be

ωe

�

d
dζ
[αz,z (ω)+ 2αx,x (ω)]T . (3.42)

Dependence on d
dζ [αz,z + 2αx,x]T indicates a centrifugal effect: since the electronic

polarizability varies as a function of r , there is a corresponding change in polarizability.
For example, the static dipole polarizabilities of H2 is known to increase as a function
of r [109], and thus, their centrifugal coupling is also positive.

For the vibrational polarizability, we can make a high-temperature approximation, na-
mely |v(J + 1)〉 ≈ |v(J − 1)〉 ≈ |v(J )〉 and also Ev,J+1 ≈ Ev,J−1 ≈ Ev,J . We obtain

〈αv (v;ω)〉T =
1
3

∑

P

∑

v 6=v ′

�

�




v(0) |〈n |µ̂z |n〉|v ′(0)
��

�

2

Ev ′,0− Ev,0− ħhω
.

Thus, the vibrational contribution only appears, if there is a permanent dipole moment.
Even then, the effect is rather small apart from the resonance.

Finally, the high-temperature approximation for the rotational polarizability is given
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by [10]

〈αr 〉=
�

µ(0)
�2

3kT

®

2J + 2
2J + 1

(EJ+1− EJ )
2

(EJ+1− EJ )2− (ħhω)2

¸

. (3.43)

Clearly, when ħhω� 0, the rotational effect fades away. Classically, this means that the
molecule cannot orient itself in a field that oscillates very rapidly. At the static limit
ω = 0, we get a high-temperature limit proportional to

〈αr 〉∝
�

µ(0)
�2 ħhβ
3

, (3.44)

which is also Debye’s classical limit [110]. This is one of the most important explana-
tions to the results of later chapters.

Question of the low-temperature region remains open. One can say that the total polar-
izability is finite-valued at 0 Kelvin, but precise evaluation of the limit requires numer-
ical methods. At low but finite temperatures the thermal coupling is governed by the
lowest rotational states. It is possible to calculate them explicitly as long as the number
of contributing states remains reasonable. At some point the region between low and
high temperatures becomes nontrivial for simulation, unless the thermal ensemble is
treated implicitly. This is exactly what will be demonstrated in the coming chapters.

3.4.3 Total higher-order polarizabilities

Similar derivations can be carried out for higher-order polarizabilities and systems with
less symmetry. The general framework and many useful practices are found in Ref. [10].
However, the equations quickly become cumbersome, and the number of approxima-
tions makes the results questionable. Besides, we should emphasize that the separation
to electronic, rotational and vibrational polarizability is an approximation on its own.
There is no way to obtain the exact total polarizability other than calculating it with
a fully explicit method. Thus, we make no further attempts to induce and decompose
thermal effects from the analytical foundations.

Generally, there can be many simultaneous thermal effects that are scaled and activated
in different ways. There is the average electronic polarizability, which is linearly cou-
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pled to high temperatures due to centrifugal distortion. Then there are orientational
effects, which follow Eq. (3.44) or something similar and saturate at 0 Kelvin. In the
second order, the orientational effect is inverted [29]. The coupling of all the afore-
mentioned effects is nontrivial, and we will later use only effective models for the total
polarizability. Such models are proposed and discussed In Ch. 5 and Publications II and
III.
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4 PATH INTEGRAL MONTE CARLO

Regardless of the electric field response, computation of the thermal density matrix is
a challenge on its own. This chapter is devoted to a particular method designed to do
it, namely path integral Monte Carlo (PIMC). Along variational Monte Carlo (VMC)
[111] and diffusion Monte Carlo (DMC) [112], PIMC is one of the most popular flavors
of real-space Quantum Monte Carlo (QMC). The common principle for different QMC
approaches is that they use stochastic processes to solve quantum many-body problems,
which are otherwise hard or even intractable.

Contrary to most quantum mechanical simulation methods, PIMC features implicit ac-
count of thermal statistics and explicit many-body correlations. The many-body nature
can in principle be extended to any degrees of freedom; the PIMC algorithm is flexible
to be utilized in many kinds of problems [76, 113, 114, 115, 116, 117]. An optimal
problem for PIMC is a balance between quantum phenomena (low temperature) and
the classical limit (high temperature).

Yet, one of the most important features of PIMC is the straightforward possibility of
nonadiabatic simulation. We refer to such simulation as all-quantum (AQ), because it
treats electrons and nuclei on an equal footing, as quantum particles. AQ is a comple-
mentary approach to the Born–Oppenheimer approximation (BO), which involves a
decomposition to rovibrational and electronic parts. The nonadiabatic approach is cat-
egorically more truthful than BO, but it can be computationally heavy. Yet, the most
important results of this Thesis are unique and original because of the nonadiabaticity,
which arises naturally from the AQ simulation.

In the following, we will outline the main features of the traditional PIMC method for
exact Coulomb interactions. The primary focus is on the implementation of polariz-
ability estimators, whereas better detail on the common techniques can be found in, e.g.
Refs. [72, 83, 89, 118].
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4.1 The computational problem

A recipe for the computational problem is given in Eq. (2.87): the quantum many-body
partition function is a discrete path integral over the full phase-space of closed many-
body trajectories. Evaluation of such multidimensional integral is a formidable chal-
lenge for a few reasons. First of all, the number of paths in the continuous space is
infinite. Doing quadrature on finite grids in so many dimensions is impractical and still
likely to suffer from biases and self-cancellations [72]. A viable solution is Monte Carlo
integration: estimating the integral by providing a finite number of randomly generated
samples from the true distribution.

In PIMC, the thermal density matrix is sampled in the canonical or NVT ensemble by
a Markovian walker. The walker is a snapshot of the many-body trajectory, denoted R.
Many good practices and optimizations have been developed for PIMC, but the main
workflow can be summarized as follows:

1. Defining the system and parameters;

2. Computing and tabulating pairwise interactions;

3. Converging the walker;

4. Sampling and measuring the walker.

Let us briefly review the steps.

In step 1 we choose the number and quality of particles: masses and charges. We also
define the environment, such as the spatial dimensions, temperature, boundary con-
ditions, etc. In this Thesis, we carry out NVT simulations, so all the aforementioned
parameters remain constant. The most definitive parameter is the finite time-step ∆τ.
As we shall see, it dictates the accuracy of many-body interactions but also some estima-
tors. It is advisable to repeat the simulation at several different time-steps to probe for
time-step errors. The time-step is also inversely proportional to the Trotter number M ,
and thus, it is increasingly heavy to run simulations at lower temperatures or smaller
time-steps.
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Step 2 is rather an optimization and not always done. However, extremely accurate pair-
actions can be used, if they are pre-calculated and saved to the memory. Some important
details on the handling of pair-density matrices will be given in Sec. 4.3.

Step 3 consists of generating initial configuration for the walker, and then converging it
to the thermal equilibrium. In the Markovian process the walker is randomly mutated,
until it reaches equilibrium. The equilibrium is not a specific set of coordinates, but
rather a subspace of the phase-space with low free energy. The process is maintained
by the Metropolis algorithm [119]. The Metropolis Monte Carlo sampling (MMC)
is discussed in Sec. 4.4.1. Convergence to the equilibrium is often referred to as the
transient.

Finally, step 4 is that of the biggest computational intensity. The idea is to keep sam-
pling the path integral with the MMC algorithm, and thus, gather data for the thermal
partition function. The longer this is done, the more accurate statistical estimates are
acquired. The error is at the same time controllable and inevitable: there is always a
little statistical imprecision, but it can be decreased indefinitely by producing more data
samples. The measurement is a problem of its own: Section 4.5 is dedicated to different
estimators relevant to this Thesis.

Nevertheless, the scaling of computation is clearly an important question. Within the
scope of this Thesis, there are two well-known numerical obstacles: First, the Fermion
sign problem arises, if the simulation involves exchange of indistinguishable Fermions.
This is briefly discussed in Sec. 4.7. Second, the estimation of dynamic properties in-
volves numerical inversions, whose feasibility is strongly dependent on the quality of
the QMC data. For these reasons, it is very important to optimize the whole computa-
tional procedure.

The PIMC simulations of this Thesis have been carried out with privately developed
software. The main program is written in Fortran 90. Currently, it utilizes MPI paral-
lelization for scalable MMC sampling, but OpenMP is also supported for some features.
The latest branches mainly use HDF5 (v. 1.10) for file I/O. As of today, the software
is being planned and refined for open source publication. The high-performance com-
putation has been carried out in using SLURM environments and HPC resources pro-
vided by IT Center of Science Ltd. (CSC) and Tampere Center of Scientific computing
(TCSC).
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4.2 Atomic units

For the remainder of this Thesis, we use atomic units for convenience. That is, most of
the relevant natural constants are given a unitary measure:

ħh ≡ 1, k =
1

4πε0
≡ 1, 1 Ha≡ 1, me ≡ 1, e ≡ 1, a0 ≡ 1.

For instance, the units of length, charge, mass and energy are respectively the Bohr ra-
dius a0, the elementary charge e and the electron mass me and Hartree. The unit of tem-
perature is Kelvin and the Boltzmann constant is approximately kB = 3.16618× 10−6

in the atomic units. Scaling of the results, such as the polarizabilities, arises naturally
from the above definitions, and will not be explicitly stated in the tables and figures.
If necessary, conversion to SI units or some other commonly used system can be done
according to Ref. [10].

4.3 Action

The most important part in terms of accuracy is the treatment of action. The path
integral consists of link-propagators of the form




Ri−1 |ρ̂(∆τ)|Ri
�

= ρ
�

Ri−1, Ri ;∆τ
�

, (4.1)

where the link action is defined as the negative natural logarithm of the density matrix:

S
�

Ri−1, Ri ;∆τ
�

=− lnρ
�

Ri−1, Ri ;∆τ
�

. (4.2)

Based on Eq. (2.91), the action can be separated into kinetic an interaction parts

S
�

Ri−1, Ri ;∆τ
�

=K
�

Ri−1, Ri ;∆τ
�

+U
�

Ri−1, Ri ;∆τ
�

, (4.3)

where the former is the free-particle kinetic action

K
�

Ri−1, Ri ;∆τ
�

=
dN
2

ln(4πλ∆τ)+

�

Ri−1−Ri
�2

4λ∆τ
. (4.4)
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The interaction part can be defined in the combination of primitive and semi-classical
approximations: U (Ri−1, Ri ;∆τ) =

∆τ
2 [V (Ri−1) +V (Ri )] in the limit of ∆τ → 0.

However, a finite time-step produces and error of O (∆τ2). The error comes from ki-
netic contributions in higher orders of ∆τ. There exists higher-order propagators for
improved action, but they can be more tedious to use [82, 120]. Therefore, let us for a
moment use an exact definition for the interaction part:

U
�

Ri−1, Ri ;∆τ
�

= S
�

Ri−1, Ri ;∆τ
�

−K
�

Ri−1, Ri ;∆τ
�

=− ln
ρ
�

Ri−1, Ri ;∆τ
�

ρK
�

Ri−1, Ri ;∆τ
� , (4.5)

where ρK is the free-particle density matrix from Eq. (2.90).

4.3.1 Coulomb pair action

Let us consider the pair approximation defined in Eq. (2.93). Density matrix for a pair
of particles can be written as

ρ
�

r1,r2,r′1,r′2;τ
�

= ρcm �r̄12, r̄′12;∆τ
�

ρrel
12

�

r12,r′12;∆τ
�

, (4.6)

where r̄12 = (m1r1+m2r2)/(m1+m2), r12 = r1− r2, cm refers to center-or-mass and rel
to the relative motion. We are not concerned with ρcm, because it only involves kinetic
contributions. On the other hand, we will next expand the relative pair-density matrix
in partial waves [83]:

ρrel
�

r,r′;∆τ
�

=
1

4πr r ′

∞
∑

l=0

ρl (r, r ′;∆τ)Pl (cosθ), (4.7)

where r and r ′ are the norms of the respective displacement vectors, and θ is the angle
between them. In the case of Coulomb interaction, the relative motion density matrix
can be obtained using only the l = 0 channel [121]:

ρrel
�

r,r′;∆τ
�

=− 1
8πs

∂

∂ s
ρ0(z + s , z − s ;∆τ) (4.8)

ρrel (r,r;∆τ) =− 1
8πs

∂ 2

∂ s2
ρ0(z + s , z − s ;∆τ)|s=0, (4.9)
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where z = (x+y)/2, s = (x−y)/2, x = (r + r ′+ |r−r′|)/2 and x = (r + r ′−|r−r′|)/2.
This is the so-called s -wave miracle.

4.3.2 Matrix squaring

A technique called matrix squaring can be used to compute the pair-density matrix,
such as ρ0(r, r ′;∆τ) at a very high precision [121]. It is based on the following general
identity:

ρ(R, R′; 2∆τ) = 〈R|ρ̂2(∆τ)|R′〉=
∫

dR′′ρ(R, R′′;∆τ)ρ(R′′, R′;∆τ), (4.10)

that is, a convolution of thermal density matrix can be used to produce one at half the
temperature. At the limit of high temperature or small ∆τ, the primitive approxima-
tion and the semi-classical approximation are very accurate and can be safely used. Thus,
successive use of the squaring property Eq. (4.10) can be used to calculate a very accurate
pair-density matrix even at low temperatures.

In particular, components of the pair density matrix can be calculated by

ρl (r, r ′;∆τ) =
∫ ∞

0
dr ′′ρl (r, r ′′;∆τ/2)ρl (r

′′, r ′;∆τ/2). (4.11)

However, the numerical procedure can be technically challenging, and further revisions
are advised for extreme accuracy. For instance, one can define

ρl (r, r ′;∆τ) = ρK
l (r, r ′;∆τ)e−ul (r,r ′;∆τ), (4.12)

where ul (r, r ′;∆τ) is the effective pair potential and the kinetic part is known analyti-
cally [72, 83]:

ρK
l (r, r ′;∆τ) =

4πr r ′

(4πλ∆τ)3/2
exp
�

− (r−r ′)2

4λ∆τ ml

�

r r ′

2λ∆τ

��

, (4.13)

where ml (z) = il (z)e
−z and il (z) is the modified Bessel function of the first kind. One
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can use this knowledge to calculate

ul (r, r ′; 2∆τ) =− ln

�

∫ ∞

0
dr ′′

ρK
l (r, r ′′;∆τ)ρK

l (r
′′, r ′;∆τ)

ρK
l
(r, r ′;∆τ)

× exp
�

−ul (r, r ′′;∆τ)− ul (r
′′, r ′;∆τ)
��

.

Another important practice is to use nonlinear grid for r , which promotes the resolu-
tion near the strongest kinetic mixing, i.e., near the origin r = 0. At the limit of large
r , ul (r, r ′)→ ∆τ

2 [v(r )+v(r ′)], where v(r ) is the radial potential energy function. For
more comprehensive details, see Ref. [72].

The matrix squaring process can be heavy, but it offers a great benefit: the exact Cou-
lomb pair-potential matrix can be stored in an actual matrix, a 2D array. That is, instead
of heavy on-site computation of the interaction, it suffices to read it from the memory.
The pair-potential data has smooth but nontrivial shape, and thus, the storage and in-
terpolation are conveniently implemented using cubic splines.

4.3.3 Generalized interaction

Let us briefly discuss interactions more generally. The combination of partial wave de-
composition, Eq. (4.7), and matrix squaring works as is for any radial potential v(r ).
The main difference is that generally one needs l →∞ channels, while the Coulomb
action only requires l = 0. Practically, the summation can be truncated and approxi-
mated [122]. Still, aiming for extremely high accuracy is numerically challenging and
likely to require caution with floating point arithmetic. Another issue is that the partial
wave decomposition is a three-variable function, not a 2D matrix. A particular way to
reduce the dimensions is to change some variables and make polynomial fits [83, p. 320].

The principle of matrix squaring can be utilized to three-body density matrices and
higher. However, the number of variables escalates quickly: for instance, the complete
three-body density matrix has 12 independent coordinate variables plus the time-step
[83]. Most of these coordinates are small, yet the implementation of matrix squaring for
many-body density matrices is a tedious task. There is a looming motivation, though:
the biggest source of systematic error in this Thesis is due to the pair approximation.
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4.4 Sampling

While action defines the accuracy, the algorithmic efficiency is strongly dependent on
sampling. In Metropolis Monte Carlo, the task is to probe the phase-space of the system
one sample at a time. The samples have statistical weights according to the partition
function: the probability for finding the system in a state R is

Π(R) = Z−1ρ(R, R;β). (4.14)

The relative probability of an arbitrary configuration R is small, and thus, completely
random sampling is highly inefficient. Indeed a better strategy is to pick samples near
the maximum probability, the thermal equilibrium. This is readily achieved by the
Metropolis Monte Carlo algorithm [119].

4.4.1 Metropolis Monte Carlo

According to the principle of detailed balance, in equilibrium the total rate of transitions
from state R to R′ equals that of the reverse rate, i.e.

P(R→ R′)Π(R) = P(R′→ R)Π(R′). (4.15)

Let us suppose that the transition rate is the product of an a priori sampling probability
T(R→ R′) and the acceptance probabilityA(R→ R′). The conditional acceptance bias
can then be written as [72]

q(R′|R) =
A(R→ R′)
A(R′→ R)

=
T(R′→ R)ρ(R′, R′;β)
T(R→ R′)ρ(R, R;β)

≥ 0. (4.16)

The actual process of performing T(R → R′) is referred to as making a move. The
probability for accepting or rejecting the move is written as

A(R→ R′) =min[1, q(R′|R)], (4.17)

which allows us to write out the generalized Metropolis Monte Carlo algorithm [72]:
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• sample a possible new configuration R′ using T(R→ R′)

• calculate q(R′|R)

• if A(R→ R′)> u(0,1), where u(0,1) is a uniformly distributed random number,
accept the move and set R(n) = R′

• otherwise, reject the move and set R(n+ 1) = R

Repeating this procedure ultimately leads to the equilibrium regardless of the initial
state R(0), as long as the sampling is ergodic, meaning that any R and R′ can be con-
nected by a finite number of sampling steps. Converging, or equilibrating the system
may take some time and it is one of the basic steps of MMC calculations.

In practice, ergodicity is sometimes difficult to ensure. For instance, the system can
be complex or involve stiff constraints, such as strong potentials or nodal restrictions.
This manifests in undesirable simulation characteristics, such as slow convergence and
high correlation times of observables. To some extent, low ergodicity can be improved
by extending the palette of different sampling algorithms. Generally, the Metropolis
algorithm is flexible to purposeful sampling schemes, as long as the detailed balance is
maintained. This can make a huge difference in terms of the algorithmic efficiency.
The principle is to visit all the relevant subsets of the phase-space within a reasonable
amount of simulation time. A rule of thumb is to make as large moves as possible while
maintaining a good acceptance ratio. A few examples will be given in later sections.

On the other hand, one may wish to run simulations, which are inergodic by design:
metastable equilibria. For instance, simulating charged particles in a finite electric field
involves a finite risk of dissociation: opposite charges break apart, and the simulation
gets out of equilibrium. Even the simulation of a loosely bound compound is at the
risk of dissociation in infinite space at finite temperature. Without proper regulation
or boundary conditions, metastable simulations are formally a malpractice. Practically
they are shortcuts to the limits of low temperature and perturbation, but one must be
cautious when initializing, running and analyzing such simulations.
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4.4.2 The PIMC walker

The PIMC walker is the trajectory R consisting of M time-slices, each of which contains
the Cartesian coordinates of N particles. That is, the walker consists of N times M real-
space coordinates, which are called beads. The total memory footprint is that of the
current configuration R and the trial R′.

Multilevel bisection

Converging such a multidimensional walker can be tedious, but there is a particularly
efficient algorithm designed for such a walker: the bisection method is de facto popular,
and the one also used in this work. One writes the acceptance probability as

T(R′→ R)ρ(R′, R′;β)
T(R→ R′)ρ(R, R;β)

=
T(R′→ R)
T(R→ R′)

e−∆K e−∆U ,

where ∆U and ∆K are the respective differences in the many-body interactions and
the free-particle kinetic actions. Let us choose the coordinate of a random particle and
a random time-slice i , ri . The bisection means defining the trial coordinate as

r′i =
1
2

�

r′i−1+ r′i+1

�

+n(0,
p
λ∆τ), (4.18)

where n is normally distributed Cartesian vector, with zero mean and the standard de-
viation of

p
λ∆τ. It is easy to show that this exactly counters the free-particle kinetic

action [72, 104] and leads to

T(R′→ R)
T(R→ R′)

e−∆K = 1,

and thus, the acceptance probability only depends on the interaction difference. Algo-
rithmically, this is both appealing and efficient, but moving only one coordinate at a
time is still slow. One can implement the bisection method in nested multilevel stages,
which enable to move a segment of 2L+1 beads with the effective thermal wavelength ofp

2L−1λ∆τ. The multilevel bisection method is described in better detail in Ref. [72].
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Permutation sampling

Let us briefly mention another important degree of freedom: permutation sampling.
The permutation of trajectories is one of the fundamental characteristics of the simu-
lation of identical particles, bosons or fermions. Equilibrating and sampling the full
permutation determinants for all time-slices makes for a rather formidable walker. A
more tractable approach is to only allow one permutation at a time, and then allow for
it to change according to the principles of MMC. Depending on the number of identi-
cal particles, the trial permutation can involve relabeling of two or more one-particle
trajectories. Permutation sampling can be optimized and combined with the multi-
level bisection method [123]. The parity of permutation has important consequences
on fermions, because the odd permutations cause the density matrix to have a nega-
tive sign. Thus, in constrained approaches such as RPIMC, only even permutations are
allowed. If the permutation sampling is missing, inefficient or otherwise incomplete,
it reflects badly to the results. In this work, we do not simulate identical particles or
permutations in this sense.

Orientational sampling

Finally, let us briefly consider simple orientational sampling. By orientational sampling
we refer to a trial move, where the whole many-body trajectory is randomly rotated to
a different orientation:

R′ = Trot(R),

where Trot simply refers to the process of rotation using e.g. Euler angles, rotation matri-
ces or quaternions. In order to maintain the detailed balance, the rotation must always
be done with respect to the same origin. In the free-nuclei simulations of this work, the
origin is always the mean center-of-mass of the trajectory. In fixed-nuclei simulations,
the rotational averaging is seldom motivated, but if it were, we would use the laboratory
origin.

Reorientation of the full trajectory may seem trivial and meaningless, but it is a cheap
way to boost the efficiency of rotational averaging. The internal coordinates of the sys-
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tem remain unchanged, and thus, no interaction calculations are needed: the move is
automatically accepted, unless the system is in a finite field. In that sense, a full rota-
tion such as this is rather a routinely procedure than an actual trial move. Rotational
averaging is associated to all the tensorial properties, such as electric moments and po-
larizabilities. Doing it explicitly may not be the most elegant approach, but it is simple
to use and interpret even in higher orders. Besides, the rotational averaging naturally
arises from free-nuclei simulation. The bisection method will eventually cover the full
orientational space, but the process is very slow, when the thermal wavelengths associ-
ated with the multilevel algorithm are small compared to the system radius. This is a
typical feature in multiscale PIMC simulation, where both the electrons and the nuclei
are explicitly simulated.

4.5 Calculation of properties

Calculation of properties is done according to Eq. (2.35), where MMC sampling does
the integration over R. A measurement is the process of estimating the given property
out of the sample trajectory. This is easy for properties that are local in space, such as the
Coulomb potential, and more involved for those that are not, such as the momentum
[83, p. 339]. In Eq. (2.96), we have already devised formulas for diagonal measurements
over discrete imaginary-time paths. The result is obtained by calculating A(R0) at the
reference configuration. Moreover, if the symmetry properties allow, the result can be
averaged over each time-slice Ri to get better statistics. In the following, we will con-
sider estimators that can be measured in the coordinate representation R. For instance,
electric multipole moments are standard diagonal properties, which are easy to calcu-
late according to their definitions, Eqs. (3.3)–(3.6). The actual polarizability estimators
are only a little more involved.

A practical question remains: how often should one make the measurement? The an-
swer is in the balance between sampling efficiency and the cost of a measurement. In
terms of computation, both the measurement and a unit of sampling have a cost. Ide-
ally, MC samples should be uncorrelated, and making a lot of sampling moves before
consecutive measurements reduces the statistical correlation time. On the other hand,
sampling without measurements is redundant. Thus, a finite stride, or interval should
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be employed and optimized: e.g. 1 measurement in 100 bisection moves. Another prac-
tical concern is the memory footprint of cumulative data (especially the large correla-
tion functions): a result could be averaged over billions of values before writing to disk.
One ends up defining a bin, or a block, which is large number of measurements to be
averaged over.

4.5.1 Energy estimators

The Hamiltonian Ĥ is a nondiagonal operator, but it can be recovered from R by using
thermodynamic identities. All measurements of total energy can be symmetrized over
the path, because Ĥ commutes with the propagators.

The thermal estimator, or the primitive estimator, can be defined as [72]

〈ET 〉=−Z−1 ∂ Z
∂ β

=
1
M

M
∑

k=1

�

∂ S(Rk−1, Rk ;∆τ)
∂ ∆τ

�

=
1
M

M
∑

k=1

®

dN
2∆τ
−
(Rk−1−Rk )

2

4λ∆τ2
+
∂ U (Rk−1, Rk ;∆τ)

∂ ∆τ

¸

.

In the primitive and semiclassical approximation, ∂ U (Ri−1,Ri ;τ)
∂ ∆τ = 1

2[V (Ri−1)+V (Ri )].
However, the accuracy of∆τ-derivative can be significantly improved by using matrix
squaring for it, too. The implementation used in this work is described in great detail
in Ref. [72].

Alternatively, the virial estimator for a minimal window size is given by [72]

〈EV 〉=
1
M

M
∑

k=1

¬

1
2 Rk∇V (Rk )+V (Rk )

¶

, (4.19)

where ∇ denotes a spatial gradient over the potential energy function. For Coulomb
potential, Rk∇V (Rk ) =−V (Rk ), and Eq. (4.19) simplifies to

〈EV 〉= 〈V 〉/2. (4.20)
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The virial estimator is generally preferred over the thermal, because it has less fluctua-
tion. However, neither gives an upper bound estimate of the energy. The upper bound
energy is a useful property for variational benchmarking. For instance, the Hamilto-
nian estimator gives the upper bound [124], but it is heavier to evaluate and was not
implemented for this Thesis.

In FF simulations such as those in Publication I, a correction due to the finite field is in
order [104]. The energy correction is easy to calculate from Eq. (3.2):

〈VF〉=−
M
∑

k=1

�

µα(Rk )Fα+
1
3
Θαβ(Rk )Fαβ+

1
15
Ωαβγ (Rk )Fαβγ + . . .

�

, (4.21)

where care has been taken to consider each time-slice separately. Sample-averaged values
cannot be used, because electric moments beyond the dipole order are nonlinear. The
finite-field correction can be added as it is to the thermal estimator value. Correction
to the virial estimator involves a potential gradient, which is [104]

− 1
2 Rk∇µα(Rk )Fα =

1
2〈Vµ〉 (4.22)

in case of the dipole moment. The higher multipoles are omitted, because they are not
used in this Thesis and the tracelessness makes them more laborious to derive.

4.5.2 Imaginary-time correlation functions

Calculating imaginary-time correlation functions is straightforward in PIMC. Based on
Eq. (2.105), the correlation functions are practically analogous to the Green’s functions,
and the former will be used for the remainder of this Thesis. According to Eq. (2.102),
the measurements are averaged along the discrete sample path. That is, for a given refer-
ence P (Rp ), we compute the preceding measurements Q1(Rq1

), Q2(Rq2
) etc, where the

time-slice indices are positive and ordered: p ≥ q1 ≥ q2 > . . .. In case of symmetric
correlators, i.e. P̂ = Q̂1 = Q̂2 = . . ., it is maybe more intuitive to consider forward-
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propagation. That is, for a given reference time-slice p, one evaluates e.g.

G2(0,0) = P (Rp )P (Rp )P (Rp )

G2(0,∆τ) = P (Rp )P (Rp )P (Rp+1)

G2(∆τ, 0) = P (Rp )P (Rp+1)P (Rp+1)

G2(∆τ,∆τ) = P (Rp )P (Rp+1)P (Rp+2)

. . .

G2((M − 1)∆τ, 0) = P (Rp )P (Rp−1)P (Rp−1),

and so on. The final estimate is the average over all indices p.

Clearly, measurement and storage of the correlation functions can be intensive: the cor-
relation must be measured for all time-differences, that is, all n ×M combinations in
multiples of ∆τ. Symmetry can be utilized in order to reduce the required amount of
computation and memory, and an optimized pseudocode for 1-time correlation func-
tions is indeed provided in Publication IV. In this Thesis, we only calculate symmetric 1-
time correlation functions, while the higher orders remain an interesting future avenue.
The higher orders are also implicitly present in the static field-gradient estimators.

4.5.3 Sample-average estimators

In Sec. 3.2.4 we encountered expectation values in the form of 〈P ∂ τQ∂ τ
1 . . .Q∂ τ

n 〉, where
∂ τ denotes an average over the imaginary-time sample trajectory. For two or more op-
erators the measurement is generally correlated, i.e. 〈P ∂ τQ∂ τ

1 . . .Q∂ τ
n 〉 6= 〈PQ1 . . .Qn〉

for all n ≥ 1. The path-averaging feature is a direct consequence of differentiation and
cannot be turned off, unless the operator commutes with Ĥ .

However, it has apparent benefits in the second and higher-order terms, namely

P ∂ τ(R)Q∂ τ
1 (R) . . .Q∂ τ

n (R) = (∆τ)
n+1

M−1
∑

p=0
P (Rp ) ·

M−1
∑

q1=0
Q1(Rq1

) . . .
M−1
∑

qn=0
Qn(Rqn

)

= (∆τ)n+1
M−1
∑

p=0

M−1
∑

q1=0
. . .

M−1
∑

qn=0
P (Rp )Q1(Rq1

) . . .Qn(Rqn
),
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where the former sum only requires n ·M operations, whereas M n are involved in the
latter sum, which arises naturally from the correlation functions.

To illustrate this, let us consider the dipole polarizability αz,z , which is the correla-
tion function of the normal-ordered dipole operator, P̂ = µ̂z − µ̄z and Q̂ = µ̂z , where
µ̄z = 〈µz〉 is the unperturbed expectation value. The associated polarizability is ap-
proximated as the discrete Fourier transform

αz,z (iωn) =
∫ β

0
dτ eiωnτ〈(µz − µ̄z )µz (−τ)〉〉

≈
M−1
∑

m=0
∆τeiωn∆τ
�

〈µzµz (−m∆τ)〉− 〈µz〉
2� ,

which yields in the static limit iωn = 0

αz,z (iωn) =
M−1
∑

m=0
∆τ
�

〈µz (m∆τ)µz〉− 〈µz〉
2�

=β
�

〈µ∂ τz µ∂ τz 〉− 〈µ
∂ τ
z 〉

2
�

,

where 〈µz〉 = 〈µ∂ τz 〉, and the result is exactly the static field-gradient estimator. One
also recognizes that the first-order polarizability equals to the statistical variance of the
sample quantity in equilibrium. Similar exercise grows more laborious in higher order
and is omitted here.

4.5.4 Error estimation

The usual unit of error in stochastic sampling is the standard error of the mean (SEM).
For a series of uncorrelated samples Ai SEM is defined as [72]

SEM=
σ
p

N
, (4.23)

where N is the number of samples, and σ is the standard deviation given by

σ2 =
1

N − 1

N
∑

i=1

�

Pi − P̄
�2 , (4.24)
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where P̄ is the mean. However, in Markovian processes that samples are usually corre-
lated. The sample-correlation can be taken into account with a correction κ due to the
average correlation time:

SEM= σ
È

κ

N
, (4.25)

which can be approximated for a finite set as

κ≈ 1+ 2
N
∑

n=1

1
(N − n)σ2

N−n
∑

k=1

�

(Pk − P̄ )(Pk+n − P̄ )
�

. (4.26)

In this work, we typically give 2SEM estimates, i.e., twice that of Eq. (4.25), which gives
statistical confidence of 95% for normally distributed random variables.

For other kinds of estimation, such as polynomial and nonlinear fitting, the error is
usually 1SEM, often readily estimated by the fitting algorithm. More details are given
in the associated publications.

4.6 Finite field simulation

A straightforward way to study the electric field response is to simulate the field itself.
We have done this in case of static homogeneous field. The potential action due to a
finite field Fα is in the primitive approximation

U (R, R′;∆τ) =
∫ ∆τ

0
d∆τ



R |−µ̂αFα|R
′�≈−

µα(R)+µα(R
′)

2
∆τFα, (4.27)

and the last term is valid in the semi-classical approximation at the limit of short time-
step∆τ. In general, going beyond the primitive approximation is difficult, because the
field cannot be easily incorporated in the matrix squaring of the Coulomb pair potential.
The time-step error can be studied with time-step extrapolation, but since F is usually
quite small, it is usually negligible. In the bisection sampling of charged particles, a
special drift correction must be taken into account to compensate for a potential bias
[104].

The FF simulation actually breaks the confines of perturbation theory: it contains all
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the orders of static perturbation. On the downside, the simulation is only metastable,
meaning that there is a finite possibility for the system to dissociate. That is, a charged
particle, such as electron, could get loose in the field and never recombine with the orig-
inal ion. This depends on the field magnitude: only relatively weak fields can be used.
Remarkably, the orientational effect of the field becomes apparent in an AQ simulation.
In Publication I we study it using an orientation parameter

S = 1
2〈3cos2θ− 1〉, (4.28)

where θ is the angle between the field and molecular axis.

We could also study coupling to field-gradients. That would mean a non-homogeneous
field, which then would need to be fixed in space. Furthermore, studying field-gradients
would involve more orders of Cartesian components to study. However, we did not pur-
sue to exercise finite-field simulation in the gradient order. Dynamic fields cannot be
simulated directly, unless the PIMC propagator, sampling and measurements are funda-
mentally changed.

4.7 The Fermion sign problem

Let us briefly review the infamous challenge of the FSP for PIMC simulations. Based on
the permutation property from Eq. (2.19) the thermal density matrices for N identical
particles are defined as [118, 125]

ρ(R, R′;β)F /B =
1
N

∑

P
(±1)P ρ(R,P R′;β),

where F /B and+/− refer to fermions/bosons, respectively. The bosonic simulation is
straightforward, because the sign is always positive definite. One must still consider the
permutations, which can become tedious for large N . However, instead of N explicit
permutations, one can sample the permutation space and the phase-space simultane-
ously.

With fermions, all the odd permutations have negative signs. If the measure of the den-
sity matrix is not positive definite, stochastic sampling cannot be done directly. One can
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still sample the boltzmannon distribution, including permutations, but have explicit ac-
count of the sign s . Then, an observable expectation value is evaluated as [126]

〈P 〉=
〈s P̂ 〉
〈s〉

,

which is plausible if the average sign 〈s〉 is large enough; if not, the denominator vanishes
and the statistical fluctuation explodes. The numerical sign problem is NP-hard [127]
and generally gets worse as N or β are increased [118, 126].

There have been different attempts to solve the Fermion sign problem, such as the
configuration PIMC (CPIMC) [128] or permutation-blocking PIMC [129], and the so-
called Majorana algorithms [130]. One of the most popular is the fixed-node approach,
also known as the Restricted PIMC (RPIMC) [118, 131]. It is based on the identity

ρF (Rβ, R∗;β) =
∫

dR0ρF (R0, R∗; 0)
∮

R0→R∗∈Γ (R∗)
dRτe−S[Rτ], (4.29)

meaning, briefly, that only such paths are sampled that are node-avoiding with respect
to the reference bead R∗. Then, the nodes become the most decisive factor in terms
of accuracy and ergodicity of the simulation. Calculation of the nodal surface is often
cumbersome and approximate, although controllable schemes, such as the free-particle
nodes exist [72, 131].

There is a hardship related to estimation of polarizabilities and correlation functions in
the fixed-node scheme. Namely, if the nodes are only accurate for the reference bead,
one is unable to correlate two or more arbitrary time-slices without some sort of error.
Alternatively, the perturbation can be coupled to the definition of the nodal surface.
Unfortunately, detailed analysis and benchmarking of the RPIMC approach could not
be included in this Thesis. The entity of Fermion statistics and the sign problem is still
highly important and should be looked into in the future.
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5 THERMAL EFFECTS IN STATIC POLARIZABILITIES

Thermal coupling has various effects on the different components of polarizability, as
already seen in Chapter 3. On one hand, most atomic systems are practically invariant
of the temperature, and are thus suitable for benchmarking against 0 Kelvin results. On
the other hand, molecular systems with rovibrational degrees of freedom show strong
thermal effects in the polarizabilities of all orders.

In this Chapter, we present and discuss static polarizabilities of various atoms and mole-
cules using the PIMC method as described in Chapter 4. The static response is estimated
with the field-derivative estimators, but also the finite-field approach is used to show the
orientational effect. The most special feature is the fully nonadiabatic AQ simulation
of molecules. It provides the exact total polarizability, which is approximately but not
quite equal to the sum of its constituents: the electronic, rovibrational and nonadiabatic
components.

In the following, we show examples of the most important thermal phenomena and
benchmark data, whose complete details are found in Publications I–III. In the temper-
ature range of 25–3200 Kelvin, the most important phenomena are related to centrifugal
distortion and thermal decay of the orientational effect. We propose a semiempirical
model to study the rotationally active polarizabilities over the full temperature range.
Furthermore, we provide comprehensive benchmarking data, which agree with the lit-
erature but also complement it for many exotic systems, such as H+3 , HeH+ and Ps2.

5.1 Static atomic polarizability

In the following, we consider the static polarizabilities of isolated atoms, atomic ions
and positron systems. They are characterized by spherical symmetry and the apparent
lack of thermal effects, since there are no low-energy excitations. That is, even rela-
tively high-temperature simulations, e.g. T ∼ 4000 Kelvin, correspond to the electronic
ground states and the results be compared to 0 Kelvin values from the literature. Thus,
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the atomic data is mostly studied for benchmark purposes, but we also present some
novel data: higher-order polarizabilities of some positron systems and notable thermal
effects in H−.

5.1.1 Benchmarking with atoms

Table 5.1 contains the static polarizabilities and hyperpolarizabilities of several atoms
and atom-like species in BO simulation. Due to the spherical symmetry, the number
of independent tensors is small – in fact, the polarizabilities are scalar. However, we
use the laboratory coordinate denotation Z for consistency with later tables. Some 0
Kelvin literature references are provided, when available, and the match is generally
excellent. Not only does it mean that the PIMC estimators are working fluently, but
that the simulation is a powerful black box. More discussion and better detail on the
simulation parameters are given in Publications I-IV.

5.1.2 Thermal effects

The thermal effects of atomic polarizabilities are mostly negligible within the numerical
accuracy, but the hydrogen negative ion H− is a curious exception. Figure 5.1 shows
that the static dipole polarizability and second hyperpolarizability show a notable drop
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Figure 5.1 Thermal dependence of static polarizability αz,z and hyperpolarizability γz,z,z,z of
H− (BO) using static field-gradient estimators. Modified from Publication II.

74



Table 5.1 Total energies, static dipole polarizabilities, hyperpolarizabilities and some field-
gradient polarizabilities of atoms or systems with atom-like symmetry. 2SEM error estimates
are given in the parentheses and the values are in atomic units.

Atom E αZ ,Z γZ ,Z ,Z ,Z BZZ ,Z ,Z CZZ ,ZZ
H -0.49997(5)a 4.496(23)a 1586(184)a

-0.49996(2)b 4.502(4)b 1331(28)b

-0.49995(3)c -106.5(3)c 5.003(4)c

-0.49993(2)d 4.5023(9)d 5.004(3)d

-0.5 f 4.5 f 1333.33 f -106.5 f 5.0 f

H− -0.52781(7)b 209(5)b 5.9×107b

-0.52781(7)c -4.78(87)×105c 2568(136)c

-0.52775g h 206.15i 8.03×107i -4.843×105 j 2591.6 j

He -2.9036(2)b 1.382(4)b 42(6)b

-2.9032(2)c -7.32(9)c 0.814(2)c

-2.90372h 1.38319217k 43.104k -7.3267l 0.8150l

Li+ -7.2810(4)b 0.1923(4)b 0.24(8)b

-7.2800(7)c -0.121(3)c 0.03797(9)c

-7.279913m 0.192453m 0.2429l -0.1214l 0.05694l

Be2+ -13.647(12)c 0.05223(6)e 0.008(2)e -0.0083(3)c 0.005106(15)c

-13.655566m 0.052269l 0.008476l -0.008393l 0.007660l

Ps -0.24999(2)b 36.00(4)b 1.70(4)×105b

-0.25 f 36 f 1.7067(4)×105 f

Ps2 -0.51597(7)c 0c 460(7)c

-0.51598(8)d 71.57(8)d 463(7)d

-0.5160038n

PsH -0.78932(7)b 42.27(7)b 1.60(8)×105b

-0.7893(3)c 5300(260)c 260(3)c

-0.78913p 42.2836q

aPublication I; b Publication II; c Publication III; d Publication IV; eThis thesis
with∆τ = 0.002; f exact, Bishop et al [132]; g Lin [133]; hNakashima et al [134];
i Kar [135]; j Pipin et al [136]; kCencek et al. [137]; l Bishop et al. [138]; mJohnson
et al. [139]; nBubin et al. [140]; pFrolov et al. [141]; qYan [142]

due to the temperature. The polarizabilities have been modeled with an exponential fit.
Unlike the neutral atoms and positive ions, the electronic density of H− is very diffuse,
and thus, its polarizability is very high. The drop due to thermal coupling is caused
by activation of low-lying electronic excitations. Alternatively, the delocal character is
decreased by thermal decoherence, or contraction of the thermal wavelength.
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Figure 5.2 Nonadiabatic effects in the static dipole polarizability and second hyperpolarizability
of H using static field-gradient estimators. The solid lines indicate the adiabatic BO values, and
the dotted line is the analytic reference value for αZ ,Z .

5.1.3 Nonadiabatic effect

Let us study the nonadiabatic effect of the Hydrogen atom, whose reduced mass is ap-
proximately 0.999456me . An AQ simulation produces αZ ,Z = 4.505(1) and γZ ,Z ,Z ,Z =
1339(7). The values clearly differ from the BO results (αz,z = 4.5 and γz,z,z,z = 1333.3),
but they agree with the analytic finite-mass correction, which gives αZ ,Z = 4.50490275
[143]. This is shown in Fig. 5.2, which also contains a linear time-step extrapolation.
Namely, a finite time-step error is purely due to the static field-derivative estimators,
because the pair-density matrix of H is exact. This is the only dedicated indication of
the estimator error, because usually a bigger error is accumulated from other sources.

Overall, the nonadiabatic effect is present in all AQ simulations and realistic systems.
On one hand, the effect is obviously smaller in magnitude and more difficult to ex-
tract for nuclei heavier than proton. On the other hand, the combined recoil effects of
more than one electron cancel out to some extent. Most importantly, the effects due to
rotation and zero-point vibration are orders of magnitude larger. Yet, more dedicated
studies on the nonadiabatic effect are called for, because the phenomenon is increasingly
significant in the research of, e.g., isotope effects, proton transfer, and chemical reaction
pathways [144, 145]. For the moment, let us rest assured that the AQ simulations con-
tain the proper account of the effect.
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5.1.4 Positron systems

Positrons are the antiparticles of electrons. Their masses are equal and the recoil effect is
at maximum: positron simulation is in a way the ultimate nonadiabatic limit. Positron
are known to form compounds, such as positronium Ps (electron and positron), di-
positronium Ps2 and PsH. We will not consider the annihilation, although the anni-
hilation rate can be extracted from PIMC simulations [72]. Instead, we focus on the
dielectric properties that are important in positron spectroscopy.

In Publications II and III we report original benchmark data for various polarizabilities
of Ps, Ps2 and PsH. This data is also presented in Table 5.1. The table indicates that no
prior data exist for higher-order polarizabilities, to the best of our knowledge. Further-
more, inspired by the question, whether PsH is an atom or a molecule [146], we also
projected the internal dipole moment of the system: µ(0) = 0.0305(6).

5.2 Static molecular polarizability

Due to the inertia of the nuclei, molecular systems have less symmetry, and thus, more
polarizability tensors that are independent. The dielectric response of molecules is more
diverse than that of atoms. In BO simulation, we only sample the electronic state at the
equilibrium nuclear geometry. Thus, we do not expect thermal coupling. We study
the molecule at its internal coordinates, which is awkward in terms of experiment, but
motivated for benchmarking and wholesome understanding of the dielectric response.

On the other hand, in AQ simulation we enable nuclear degrees of freedom and the
nonadiabatic effect. The rovibrational motions resonate at different energies, which
leads to low-lying thermal effects also in the static limit. Especially, we can observe and
explain centrifugal and orientational effects due to temperature, which are also associ-
ated with microwave, IR, or Raman activity depending on the degree of perturbation.
Complementary views on the dynamic spectrum are given in Chapter 6.
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Figure 5.3 Orientations of the molecules with respect to z-axis.

5.2.1 Benchmarking with fixed molecules

Again, we start by benchmarking the results against known values in the BO approx-
imation. That is, the nuclei are fixed at the equilibrium geometries and aligned with
respect to z-axis, according to Fig. 5.3. Consequently, the rovibrational motion and
thermal effects are suppressed. The result corresponds to the ground state electronic
polarizability at a fixed orientation: the tensorial property in the internal molecular
coordinates.

Table 5.2 contains some results of total energies and independent tensorial polarizabil-
ities. The number of independent tensors for different symmetry point groups is re-
viewed in Ref. [8]. In addition, there are some more special independent properties,
such as µz = 0.6788(1) for HeH+ and βy,y,y = 1.12(14) for H+

3 . Comparison with some
of the available references shows great agreement. Small discrepancies exist due to vari-
ous reasons, such as statistical fluctuation and time-step error of the pair-approximation
– but also erroneous references. Again, complementary data and technical details are
found in the original Publications.

The BO simulation could be pushed further in many aspects, such as using potential
energy surfaces to study rovibrational effects. However, the objectives of this Thesis
are quite the opposite: studying the exact total polarizability in a straightforward nona-
diabatic simulation.
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Table 5.2 Total energies, static dipole polarizabilities, hyperpolarizabilities and some field-
gradient polarizabilities of fixed molecules and molecular ions. 2SEM error estimates are
given in the parentheses and the values are in atomic units.

Molecule R E µz αz,z αx,x
H2 1.4 -1.17434(18)a 6.382(13) 4.577(10)

1.4 -1.1746(4)b 6.388(7) 4.574(5)
-1.17447477c 6.387493d 4.57861d

H+2 2.0 -0.60259(10)b 5.080(4) 1.7586(8)
-0.602634214e 5.0776490 f 1.757648 f

H+3 1.65 -1.3438(3)b 2.202(2) 3.549(3)
-1.3438356h 1.7322i 3.2923i

HeH+ 1.46 -2.9785(6)b 0.6788 1.544(21) 0.8515(7)
-2.978706 j 0.655 j 1.5421k 0.85070k

Molecule γz,z,z,z γx,x,x,x γz,z,x,x γz,x,z,x
H2 787(100)a 640(73) 211(10) 191(7)

700(49)b 572(26)
682.5d 575.9d

H+2 -43(17)b 73(2) 27(2) 24.2(5)
-193.76g 83.87g 29.73g

H+3 51(4)b 58(11) 19(2) 19(3)
HeH+ 11(507)b 7.2(8) 3(8) 2.4(2)

Molecule Θz z Cz z,z z Cx x,x x Cx z,x z
H2 0.4563(2)q 5.99(2) 4.930(13) 4.176(6)

0.45684l 5.983d 4.927d 4.180d

H+2 1.53071(8)q 1.913(12) 1.268(5) 1.1946(7)
1.5307m 1.9113n 1.2670n 1.1945n

H+3 -0.91953(10)q 1.557(10) 2.078(6) 1.2441(10)
-0.92613p

HeH+ 1.24956(13)q 0.59(2) 0.396(6) 0.3382(5)
aPublication I; b Publication II; c Kolos et al. [147]; d Bishop et al. [148];
eTurbiner et al. [149]; f Tsogbayar et al. [150]; g Bishop et al. [151]; hTurbiner
et al. [152]; i Kawaoka [153]; j Pachucki [154]; kPavanello et al. [155]; l Poll et al.
[156]; mBates et al. [157]; nBishop et al. [158]; pCarney et al. [159] (R= 1.6504);
qPublication III

79



5.2.2 Nonadiabatic simulation

In the nonadiabatic AQ simulation the electrons and the nuclei are treated on an equal
footing: as fully quantized particles. As discussed in Sec. 4.4.2, the PIMC interface is
very straightforward: the nuclei, too, are expanded into imaginary-time trajectories.
The computational penalty is increased sampling, which is elevated by the mass dif-
ference between electrons and ions. Another essential feature is the evident isotropic
sampling: free nuclei probe the full orientational space, unless some external constraint
or projection is used. Most importantly, all the thermal and nonadiabatic effects are
simultaneously activated.

It should be noted that the nuclei are simulated as boltzmannons, i.e., distinguishable
particles. This does not produce entirely truthful thermal occupation of different nu-
clear spin isomers, such as ortho/para-H2. The spin isomers have different rotational ac-
tivation, which may also affect the orientational coupling of polarizabilities at low tem-
peratures. The effect becomes negligible, when the thermal wavelength λth =

p

2λβ
of the nuclei becomes small compared to the nuclear separation, i.e. at high tempera-
tures. For protons in the hydrogen systems, this is ∼ 100K. The issue is discussed e.g.
in Refs. [160, 118].

In this Thesis, we only provide the isotropic averages of the polarizabilites, denoted with
the laboratory coordinate Z . Table 5.3 contains a compilation of results extrapolated to
0 Kelvin. Agreement with the literature is mostly good, but many of the nonadiabatic
results are also novel in the literature. There are small discrepancies, whose origins
include statistical fluctuation, time-step error of the pair-approximation, and error in
the extrapolation to 0 Kelvin. Better details are given in Publications I-IV. Need for the
extrapolation to 0 Kelvin emerges from the apparent thermal effects. In the following,
let us briefly discuss their cause and nature.

Vibrational effect

The effect of zero-point vibration can be seen from the total energy. The energy dif-
ferences between BO and AQ energies (extrapolated to 0 K) are approximately ∆E ∼
10mHa for H2, ∆E ∼ 5.4mHa for H+2 , ∆E ∼ 21mHa for H+3 and ∆E ∼ 12mHa for
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Table 5.3 Total energies, static dipole polarizabilities, hyperpolarizabilities and field-gradient po-
larizabilities extrapolated to 0 Kelvin. 2SEM error estimates are given in the parentheses and the
values are in atomic units.

E αZ ,Z γZ ,Z ,Z ,Z BZZ ,Z ,Z CZZ ,ZZ GZZZ ,ZZZ
H2 -1.16239(2)a 5.42(4)a 2678(300)a

-1.16239(2)b 5.424(3)b 2839(894)b

-1.1625(11)c 160(35)c 32(6)c

-1.1633(8)d 5.42(3)d 17.8(3)d 7.9(2)d

-1.164025e 5.4139 f 1763g

H+2 -0.5975(12)b 3.168(49)b 12750(1403)b

-0.596(2)c 3000(580)c 580(150)c

-0.597193h 3.168725h 11479.805h 457.30h 1.55983h

HD+ -0.5968(3)d 43.6(4)d 200(5)d 28.4(6)d

-0.597898h 395.306328h -3.356560h 683.41h 51.562h

H+3 -1.3233(3)b 3.873(24)b 3728(642)b

-1.323(5)c 860(720)c 157(39)c

-1.323568i

HeH+ -2.9827(3)b 528(23)b -1.202(11)×109b

-2.9670(8)c 3.4×106c 406(110)c

-2.96627 j

aPublication I; b Publication II; c Publication III; d Publication IV (300 K); e Bishop et al;
f Kolos [147]; g [58]; hTang et al [161]; i Kylänpää [71]; j Calculated from Refs. [154]
and [162]

HeH+. Obviously, the zero-point motion affects the total polarizability, too, but the
effect is marginal. Thus, we have not made effort to extract or quantify it from the re-
sults. A dedicated study of the nonadiabatic coupling to zero-point vibration remains
an interesting challenge.

Centrifugal effect

At higher temperatures, the rotational ensemble shifts to higher states, i.e., the incorpo-
ration of higher centrifugal effects. Consequently, the average bond length is increased,
which also increases the electronic polarizability. This is in agreement with fixed-nuclei
studies, which imply that a system closer to dissociation is also more polarizable [109].
PIMC results of the centrifugal increment are displayed in Fig. 5.4. Nonpolar species
H+2 , H2 and H+3 exhibit an increment in the dipole polarizability αZ ,Z , which is around
0.5% at room temperature and between 6−10% at 1600 Kelvin. The 0 Kelvin limit has
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Figure 5.4 Nonadiabatic dipole polarizabilities αZ ,Z of molecules (AQ) against the temperature
using two time-steps (blue and red) using static field-gradient estimators. Modified from Publi-
cation II.

been obtained with a phenomenological quadratic fit. However, the high-temperature
limit of the effect is approximately linear, as discussed in Sec. 3.4.2. Of course, at very
high temperatures, the approximate model breaks down, as the molecules dissociate and
the total polarizability becomes a sum of the constituent particles.

Exact recovery of the centrifugal phenomenon, including the nonadiabatic effects, is
difficult from approximate models, such as the rigid rotor. Yet, the effect is already
notable and should perhaps be better appreciated in modeling and parameterization.

Orientational effect

Orientational coupling is the most important of the rotational effects. The requirement
of favorable orientation emerges from degrees of anisotropy in electric moments. For
instance, dipole moment couples to a homogeneous field, causing large orientational
effects to the associated dipole polarizability. Thus, the systems with permanent mo-
ments, i.e. polar molecules, are rotationally active in the first order of perturbation.
Yet, even nonpolar molecules have rotational effects in higher orders: if the first-order
polarizability is anisotropic, so are the induced moments responding to further pertur-
bations. That is, all non-spherical systems are bound to have rotational effects in the
higher-order response, the hyperpolarizabilities. For instance, the values for the second
hyperpolarizability γ can be compared between the BO result from Tables 5.2 and AQ
results from Table 5.3: the values are off by several orders of magnitude.
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Figure 5.5 Orientation parameter of H2 (AQ) against finite field strength Fz and temperature
from Publication I. The orientational effect increases in stronger fields and lower temperatures.

There are several ways to understand the quantitative foundation of the orientational ef-
fect. According to Sec. 3.4.2, the rotational polarizability is proportional to the inverse
temperature. Indeed, the same β-dependence can be seen from the estimators of Ta-
ble 3.2: nonzero and invariant electric moments, such as the permanentµ(0) = 〈µ〉, will
dominate the higher-order polarizabilities in some power of β. Generally αrot(β) ∝
∆αβn , where n is some integer power depending on the degree of polarizability α.
However, it turns out that additional perturbations over rotationally active response
properties do counter the orientational effects and change the sign. Well-known "laws"
[29] such as this are used very liberally to explain the results of this Thesis, while their
rigorous foundations are omitted.

Thermal decay of the orientational polarizability is most directly understood as an in-
terference due to the thermal bath. This is seen in Fig. 5.5, where the orientation param-
eter S from Eq. (4.28) has been obtained from finite-field simulations of H2. S indicates
a clear orientational effect due to the field, but the effect fades off as a function of tem-
perature.

5.2.3 Total polarizability

Finally, let us summarize and appreciate the total molecular polarizability and its ther-
mal coupling. First, the obvious component is the electronic polarizability, whose ther-
mal value is the isotropic average. The electronic state is effectively invariant of the tem-
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Figure 5.6 Nonadiabatic second hyperpolarizabilities γZ ,Z ,Z ,Z of several molecules (AQ) against
the temperature using two time steps (blue and red) using static field-gradient estimators. Mod-
ified from Publication II.

perature, but the centrifugal distortion affects the electronic structure, and thus, the
polarizability. An additional dominant rotational polarizability emerges, if and only
if the system has anisotropies, such as permanent moments. Lastly, small nonadiabatic
corrections due to finite nuclear masses are involved in all of the aforementioned effects.
The conventional decomposition to electronic and rovibrational polarizabilities is only
approximately correct.

For example, the total second hyperpolarizability γ is shown in Fig. 5.6 as a function
of temperature for four molecules: H+2 , H2, H+3 and HeH+. The first three species
are nonpolar, so the orientational effect is positive; HeH+ has a strong orientational

84



50 100 200 400 800 1600

10
2

10
4

10
6

H
2

H
2

+

H
3

+

HeH
+

50 100 200 400 800 1600

10
1

10
2

10
3

H
2

H
2

+

H
3

+

HeH
+

B
Z
Z
,Z

,Z

C
Z
Z
,Z

Z

T T

Figure 5.7 Logarithmic plot of the field-gradient polarizabilities B and C for some molecules
(AQ) from Publication III.

effect already in the first order α, which reflects as a negative correction for γ . The
first hyperpolarizabilityβ is zero due to its symmetry against isotropic averaging. The
strength of the orientational effect depends, loosely, on the magnitude of anisotropy:
out of the nonpolar molecules, the low-temperature γ is largest for H+2 and smallest for
H2, and so are their internal anisotropies∆α= αz,z−αx,x . Thus, the internal quantities
do have indirect experimental significance. In Publication II, we proposed an ad hoc fit

α(T ) = a1exp(a2T )+ a3, (5.1)

where α is the total polarizability and ai are characteristic factors. Equation 5.1 was
used to extrapolate polarizabilities to 0 Kelvin.

However, closer inspection suggests that the orientational effect scales as T −x rather
than exp(−x) at high temperatures. On the other hand, the low-temperature limit
should converge to a finite value, due to thermal activation of the rotational states. Thus,
in Publication III we propose a better fit, namely

α(T ) =
�

a1 · erf(a2T )
T

�x

+ a3, (5.2)

which obeys both limits. Natural choices for the exponent x are 1 for first-order orien-
tational effects, such as CZZ ,ZZ of H2, and 2 for second-order orientational effects, such
as BZ ,Z ,ZZ of HeH+. However, optimizing x yields an exponent somewhat smaller than
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the integer. That is because the approximate formula merges all the thermal effects, in-
cluding centrifugal distortion, into simple empirical trends. The thermal saturation is
illustrated in Fig. 5.7, where the solid lines are the actual fits and in the dotted lines the
erf-function has been replaced by unity. More discussion on the fits can be found in
Publications II and III. Generally, the transition between low-T to high-T limits is non-
trivial, and in that sense, the PIMC results featured in this Thesis are uniquely accurate.
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6 DYNAMIC POLARIZABILITY AND VAN DER WAALS CO-

EFFICIENTS

Studying dynamic polarizability is more challenging but also more rewarding than the
static limit. The whole spectrum of electric field response – both dispersive and absorp-
tive – is encoded in the frequency-dependent susceptibility. The spectral phenomena
of small molecules are commonly decomposed into separate wavelengths, such as ra-
diowaves (Rayleight dispersion), microwaves (rotation), infrared (vibration), x-ray (elec-
tronic), and beyond (scattering cross-section). However, the aim of this Thesis is to go
beyond such decompositions and provide exact mixing of the full spectrum.

In the following, we consider the dynamic response in terms of first-order polarizabil-
ities α1(ω), α2(ω), α3(ω), corresponding to the three lowest electric multipoles. The
real-time correlation involves an out-of-equilibrium many-body problem – a formidable
challenge for any numerical method. The PIMC method solves the many-body prob-
lem, but the time-correlation is only measured in the imaginary time. The imaginary-
time correlation contains in principle all the spectral information, which can be recov-
ered using analytic continuation. Unfortunately, the practical numerical transforms are
ill-posed. The challenging inversion problem calls for special means, and in this Thesis,
we utilize a popular method called Maximum Entropy method (MaxEnt) [73, 74].

This chapter is organized as follows: we start by considering the multipole correlation
in the imaginary domain. We briefly go through some practical details on the work-
flow, such as optimization and Fourier transform. Especially, we demonstrate the use
of Matsubara data in the estimation of van der Waals coefficients. Finally, we use Max-
Ent inversion to estimate and analyze dynamic multipole spectra and first-order polar-
izabilities of various systems: H, He, H2 and HD+. The thermal effects encountered
are familiar and complementary to those observed earlier.
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and as a function of Matsubara frequencies (right) from Publication IV.

6.1 Multipole correlation in imaginary time

Earlier in this work, we have considered the properties and estimation of quantum cor-
relation functions. The correlation function is a hugely important entity, because all the
fine details of the thermal density matrix – electronic correlation, rovibration, nonadia-
batic effects – are projected into its meaningful digits. Later, these features are extracted
to form a spectrum and an estimate of a dynamic polarizability.

6.1.1 Symmetric 1-time correlation

For the rest of this chapter, we will discuss symmetric 1-time correlators, i.e. correla-
tion functions involving two identical measurements. In particular, we consider electric
multipole correlators up to the third order, namely C1 ≡ 〈µ̂(τ)µ̂〉, C2 ≡ 〈Θ̂(τ)Θ̂〉 and
C3 ≡ 〈Ω̂(τ)Ω̂〉, where 0≤ τ ≤β.

In PIMC simulation, the computation of 1-time correlation functions is straightforward
and done according to Eq. (2.102). An example that is plotted in Fig. 6.1 demonstrates
some of the typical features: the function is symmetric, i.e. C (τ) = C (β− τ), and
decreases rapidly down to the uncorrelated mean value. In atomic systems and AQ
simulations the mean is always zero; that is, all of the aforementioned correlators have
implicit normal ordering. Furthermore, around the mean there is statistical fluctuation,
which can be decreased by providing more MC data, but never completely eliminated.
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6.1.2 Fourier transform

Taking a Fourier transform according to Eq. (2.106) gives the imaginary-time correla-
tion function in terms of discrete Matsubara frequencies. The transform is a continuous
integral, but the correlation function is only known at discrete time-slices. To the first
approximation, one can write the integral as the sum over the discrete time-steps:

α(iωn)≈∆τ
M−1
∑

m=0
e−iωn∆τC (m∆τ), (6.1)

which is equivalent of the discrete Fourier transform producing the M lowest Matsubara
frequencies. The discrete transform is easy to implement, but there is an error due the
finite sampling resolution∆τ, which increases with the Matsubara frequencyωn .

An example of Matsubara data thus produced is shown in Fig. 6.1. Since C (τ) is sym-
metric, α(iωn) is purely real, and it should also be monotonically decreasing to 0. How-
ever, if the original data is used, the result becomes symmetric instead, due to the finite
resolution error. Fortunately, the error can be controlled by using, for instance, cu-
bic spine interpolation to increase the effective resolution. For instance, the resolution
∆τ/8 already produces quite a decent accuracy for the first M frequencies. In the limit
of infinite resolution, the transform becomes continuous. Usually, this is not necessary,
since contribution of the higher frequencies is negligible.

The Fourier transform is linear, which means that independent samples can be first
transformed and then averaged. The benefit is that one can then estimate the statistical
properties, such as the covariance matrix of the Matsubara data. An estimate of the
covariance matrix 〈C 〉 over N samples is given by

〈Cmk〉=N−1
N
∑

n=1
(α(iωm)− ᾱ(iωm))(α(iωk )− ᾱ(iωk )),

where ᾱ(iωm) is the sample mean. An invertible 〈C 〉 is later needed for reliable MaxEnt
inversion.
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6.1.3 Higher order correlation

Naturally, one is right to be curious about more exotic correlation functions and their
implications on the response properties. The higher-order polarizabilities featured in
this work are obviously related to specific 2-time correlators and beyond. The dynamic
property makes them much more diverse and interesting than the static limit suggests.
For instance, combinations between different spectral regions open up the analysis of
interesting spectral properties, such as Raman spectroscopy. Yet, for the very same
reason the complexity grows exponentially for the entire account of implementation
concerns, such as memory layout and Fourier transforming, not to mention the analytic
continuation. In this sense, this Thesis is not an exhaustive study, but a scratch on the
surface.

6.2 van der Waals dispersion coefficients

Long-range interaction is one of the biggest challenges in quantum many-body simu-
lations. Approaches such as DFT and MD, which are otherwise very scalable and ef-
ficient, struggle to model the correct van der Waals dispersion. The Lennard–Jones
potential has been successful in modeling the asymptotic r−6-dependence of the Lon-
don dispersion: the interaction of quantum fluctuating dipole moments. However, not
only can the higher multipoles be meaningful [33], but there are effects arising from
quantum electrodynamics that are proportional to r−7 [163]. In the following, we will
consider the London interaction, which is given for two spherically symmetric species
A and B as

V (r ) =−
C AB

6

r 6
−

C AB
8

r 8
−

C AB
10

r 10
− . . . (6.2)

where C AB
2n are characteristic coefficients for the pair A and B. Three-body dispersion

coefficients are discussed in Ref. [164], however, as usual the higher-order terms become
rather tedious.

The dispersion coefficients from Eq. (6.2) can be expressed in terms of imaginary-fre-
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quency polarizabilities. The general form is [165]

C AB
2n =

n−2
∑

l=1

(2n− 2)!
(l !)(l ′!)

1
2π

∫ ∞

0
dωαA

l (iω)α
B
l ′(iω), (6.3)

where n > 2, l ′ = n− l − 1 and αl (iω) are multipole–multipole polarizabilities of l th
order (see Table 3.1). From Eq. (6.3) we can write down the first three terms:

C6 =
3
π

∫ ∞

0
dωαA

1 (iω)α
B
1 (iω) (6.4)

C8 =
15
2π

∫ ∞

0
dω
�

αA
1 (iω)α

B
2 (iω)+α

A
2 (iω)α

B
1 (iω)
�

(6.5)

C10 =
14
π

∫ ∞

0
dω
�

αA
1 (iω)α

B
3 (iω)+α

A
3 (iω)α

B
1 (iω)
�

+
35
π

∫ ∞

0
dωαA

2 (iω)α
B
2 (iω). (6.6)

The formulas such as these can be readily utilized, if the polarizabilitiesαl are known for
a reasonable number of Matsubara frequencies: the integral can be safely extrapolated
or truncated, since the polarizability converges to zero.

In Table 6.1 we present a few coefficients that are matched with literature references,
when available. Technical details, such as time-steps and temperatures can be found in
Publication IV. Generally, the agreement is excellent but many of the results are also
novel. Correlated ab initio methods are also successful in for calculating the dispersion
coefficients [40, 41, 44, 45]. However, they overlook the thermal and nonadiabatic
effects.

In some cases, such as C8 between H and H2, there is a mismatch, because the reference
only treats the electronic polarizability and neglects the centrifugal and orientational
effects. Moreover, the nuclear polarizabilities are subject to the finite temperature, and
thus, one would expect thermal trends in those coefficients involving rotationally ac-
tive polarizabilities. Accurate calculation of finite temperature dispersion coefficients
is absolutely called for, because otherwise thermal simulation methods would depend
on 0 Kelvin parameters.
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Table 6.1 Dispersion coefficients (with 2SEM estimates) for pairs of atoms (BO), positron sys-
tems (AQ) and molecules (AQ) at 300 K from Publication IV, using ∆τ = 0.02. Available 0 K
data is provided for reference.

C6 C8 C10
H–H 6.50(4) 124.7(4) 3300(9)

6.4990267a,c 124.39908a,c 3285.8284a,c

H–He 2.82(4) 41.9(3) 873(4)
2.8213439a,c 41.828a,c 871.23a,c

H–H2 8.78(7) 164.8(8)e 4003(12)
8.7843286c 161.31542c

H–HD+ 6.35(12)e 135(5)e 2620(50)e

5.3815691b 99.592513b 2023.6873b

H–Ps 34.8(3) 318(2) 11560(60)
34.785 f

H–Ps2 68.7(4) 4210(50) 3.35(6)× 105

He–He 1.46(2) 14.09(9) 182.7(8)
1.4609778a,c 14.117857a 183.69107a

He–H2 4.01(5) 56.4(4)e 1008(4)
4.0128132c 55.381453c

He–HD+ 2.65(9)e 41(3)e 507(10)e

2.3441447b 31.043629b 416.42889b

He–Ps 13.4(2) 60.9(6) 3040(30)
13.37 f

He–Ps2 26.4(4) 1520(30) 1.17(3)×105

H2–H2 12.04(12) 219.1(1.3) 4870(20)
12.058168c

H2–HD+ 8.4(3) 184(8) 3800(200)
H2–Ps 45.2(4) 401(4) 13270(70)
H2–Ps2 89.2(8) 5470(70) 4.32(8)×105

HD+–HD+ 11.7(1.2) 530(70) 16000(3000)
HD+–Ps 37(1) 510(40) 7940(120)
HD+–Ps2 74(3) 4800(200) 3.7(2)×105

Ps–Ps 207.3(1.3) 0d 68400(400)
207.97g

Ps–Ps2 410(3) 21000(300) 1.59(4)×105

Ps2–Ps2 811(5) 83200(800) 1.000(12)×107

aYan et al [142], b Tang et al [161], c Bishop et al [166], d The quadrupole moment
of Ps is zero by the symmetry of masses, eThe mismatch is due to orientational and
thermal effects that are missing from the reference, f Mitroy et al [167], g Martin et
al [168]
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6.3 Dynamic polarizability

Dynamic polarizability with a real-frequency argumentω is our most impressive result.
It is directly involved in the observable response properties, such as the refractive index,
Rayleigh scattering and many other linear and nonlinear optical phenomena mentioned
in Chapter 1. Imaginary part of the complex polarizability is also directly related to
spectral properties: infrared activity, Raman spectroscopy, electronic resonances, scat-
tering cross-section etc. Unfortunately, the dynamic response is an out-of-equilibrium
process, and thus, it can be extracted from PIMC results only with enormous difficulty.

Earlier we established that the response functions can be defined and calculated in either
real or imaginary time. Furthermore, their analytic properties allow for analytic con-
tinuation between the domains. This leads to a scheme of integral transforms, which
enable one to turn an imaginary-time correlation function into dynamic spectrum, and
finally, the dynamic response. Unfortunately, the needed transforms involve highly
challenging numerical problems that are scientific problems in their own right.

In the following, we will first discuss the numerical challenge and review solving it with
the MaxEnt method. Then, we proceed to study atomic and molecular multipole spec-
tra and the dynamic polarizabilities that they cause.

6.3.1 Numerical inversion of the spectrum

From Eqs. (2.110) or (2.111) we can generalize the analytic continuation with the fol-
lowing identity

G =
∫ ∞

−∞
dωK(ω)A(ω), (6.7)

where A is the spectral function, and G and K are the imaginary-domain Green’s func-
tion and the associated transformation kernel, respectively. The spectral function A(ω)
is a convenient agent, because it is always real and positive-semidefinite, even though
the mapping could probably be expressed in alternative forms. The forward mapping
of Eq. (6.7), i.e., calculating G from A, is easy. However, the inversion – calculating A
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Figure 6.2 MaxEnt inversion of the dipole spectrum of He (BO) as function of the input data
quality. Dotted line is the default model. From Publication IV.

from G – turns out to be a highly challenging numerical problem.

A QMC result of G is never perfectly accurate, but includes a degree of statistical fluc-
tuation. Thus, even small errors can be magnified tremendously, because the trans-
formation kernels K are highly nonlinear. For this reason, many methods have been
developed to regulate the output [169, 170, 171, 172]. In this work, we use MaxEnt
method, which uses Bayesian inference to choose the most likely A to give G. More de-
tails on MaxEnt are given in Appendix A. The particular software implementation is
ΩMaxEnt (version 2018-01) by Bergeron and Tremblay Ref. [74]. More details on the
workflow and practical instructions are given in Publication IV.

An example of MaxEnt on the dipole spectrum of helium is found in Fig. 6.2. The Max-
Ent spectrum is reasonably accurate even with relatively bad data: the lower moments
of the distribution, i.e. the weight and the alignment are correct. A degree of broad-
ening is expected due to the fundamental spectral linewidth and thermal broadening;
however, here the spectrum is excessively broad. The observed effect is artificial and
arises from the used default model. The spectra can be systematically improved towards
better detail by providing more MC data. The scaling appears to be exponential, and
thus, obtaining accurate higher moments is practically impossible, unless the approach
is fundamentally improved. Prominent strategies include preprocessing the input data
and using more tailored default models. However, such tweaks may introduce uncon-
trollable biases and should be used with caution. Thus, we shall refrain from developing
the MaxEnt method itself in this Thesis.

Nevertheless, we can produce the associated multipole polarizability from the spectrum
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A(ω) by using Eq. (3.14). For spectra obeying the bosonic anti-symmetry, i.e. A(ω′) =
−A(−ω′), the equation is conveniently rewritten as

α(ω) =
∫ ∞

−∞
dω′

A(ω′)
ω−ω′− iη

=
∫ ∞

0
dω′A(ω′)
�

1
ω−ω′− iη

+
1

ω+ω′+ iη

�

. (6.8)

The last form is natural for A(ω ≥ 0), and it also represents the resonant and anti-
resonant polarizabilities from Eq. (3.15). In the following, we present Re[α(ω)] and
Im[α(ω)] separately, and refer to them as polarizability and spectrum, respectively.

6.3.2 Atomic spectra

Let us first study the atomic multipole spectra, which are simple: they only involve elec-
tronic excitations. Figure 6.3 contains results of BO simulations of H and He atoms at
2000 Kelvin: the spectra and the associated dynamic polarizabilities up to the quadrupole
order. The atoms are essentially at the electronic ground states, and there are no notable
thermal effects. One still recognizes that the main spikes of the dipole spectra for H are
roughly between 0.375<ω < 0.5, which is the interval between first dipole transition
and dissociation of the electron. For He, the corresponding interval is approximately
0.76 < ω < 0.90, which also agrees with the known spectral data. Most of the higher
excitations, and thus, the main spectral weight is within this interval. Beyond the dis-
sociation limit, there is the spectral continuum, which decays fast and is related to the
absorption cross-section.

Moreover, the data is in good agreement with the reference [166]. At the static limit,
the results presented in Table 5.1 agree with the previous studies. The dispersive region,
i.e., the low frequencies before the spectral spikes, are also an excellent match. Near the
absorptive region, there are small disagreements due to the artificial spectral broadening.
No prior data exists for the resonant polarizability, which is probably due to a few
reasons. On one hand, the resonant region is challenging to compute, because it is
very sensitive to the exact spectral details. On the other hand, the resonant response is
challenging to measure in experiments, and understanding it might require quantized
fields, such as the Hopfield model [90].
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Figure 6.3 The dynamic multipole polarizability (top) and spectra (bottom) of H (BO) and He
(BO) for dipole (left) and quadrupole (right) processes. Modified from Publication IV.

6.3.3 Positron systems

Positron systems are essentially similar to atoms, but we will present them separately
for a few reasons. First, the simulations are fully nonadiabatic. Electrons and positrons
have equal masses, and thus, the particles need to treated on equal footing. Second, the
results for dipositronium Ps2 are categorically novel in the literature.

The correlation functions and the dynamic properties are presented in Fig. 6.4, and
the static values in Table 5.1. Logarithmic plots of the Matsubara data indicate that
the correlation in different orders of multipole have different orders of magnitude but
similar scaling towards zero. In the second figure, we show vanishing of the correlation
in the imaginary domain: the multipole correlation of Ps2 converges to that of 2Ps
within the first ∼ 2500 Matsubara frequencies at 300K. However, we cannot compare
the quadrupole order, because the quadrupole moment of Ps is always zero due to the
symmetry. Last, we present the dynamic polarizabilities of Ps2. The dipole spectrum is
located roughly between 0.18160<ω< 0.24240, as expected [173]. It is also very close
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to the positron spectrum, 0.1875 < ω < 0.25. Similar to atoms, the higher multipole
responses are stronger in magnitude and also slightly shifted towards higher frequencies.

6.3.4 Diatomic molecules

The molecular spectra are the most diverse, because they involve thermally active nu-
clear effects in addition to the electronic part. Therefore, we omit BO simulations and
focus on AQ simulations including full accounts of rovibration, thermal averaging and
nonadiabatic effects. Again, the response properties from AQ simulations are spheri-
cally symmetric and normally ordered.

The dynamic dipole and quadrupole polarizabilities H2 are presented in Fig. 6.5. The
results at the static limit are in Table 5.2, and complementary data in Publication IV.
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Figure 6.5 The dynamic multipole polarizability (top) and spectra (bottom) of H2 (AQ) for
dipole (left) and quadrupole (right) processes. Modified from Publication IV.

The dipole polarizability α1 of H2 shows the centrifugal effect: the polarizability in-
creases from 0K to T = 200K and T = 1600K. The quadrupole polarizability α2 has
a strong orientational effect because of the permanent quadrupole moment. The inset
of polarizability shows that the familiar centrifugal effect also manifests, when the ori-
entational effect has faded off. Thermal decay of the orientational effect is seen in the
low-frequency inset of the quadrupole spectrum A2(ω): specific rotational resonances
cannot be distinguished, but the ensemble is clearly shifted towards higher occupations
in higher temperatures. Consequently, the static rotational polarizability is decreased,
but the rotational effect also wears off as a function of frequency.

Likewise, the dipole and quadrupole properties of HD+ are presented in Fig. 6.6. Rea-
soning behind the thermal and rovibrational effects coincides with H2. However, HD+

is polar, and thus, rotationally active in all multipoles. Thus, spectral effects similar to
H2 are shown already in the low-frequency insets. The results also indicate that HD+

has more exotic features and thermal effects in the electronic spectra. To probe for
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Figure 6.6 The dynamic multipole polarizability (top) and spectra (bottom) of HD+ (AQ) for
dipole (left) and quadrupole (right) processes. Modified from Publication IV.

systematic errors, all the simulations were repeated with two different time-steps, rep-
resented with solid and dotted lines. Good agreement between the independent studies
makes a strong case for the repeatability of the results, but it does not completely rule
out the possibility of numerical artifacts due to MaxEnt.

The spectra thus obtained are important developments both conceptually and practi-
cally. They present an estimate of the full active spectrum: although the results lack a
lot of fine detail, the polarizabilities at off-resonant frequencies are accurate. The com-
putational workflow, including the inversion problem and the straightforward account
of nonadibatic coupling, can likely be optimized and further developed to yield better
performance. In the era of high-performance computing, the PIMC approach has the
prospects of a future benchmark.
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7 CONCLUSIONS

This Thesis is a review of theory and methods involved in the estimation of static and dy-
namic polarizabilities with the PIMC method. The multipole polarizability describes
the electric field response of localized quantum mechanical systems, such as atoms and
small molecules. Thus, it is one of the most important and fundamental response prop-
erties, and accordingly, involved in a wide range of physical phenomena from nonlinear
optics to spectroscopy and long-range interactions.

The main scientific contribution of this Thesis is a collection of different strategies to es-
timate polarizabilities from PIMC simulations. In particular, we introduce and demon-
strate a finite-field approach, static field-derivative estimators, and finally, analytic con-
tinuation of quantum correlation functions. To summarize, all the approaches are func-
tional and also, in different ways, exact and controllable. They are complementary to
each other and make for a comprehensive toolbox. Yet, the most powerful strategy
is the one involving quantum correlation functions. The pinnacle of the research was
reached in the end.

There are numerous similar studies of polarizability in the literature, but the nonadia-
batic approach of this Thesis is conceptually unique. The PIMC simulation is formally
exact within the scope of nonrelativistic quantum mechanics and apart from a control-
lable systematic error due to finite time-step. Especially, the nonadiabatic or vibronic
coupling is implicit, and there is no need for laborious treatments, such as diabatic trans-
formations [174]. Thus, we can combine the electronic and nuclear response properties,
while most other approaches have to treat them separately: For instance, PIMD meth-
ods are impressive in describing the nuclear quantum phenomena, such as Raman and
IR spectra, in thermal conditions. However, description of the electronic response is
inadequate. On the other hand, ab initio methods achieve great accuracy and numer-
ical precision of the electronic polarizability but struggle with the rovibration and its
thermal coupling.

The all-electron PIMC method has obvious benefits, but the use is scarce, unless the
approach scales to bigger problems. The Fermion sign problem is especially hard on
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fully quantum mechanical simulations, which involve many strongly interacting core
electrons. Various solutions, such as RPIMC and PIGS, offer partial remedy to the effi-
ciency. However, they pose extra restrictions that are likely to interfere with response
properties. Another way to scale up is to use effective core potentials or pseudopo-
tentials. The implementation of nonlocal pseudopotentials has additional challenges in
real-space QMC [175, 176]. Besides, it turns out that most of the readily available pa-
rameterizations (e.g. [177]) are optimized for energy rather than density, while the latter
plays a larger role in polarizabilities. The aim of this Thesis was measurement of the
response rather than fundamental development of the simulation. Yet, an obvious and
well motivated future avenue is to derive and benchmark estimators, which appreciate
the special implications of fermionic simulations, and possibly, fixed-node schemes.

Another important challenge is the analytic continuation from the imaginary-time cor-
relation to the dynamic response. The ill-posed nature of the problem stands against
brute-force solutions and incremental development. A better method than MaxEnt is
called for, but as of today, not readily available. Fundamentally different angles would
be using propagators in real [94, 95, 178, 179] and complex times [180], but of course
they are challenges on their own. On the bright side, the expertise accumulated in this
research is not specific to polarizabilities but can be utilized in a plethora of similar phys-
ical response problems, such as the estimation of dynamic structure factor [83], mag-
netic susceptibility [181], density-of-states [169], NMR relaxation rate [182], absorp-
tion spectra and transport properties [183, 184], Compton profile [185, 186], polarons
[170], and optical conductivity [187]. Relevance of the dynamic response problem is
universal.

For the actual results, we provide figures and tabulated data on the multipole polariz-
abilities of several small Coulomb systems: H, H+2 , H2, H+3 , HD+, He, He+, HeH+,
Li+, Be2+, Ps, PsH, and Ps2. They are not equally suitable to adduce thermal and nona-
diabatic effects, but most of them are very common species in both laboratories and
the nature. We have successfully used the data for benchmarking the new methods, but
we also complement the literature by many original pieces of data. On the other hand
we have reproduced thermal behaviour of molecular polarizabilities at low and high
temperatures, and more importantly, modeled the transient between the two regimes.
We hardly discuss the quality and motivation behind individual results, because there
are simply too many of them, and not all the numbers are relevant to applications. In
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the broad picture, the novel data can prove useful in, e.g., positron spectroscopy, stellar
modeling, and van der Waals interactions. More specific natural follow-ups would be
the PIMC studies of Hydrogen at finite [188] and even extreme pressure [66, 67, 68,
189].

Overall this Thesis captures the essence of method development and basic research. We
started by leaping into a new territory – the question of electric field response – un-
aware of the problems and benefits it might introduce. To state the fundamentals and
probe the limitations was an inevitable and educating struggle. Over time we learned to
recognize many familiar phenomena but also to establish something completely new.
Having found the path, it is easier to take the next step: to extend, approximate and
utilize the results in the meaningful new horizons.
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A MAXIMUM ENTROPY METHOD

The Maximum Entropy method (MaxEnt) is a popular means to regulate highly non-
linear inversion problems. In the first order, this means solving A(ω) for a given G(λ)
from

G(λ) =
∫

dω′Kλ(λ,ω′)A(ω′),

where λ is either imaginary time τ or Matsubara frequency iωn . Instead of C , we
have used G for Green’s function, but the difference is cosmetic within the scope of
this Thesis. The inversion is problematic when the kernel Kλ contains a highly nonlin-
ear mapping, because then even small fluctuations in G(λ) have large implications on
the outcome. Consequently, any numerical transform becomes sensitive to the specific
implementation, such as the finite-sizedω-grid.

This sensitivity can regulated with Bayesian inference. That is, picking the most proba-
ble A out of all possible solutions with a given G, based on the available a priori knowl-
edge of the solution. This equals to maximizing

P(A|G) =
P(G|A)P(A)
P(G)

, (A.1)

where the terms are different probabilities. First, P(G) can be considered fixed for a
given inversion problem. Second, the relative probability of G given A can be quantified
by the central limit theorem as

P(G|A)∝ e−
X 2

2 , (A.2)

where

χ 2 = (G− Ḡ)T C−1(G− Ḡ), (A.3)

where C is covariance matrix and Ḡ =KA is resulting forward-mapping of the problem.
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If the covariance is diagonal,

χ 2 =
∑

i

(Gi − Ḡi )
2

σ2
i

, (A.4)

where σi is the variance at the i th element of G. In other words, X 2 is a least-squares
fitting error between the proposed mapping Ḡ = KA and the input G. Last, the prior
probability can be defined as

P(A)∝ eaS (A.5)

where a is a scaling parameter and

S =−
∫

dω
2π

A(ω) ln A(ω)
D(ω) (A.6)

is the relative entropy. D(ω) is the so-called default model that sets an a priori bias for
the entropy. The default model can be used to steer the fitting by setting it to resemble
the expected shape of the spectral function.

Combining Eqs. (A.2) and (A.5), the inversion equals to maximizing

lnP(A|G) = aS −X 2/2, (A.7)

for a given ω-grid and a. The parameter a adjusts the balance the fit between the least-
squares error and the default model: too small a favors overfitting to statistical noise,
while too large a returns the default model and shuns any new information. There
are several strategies to choose the optimal a, e.g. classical, historic and the Bryan’s
approach. In this work, we use ΩMaxEnt software by Bergeron and Tremblay [74],
which uses maximum curvature of log(X 2)–log(α)-plot to identify the optimal a. Their
approach is relatively independent of the choice of D(ω), which makes for a good black
box. For more details, we refer to [73] about MaxEnt and [74] about ΩMaxEnt, the
implementation.
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The path-integral Monte Carlo method is employed to evaluate static (hyper)polarizabilities of small hydrogen
systems at finite temperature. Exact quantum statistics are obtained for hydrogen atom and hydrogen molecule
immersed in homogeneous electric field. The method proves to be reliable and yields perfect agreement with
known values of static polarizabilities in both adiabatic and nonadiabatic simulations. That is, we demonstrate
how electronic, rotational, and vibrational contributions can be evaluated either separately or simultaneously.
Indeed, at finite temperature and nonzero-field strengths we observe considerable rovibrational effects in the
polarization of the hydrogen molecule. Given sufficient computational resources, the path-integral Monte Carlo
method turns out to be a straightforward tool for describing and computing static polarizabilities for traditionally
challenging regimes.
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I. INTRODUCTION

Polarizability is a fundamental property of matter, de-
scribing its response to the external electric fields. It has
straightforward manifestations in linear and nonlinear optical
phenomena and thus it has a significant role in the interpreta-
tion of experimental data and development of new technology
[1]. Current ab initio methods for quantum scale modeling
of polarizability result from many decades of development.
Nevertheless, while these provide high accuracy at 0 K, their
applicability is limited in many central real-world aspects such
as high temperatures, finite particle densities, and rovibrational
effects. Here we propose a different approach, which could
overcome these problems in a straightforward manner for the
benefit of, e.g., cold-atom physics [1], astrophysics [2], and
spectroscopy [3] and thus make important bridges from ab
initio to the practical world.

The polarizability is conventionally divided into com-
ponents as a perturbation expansion. For example, in the
Buckingham convention [4] the total energy of a system in
a constant electric field (Stark effect) is expressed as

E(1) = E(0) − μ(0)
α Fα − 1

2ααβFαFβ − 1
6βαβγ FαFβFγ

− 1
24γαβγ δFαFβFγ Fδ − · · · (1)

with permanent dipole moment μ(0)
α , static dipole polarizability

ααβ , and first and second hyperpolarizabilities βαβγ and γαβγ δ ,
respectively. In addition, the expression for the induced dipole
moment reduces to

μ(1)
α = − ∂E(1)

∂Fα

=μ(0)
α + ααβFβ + 1

2βαβγ FβFγ + 1
6γαβγ δFβFγ Fδ + · · · ,

(2)

where indices α,β,γ,δ, . . . refer to Einstein summation of
distinct tensor components.

The polarizabilities are usually calculated with either sum-
over-states [5] or finite-field (FF) approaches [6]. Sum-over-
states formulas are exact, but they become extensively compli-
cated for higher-rank polarizabilities. Also, their computation
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typically involves limited basis sets. The FF principle is
based on calculating the perturbations in multiple finite-field
strengths and then extrapolating the differentials to zero field
[7], e.g.,

ααβ = ∂2E(1)

∂Fα∂Fβ

∣∣∣∣
F=0

. (3)

This can be done with a variety of methods. Basically, the
challenge is to approximate solutions to the system, which is
fundamentally unstable in any nonzero constant electric field.

Moreover, electron-nucleus coupling and internuclear mo-
tion have to be treated in order to obtain total polarizabilities.
This is commonly performed with the so-called clamped-
nucleus approximation, i.e., supplementing electronic polar-
izability with rotational and vibrational components [8]:

αtot = αel + αrot + αvib, (4)

where αtot is the total polarizability. This cumbersome sepa-
ration can be overcome with a nonadiabatic Hylleraas basis
approach, which, however, is limited to three particles only
[9].

Overall, the extent of the finite-field response is built
upon increasingly complicated series of properties. This com-
bined with finite-temperature statistics makes consideration of
electric-field phenomena a formidable task with conventional
methods. In this work we introduce a more holistic approach:
the path-integral Monte Carlo (PIMC) approach [10–13] ap-
plied in the study of electric-field phenomena and calculation
of polarizabilities. We were able to find only a couple of studies
[14,15] vaguely geared in this direction.

Thus, we present a comprehensive and accurate study
of static polarizabilities of neutral hydrogen atoms and
molecules. These two- and four-particle systems are consid-
ered both adiabatically and nonadiabatically, i.e., with and
without the Born-Oppenheimer (BO) approximation. Also,
it should be emphasized that with the PIMC approach all
the terms in Eqs. (1) and (2) are implicitly included. We
will demonstrate that the nonrelativistic PIMC approach is
a straightforward and efficient tool for studying electric-field
effects including the inherent temperature dependence.
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II. METHOD

For interacting distinguishable particles the Feynman for-
mulation of quantum-statistical mechanics [16] gives the
partition function as a trace of the density matrix

Z = Trρ̂(β) =
∫

dR0dR1 · · · dRM−1

M−1∏
i=0

e−S(Ri,Ri+1;τ ),

where ρ̂(β) = e−βĤ , S is the action, β = 1/kBT , τ = β/M ,
RM = R0, and M is called the Trotter number. We use the
pair approximation in the action [10,17] for the Coulomb
interaction of charges. For neutral systems the external
potential arising from the homogeneous finite electric field
yields an additional diagonal term in the action, i.e., [18]

Uext(R; τ ) = −τμαFα = −τFαqnrnα, (5)

where R is the configuration at given time slice, Fα is
the electric field, and qn is the charge of the nth particle,
where n denotes summation over all particles. Sampling in
the configuration space is carried out using the Metropolis
procedure [19] with multilevel bisection moves [20]. We use
both the thermal estimator [10] and the virial estimator [21] in
the calculation of total energy.

In our model all the particles are described as boltzmannons,
i.e., they obey the Boltzmann statistics. Since we are dealing
with the hydrogen atom and the ground state of the H2

molecule the particles involved can accurately be treated as
distinguishable particles. In the case of the hydrogen molecule
this is possible in the singlet state by assigning spin up to one
electron and spin down to the other one and applying the same
for the positive particles. This is accurate enough, as long as
the thermal energy is well below that of the lowest electronic
triplet excitation. At T ≈ 160 K this is the case for the
hydrogen molecule [11]. This fact can also be exploited in the
calculations of BO energetics at the equilibrium internuclear
distance. Therefore, within our BO simulations we may use
temperatures up to a few thousand Kelvin and still the system
remains in its electronic ground state (see, for example, the BO
results in Fig. 1 of Ref. [12]). The numerical gain is a smaller
statistical error in less time.

It should be emphasized that for systems consisting of
distinguishable particles the accuracy of the PIMC method
is determined only by the imaginary-time time step τ . As
τ approaches zero the exact many-body results are obtained
within the numerical precision.

We use atomic units in this work and thus the lengths,
energies, and masses are given in units of the Bohr radius a0,
hartree Eh, and free-electron mass me, respectively. Therefore,
we have me = 1 as the mass of the electrons and for the protons
we use mp = 1836.152 672 48me. We use the imaginary-time
time step τ = β/M = 0.03E−1

h , which ensures very good
accuracy [13]. Our Trotter number M = 216 together with
the time step τ result in a 160.6 K simulation temperature.
For the BO calculations we use higher temperature for
better statistics, but as discussed above we are still sampling
the correct electronic state. The statistical standard error of
the mean with 2σ limits is used as an error estimate for the
observables. The simulations are carried out in a periodic cubic
simulation cell V = (150a0)3, where we apply the minimum
image convention.

III. RESULTS

We present PIMC results for the hydrogen atom H and
hydrogen molecule H2 both adiabatically and nonadiabatically.
The adiabatic calculations are carried out with fixed nuclei and
will be referred as electronic BO calculations. The nonadia-
batic calculations with freely moving quantum nuclei include
full account of electron-nuclei coupling and are called all
quantum (AQ). In general, we are able to separate electronic,
rotational, and vibrational contributions by restricting motion
of the chosen degrees of freedom.

We have chosen a few finite-field strengths Fz (Ehe
−1a−1

0 ),
in which we compute the induced perturbations in dipole
moment and total energy. We confirm that a reasonably weak
strength of the field ensures a metastable equilibrium state,
where quantum statistics can be sampled without risk of
dissociation, i.e., electrons tunneling apart from the nuclei
due to the electric field.

The results are compared with finite-field reference models
constructed from Eqs. (1) and (2) (as in Ref. [7]) and known
values for polarizabilities from the literature [22–26]. For
atoms and molecules with a zero permanent dipole moment,
i.e., μ(0) = 0, also βzzz = 0 [8]. It should be emphasized that
the reference model is for 0 K temperature, it is only exact at
the zero-field limit, and while considered only up to γzzzz, it is
subject to a truncation error.

We begin with computation of the H atom. The only
difference between the BO and AQ cases is in the ground-state
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FIG. 1. (Color online) (a) Stark shift (in mhartree) and (b) in-
duced dipole moment (ea0) of the hydrogen atom as functions of
the external electric field. The energy shift is the difference between
perturbed and unperturbed total energies 
E(1) = E(1) − E(0). Blue
circles represent BO results, red triangles represent AQ results, and
the solid line is the reference model (see Table I).
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TABLE I. Energy shift 
E(1) = E(1) − E(0) (in mhartree) and induced dipole moment (ea0) of the H atom, also visualized in Fig. 1. The
column labeled “Difference” represents the difference between values from the closest available reference model [22,23] and the PIMC results.

Calculation Fz 
E(1) 
Eref Difference 
μ(1) × 102 
μref × 102 Difference

BO 0.0 0.000(52) 0.0 0.000(52) 0.004(15) 0.0 −0.004(15)
0.01 −0.227(39) −0.2256 0.002(39) 4.530(12) 4.5222 −0.008(12)
0.02 −0.898(39) −0.9089 −0.011(39) 9.197(14) 9.1778 −0.019(14)
0.03 −2.069(39) −2.0700 −0.001(39) 14.203(16) 14.099 −0.103(16)

AQ 0.0 0.000(50) 0.000(50) −0.008(17) 0.008(17)
0.01 −0.185(45) −0.040(45) 4.536(13) −0.013(13)
0.02 −0.939(45) 0.030(45) 9.195(15) −0.018(15)
0.03 −2.023(45) −0.047(45) 14.208(18) −0.109(18)

energy: With a virial estimator we get (in zero field)
E(0)(BO) = −0.499 97(5) and E(0)(AQ) = −0.499 71(5)
against exact Eref(BO) = −0.5 and Eref(AQ) =
−0.499 727 8, respectively. In Fig. 1(a) we present the
energy shift and in Fig. 1(b) we give the induced dipole
moment for a few finite-field values. We employ the same
BO reference model to both cases and they both yield
excellent agreement. However, in stronger fields, e.g.,
Fz = 0.03, the truncation error, i.e., exclusion of the fourth
hyperpolarizability εzzzzzz = 3.533 595 × 106 [23], is large
enough to be observed as a small difference between our result
and the reference. These results are also given numerically in
Table I.

The static (hyper)polarizabilities are obtained by nonlinear
regression on our results. We use the data for the induced
dipole moment because its estimator is statistically more
precise compared to those of the total energy. The fitted
polarizabilities for hydrogen are shown in Table II. Our static
dipole polarizabilities α are accurate within 95% confidence
estimates and second hyperpolarizabilities γ are slightly
overestimated due to truncation error. Generally, the static
dipole polarizabilities have much smaller error than the second
hyperpolarizabilities.

The adiabatic simulations of the H2 molecule are performed
at the equilibrium distance Re = 1.40a0 [24] and, unlike other
calculations, using a thermal estimator for the total energy [10].
To compensate for the high variance of the thermal estimator,
we boost the efficiency by computing at higher temperature
T = 2500 K, which, as argued earlier, is still close enough
to the low-temperature clamped-nuclei density matrix. Our

TABLE II. Static dipole polarizabilities and second hyperpolar-
izabilities of H with 95% confidence intervals are obtained using
nonlinear regression on our PIMC results. They are compared to the
0 K references found in the literature.

αzz (BO) ᾱ (AQ)

H 4.496(23)a 4.496(39)a

4.500b

γzzzz (BO) γ̄ (AQ)
1586(184)a 1592(316)a

1333.125c

aThis work (160 K).
bReference [22].
cReference [23].

ground-state energy without the external field is E(0)(BO) =
−1.174 34(18), which is close to the highly accurate quantum
chemistry estimate of Eref(BO) = −1.174 474 77 [25]. The
adiabatic hydrogen molecule is considered in the two extreme
orientations in laboratory coordinates: perpendicular ⊥ or
parallel ‖ to the external field. Computation of intermediate
orientation angles could be done just as easily, but it is not
considered here. Changes in total energy and induced dipole
moment are presented in Figs. 2(a) and 2(b), respectively, and
corresponding numerical values are given in Table III. These
results demonstrate good agreement in both orientations.
Using the procedure similar to that for the H atom, we obtain
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FIG. 2. (Color online) (a) Stark shift (in mhartree) and (b) in-
duced dipole moment (ea0) of the hydrogen molecule as functions of
the external electric field. The energy shift is the difference between
perturbed and unperturbed total energies 
E(1) = E(1) − E(0). Blue
circles represent BO (⊥) results, red triangle represent BO (‖) results,
green squares represent AQ results, and lines are the corresponding
reference models (see Table III).

062503-3
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TABLE III. Energy shift 
E(1) = E(1) − E(0) (in mhartree) and induced dipole moment (ea0) of the H2 molecule, also visualized in Fig. 2.
The column labeled “Difference” represents the difference between values from the closest available reference model [24–26] and the PIMC
results.

Calculation Fz 
E(1) 
Eref Difference μ(1)
z × 102 μref

z × 102 Difference

BO‖ 0.0 −0.048(317) 0.0 0.048(317) −0.003(11) 0.0 0.003(11)
0.01 −0.211(316) −0.3196 −0.109(316) 6.399(11) 6.3984 −0.001(11)
0.02 −1.141(316) −1.2820 −0.141(316) 12.867(11) 12.865 −0.002(11)
0.03 −2.841(316) −2.8972 −0.057(316) 19.468(11) 19.468 −0.034(11)

BO⊥ 0.0 0.048(317) 0.0 −0.048(317) 0.002(11) 0.0 −0.002(11)
0.01 −0.181(317) −0.2292 −0.048(317) 4.590(11) 4.5886 −0.002(11)
0.02 −0.717(317) −0.9196 −0.202(317) 9.236(11) 9.2348 −0.001(11)
0.03 −2.006(317) −2.0800 −0.074(317) 13.996(11) 13.996 −0.022(11)

AQ 0.0 0.000(170) 0.000(170) 0.019(48) −0.019(48)
160 K 0.005 −0.054(179) −0.013(179) 2.699(28) −0.012(28)

0.01 −0.443(165) 0.172(165) 5.453(41) −0.010(41)
0.02 −1.095(166) 0.000(166) 11.205(91) −0.143(91)
0.03 −2.554(163) 0.058(163) 17.453(138) −0.419(138)

AQ 0 0.000(296) 0.0 0.000(296) 0.037(47) 0.0 −0.037(47)
295 K 0.005 −0.082(322) −0.0677 0.014(322) 2.738(53) 2.7106 −0.028(53)

0.01 −0.494(250) −0.2714 0.222(250) 5.443(51) 5.4433 0.001(51)
0.02 −1.316(253) −1.0945 0.222(253) 11.063(81) 11.063 −0.052(81)
0.03 −2.686(247) −2.4958 0.190(247) 17.148(131) 17.035 −0.113(131)

static dipole polarizabilities and second hyperpolarizabilities,
which are shown in Table IV. The error bars can be made
smaller by additional computational labor.

Nonadiabatic calculations of H2 include rovibrational ef-
fects arising from the chosen finite temperature and influenced
by the external electric field. It should be pointed out that with
the nonadiabatic PIMC approach the electron-nuclei coupling
is exactly included and thus in our simulations we sample an
accurate many-body density matrix at finite temperature and
in an external electric field. For the nonadiabatic molecule the
equilibrium distance is slightly larger compared to the case
of static nuclei and this is also accurately taken into account
[11]. To compare ground-state energies, we extrapolate our
finite-temperature energy to 0 K, which yields E

(0)
0 K(AQ) =

−1.163 87(18), which coincides with the 0 K reference

TABLE IV. Static dipole polarizabilities and second hyperpolar-
izabilities of H2 with 95% confidence intervals are obtained using
nonlinear regression on 160 K PIMC results. They are compared to
the 0 K references found in the literature.

αzz (BO)‖ αxx (BO)⊥ ᾱ (AQ)

H2 6.382(13)a 4.577(10)a 5.417(37)a

6.387493c 4.57861c 5.4139d

5.428(59)b

γzzzz (BO)‖ γxxxx (BO)⊥ γ̄ (AQ)
787(100)a 640(73)a 2678(298)a

682.5c 575.9c 1763e

1918(479)b

aThis work (160 K).
bThis work (295 K).
cReference [24].
dReference [25].
eReference [26] (295 K).

value Eref(AQ) = −1.164 025 018 5 [27]. Our simulations at
T = 160.6 K demonstrate good agreement in the shift of the
total energies, in the induced dipole moment, and in the fitted
polarizabilities (see Fig. 2 and Tables IV and III).

It is important to understand that the exact polarizabilities in
finite-temperature equilibrium obey the Maxwell-Boltzmann
distribution of excited-state contributions. With the adiabatic
and the monatomic cases, these reduce to electronic ground
states at low temperatures, but this is not the case with
H2(AQ), whose excited rotational states are considerably
occupied at T = 160.6 K. By thermal averaging [8] it can be
shown that the total hyperpolarizability may vary significantly
with temperature. This can be seen from from Fig. 2 and
Table III, where the induced dipole moment of H2(AQ) has
a slightly higher value at 160.6 K (PIMC approach) than at
the 295 K reference [26]. Indeed, comparison of the obtained
hyperpolarizabilities in Table IV shows that γ̄ (160.6 K) =
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FIG. 3. (Color online) Orientation parameter of H2 plotted
against the external field strength at different temperatures. Blue
circles represent 40 K, green squares 160 K, and red triangles 640 K
results. Solid lines are quadratic fits to guide the eye.
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TABLE V. Orientation parameter of the hydrogen molecule H2

as a function of T (visualized in Fig. 3).

Fz

T (K) 0.01 0.02 0.03

H2 40 0.007(14) 0.064(15) 0.173(18)
160 0.009(8) 0.054(8) 0.135(9)
640 0.005(3) 0.021(3) 0.050(3)

2678(298) is considerably higher than γ̄ (295 K) = 1918(479)
or the reference value γ̄ ref(295 K) = 1763 [26], which is
estimated according to Eq. (4). Static dipole polarizability ᾱ

is predicted to increase slightly with the temperature [25],
however, the effect is lost here within error boundaries.

The rotational coupling with the electric field can be further
examined by the orientation parameter

S = 1
2 〈3 cos2 θ − 1〉, (6)

where θ is the angle between the laboratory axis (electric field)
and that of the diatomic H2. The perpendicular configuration
gives the lower limit S = − 1

2 and the parallel configuration the
upper limit S = 1; random orientation gives the expectation
value of 〈S〉 = 0. The parameter is computed for H2(AQ) in
different field strengths and temperatures using lower accuracy
(τ ≈ 1) for feasible efficiency. Our results are presented in
Fig. 3 and in Table V. While the static total polarizability peaks
at parallel orientation, the estimate of S increases towards 1
in stronger fields and more so at lower temperatures, where
thermal distortion is smaller.

IV. CONCLUSION

In this work we presented a path-integral Monte Carlo
study of the hydrogen atom and hydrogen molecule in a
weak homogeneous static electric field. We demonstrated
accurate finite-field results for the Stark shift and induced
dipole moment, which agree excellently with the Buckingham
perturbation expansion, i.e., Eqs. (1) and (2) in the low-
temperature regime. Also, our extrapolated values for static
(hyper)polarizabilities match within confidence bounds the
most accurate ones found in the literature.

We showed that with path integrals it is straightforward
to extend the conventional analysis by taking into account
the nonadiabatic effects and those from finite temperature.
This also supports the extensive work by Bishop on finite-
temperature effects on polarizabilities [8]. To this end, we also
demonstrated how the orientation of the hydrogen molecule
behaves as a function of the electric-field strength. While we do
not yet report any nonequilibrium statistics or comprehensive
finite-temperature dependences, it is evident that this approach
permits access to ab initio study of unexplored electric-field
phenomena.
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[27] M. Stanke, D. Kȩdziera, S. Bubin, M. Molski, and L.

Adamowicz, J. Chem. Phys. 128, 114313 (2008).

062503-5





PUBLICATION
II

General polarizability and hyperpolarizability estimators for the path-integral
Monte Carlo method applied to small atoms, ions, and molecules at finite

temperatures

Juha Tiihonen, Ilkka Kylänpää & Tapio T. Rantala

Physical Review A 94, 032515, 2016
DOI: 10.1103/PhysRevA.94.032515

Copyright 2016 American Physical Society

Publication reprinted with the permission of the copyright holders





PHYSICAL REVIEW A 94, 032515 (2016)

General polarizability and hyperpolarizability estimators for the path-integral Monte Carlo method
applied to small atoms, ions, and molecules at finite temperatures

Juha Tiihonen, Ilkka Kylänpää, and Tapio T. Rantala
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The nonlinear optical properties of matter have a broad relevance and many methods have been invented to
compute them from first principles. However, the effects of electronic correlation, finite temperature, and break-
down of the Born-Oppenheimer approximation have turned out to be challenging and tedious to model. Here we
propose a straightforward approach and derive general field-free polarizability and hyperpolarizability estimators
for the path-integral Monte Carlo method. The estimators are applied to small atoms, ions, and molecules with one
or two electrons. With the adiabatic, i.e., Born-Oppenheimer, approximation we obtain accurate tensorial ground
state polarizabilities, while the nonadiabatic simulation adds in considerable rovibrational effects and thermal
coupling. In both cases, the 0 K, or ground-state, limit is in excellent agreement with the literature. Furthermore,
we report here the internal dipole moment of PsH molecule, the temperature dependence of the polarizabilities
of H−, and the average dipole polarizabilities and the ground-state hyperpolarizabilities of HeH+ and H3

+.
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I. INTRODUCTION

Obtaining nonlinear optical properties (NOP) of matter
by computational simulation is particularly important in such
environments that are out of reach with experimental studies.
For instance, this applies to exotic light-nucleus molecules like
H3

+ and HeH+ in hot and dense stars and gas planets [1–3], or
short lifetime particles like Ps or PsH [4–6]. Quite a different
but trending regime is that of computational biophysics, where
the accurate effects of polarization, finite temperature, and
dielectric solvents are required of the molecular interaction
models [7]. Motivations for the computational study of the
NOP are diverse, and they are properly summarized in
dedicated reviews [8–11].

The first-principles treatment of dielectric response comes
down to dipole and multipole moments and polarizabilities.
Basically, the computation of tensorial polarizabilities is
straightforward, and a lot of methods have been developed
for this purpose over the years, e.g., Refs. [12–23]. The
significance of polarizabilities is pronounced in many physical
scales starting from microscopic interactions, such as van der
Waals [24], to macroscopic properties, like dielectric constant
and refractive index. Transformation from the molecular to the
optical level is typically an emergent procedure that loses some
of the tensorial detail to statistical averaging of properties. The
density of the effective polarizable medium is then related to
the bulk with Clausius-Mossotti or Lorentz-Lorenz relations.
Thus, in principle, one could build up macroscopic NOP in
specific conditions simply by computing and combining the
right set of microscopic polarizabilities. In practice, this can
get tedious.

For example, consider a diatomic homonuclear molecule,
like H2, that has two distinct dipole polarizabilities αzz and
αxx . Combined, they make up a rotationally averaged, effective
polarizability ᾱ that is well suited for the macroscopic trans-
formation. However, anisotropy of the electronic polarizability
is strongly coupled with the rovibrational state of the system,
and to address this, the breakdown of the Born-Oppenheimer
approximation is needed. The conventional way is to form
the total polarizability out of the electronic, rotational, and

vibrational parts [8], the latter of which are unique for every
rovibrational state. When it comes to modeling the thermal
coupling of properties, the relevant ensemble of excited
states is required. This has lead to systematic tabulation of
rovibrational state contributions, e.g., Ref. [25], which is
surely informative but becomes quickly overwhelming with
higher temperatures and more complicated systems. Thus, for
simulating the NOP in thermal conditions, the most reasonable
course of action is to reduce complexity. This can be done by
making approximations or using semiempirical methods, e.g.,
Refs. [26,27]. The more controllable way is to give up the
tensorial character and concentrate directly on the average
properties [28] or the exact thermal ensemble.

In this paper, we provide a tangible interface between
tensorial distinction and thermal averaging of molecular polar-
izabilities. We perform a series of path-integral Monte Carlo
(PIMC) simulations on a variety of small atoms and molecules:
H, Ps, He, H−, Li+, PsH, H2

+, H2, H3
+, and HeH+. Similar

study for H and H2 was done earlier with finite field approach
[29], but this time we propose field-free static polarizability
and hyperpolarizability estimators for imaginary-time path-
integral methods. The exact account of particle correlations in
PIMC is a useful feature for two reasons: electronic correlation
is important to the accurate evaluation of polarizabilities [30],
and nuclear correlation allows a controlled breakdown of the
Born-Oppenheimer approximation. Also, inherent account of
thermal ensemble allows direct sampling in finite temperature
and, in principle, at finite density. That being said, PIMC is
probably the most straightforward way to simulate thermal
coupling of polarizabilities from first principles.

II. THEORY

Consider a quantum statistical system with N distinguish-
able particles in phase space R. The state of the system is
described by finite-temperature density matrix ρ. The density
operator is

ρ̂ = e−Ĥ /kBT , (1)
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where Ĥ is the Hamiltonian operator. In the path-integral
picture, we identify �/kBT = β = i(t − t0) as an imaginary-
time interval, so that we can write Eq. (1) in terms of action
Ŝ = βĤ . Any diagonal observable 〈O〉 can be obtained by
integrating the relevant operator Ô over the phase space

〈O〉 = Z−1
∫

dR〈R|ρ̂|R〉O(R), (2)

where

Z =
∫

dR〈R|ρ̂|R〉 (3)

is the partition function.
Now, consider a perturbation caused by a uniform external

electric field Fα , where indices α,β,γ,δ, . . . , follow the
Einstein summation over the axes x, y, and z. In uniform field,
the perturbation of the Hamiltonian is completely described
by

Ĥ (1) = Ĥ (0) − μ̂αFα, (4)

where Ĥ (0) is the unperturbed Hamiltonian and μ̂α is the dipole
moment operator. According to the Buckingham convention

[31], the change in total energy is written as a perturbation
expansion of coefficients

E(1) = E(0) + μαFα + 1
2ααβFαβ + 1

6βαβγ Fαβγ

+ 1
120γαβγ δFαβγ δ + · · · . (5)

Hence, in the zero-field limit, we can solve the individual
properties:

μα = lim
F→0

∂

∂Fα

E(1), (6)

ααβ = lim
F→0

∂

∂Fα

∂

∂Fβ

E(1) = lim
F→0

∂

∂Fβ

μα, (7)

βαβγ = lim
F→0

∂

∂Fα

∂

∂Fβ

∂

∂Fγ

E(1) = lim
F→0

∂

∂Fγ

ααβ, (8)

γαβγ δ = lim
F→0

∂

∂Fα

∂

∂Fβ

∂

∂Fγ

∂

∂Fδ

E(1) = lim
F→0

∂

∂Fδ

βαβγ , (9)

and so on. Bearing in mind that ∂Ŝ
∂Fα

= βμ̂α , direct differ-
entiation eventually leads to the following exact tensorial
estimators:

ααβ = β[〈μαμβ〉 − 〈μα〉〈μβ〉], (10)

βαβγ = β2

⎡
⎣〈μαμβμγ 〉+2〈μα〉〈μβ〉〈μγ 〉−

∑
αβ,γ

〈μαμβ〉〈μγ 〉
⎤
⎦, (11)

γαβγ δ = β3

⎡
⎣〈μαμβμγ μδ〉−6〈μα〉〈μβ〉〈μγ 〉〈μδ〉−

∑
αβγ,δ

〈μαμβμγ 〉〈μδ〉 −
∑
αβ,γ δ

〈μαμβ〉〈μγ μδ〉+2
∑

αβ,γ,δ

〈μαμβ〉〈μγ 〉〈μδ〉
⎤
⎦,

(12)

where shorthand notation is used for unique terms with cyclic
permutation over comma-separated indices, e.g.,

∑
αβ,γ

〈μαμβ〉〈μγ 〉 = 〈μαμβ〉〈μγ 〉

+ 〈μγ μα〉〈μβ〉 + 〈μβμγ 〉〈μα〉.

It should be pointed out that the bracketed terms on the
right-hand side, e.g., 〈uα〉, are the relevant observables for a
path-integral simulation. That is, in this form the polarizability
estimates, e.g., 〈ααβ〉, cannot be computed directly from a
single sample trajectory. Rather, they emerge from the correct
addition of the long-time expectation values of different dipole
moment products.

III. METHOD

In path-integral Monte Carlo scheme, integration of phase
space is carried out by Monte Carlo sampling of discrete
imaginary-time paths. The path of length β is discretized
according to the expansion [32], which divides the length
into small intervals: β = Mτ , where M is the Trotter number.
Calculation of diagonal properties can then be done by taking

average of each time slice:

〈O〉 = M−1Z−1
M∑
i=1

〈Ri−1|ρ(Ri−1,Ri ; τ )|Ri〉O(Ri), (13)

where Ri are the coordinates of particles at the ith time slice,
and R0 = RM . This is exact in the limit of τ → 0, or M → ∞,
but for practical reasons finite time step is used. The best
accuracy is obtained by using the so-called pair approximation
to describe Coulomb interaction [33]. Correct and efficient
sampling of the density operator ρ(Ri−1,Ri ; τ ) near the
thermal equilibrium is obtained by Metropolis Monte Carlo
with multilevel bisection procedure [34]. In this paper, only
systems with up to two electrons are considered. Thus opposite
spins are assumed, and all the particles obey Boltzmann
statistics [5].

The total energies are obtained by thermal or virial
estimators [35]. The virial estimator is preferred, because it
has smaller variance. However, for convenience the thermal
estimator is used for adiabatic simulations with more than one
fixed nucleus. The polarizabilities are computed according to
the dipole moment products that appear in Eqs. (10)–(12).
The dipole moment is unambiguously defined for the neutral
systems, where the effect of the origin cancels out. For the
systems with a nonzero net charge, we set the origin at the

032515-2



GENERAL POLARIZABILITY AND HYPERPOLARIZABILITY . . . PHYSICAL REVIEW A 94, 032515 (2016)

center-of-mass of the nuclei, or that of all the particles, in
adiabatic or nonadiabatic simulations, respectively.

IV. RESULTS

We investigate a few well-known small atoms, ions, and
molecules with up to two electrons by performing parallel
PIMC simulations. By fixing or freeing the nuclear motion
we demonstrate the breakdown of the Born-Oppenheimer
approximation. The inclusion of the electron-nuclei coupling
reveals the rovibrational effects, and thus, together with finite
temperature, also the thermal coupling of properties. This
allows us to report the total energies and relevant tensorial
polarizabilities corresponding to both the electronic ground
state and the finite-temperature rovibrational ensemble. Due
to the exponential nature of thermal effects, we approach
the observed thermal trends with an ad hoc exponential
least-squares fit of the form

O = a exp(bT ) + c, (14)

where O is the observable and a, b, and c are the fitting
parameters.

In any case, the number of nonvanishing and distinguishable
tensor properties is greatly reduced by symmetry. To best
convey with the literature, we use z to mark the principal
direction, and, when suitable, x for a perpendicular direction.
None of the studied systems require more than two simulta-
neous directions. Capital Z is used to denote the laboratory
axis, which is used in freely rotating nonadiabatic simulations.
Statistical standard error of the mean (SEM) with 2σ , i.e.,
2SEM confidence boundaries are used unless otherwise stated.

When relevant, we use mp = 1836.15267248me for proton
mass and mHe = 7294.2995363me for that of He nucleus.
Generally, the time step of τ = 0.03 is sufficient for the
systems with only hydrogen, and any small discrepancy with
the literature is due to the high temperature. For heavier nuclei,
i.e., He and Li+, also smaller time step of τ = 0.01 is used,
but it accounts for a small error in total energy. In some
simulations, especially the nonadiabatic, τ = 0.1 is used for
computational feasibility, but also to demonstrate the time-step
effect, or lack thereof.

A. Adiabatic simulations

The adiabatic, i.e., fixed-nuclei calculations, are good to
begin with, since they exhibit no thermal coupling by default:
the most stable systems, i.e., the neutral and the positive, are
effectively at their electronic ground states at thousands of
kelvins [48]. High temperature is preferred for computational
feasibility, and thus 2000 K is used for the simulation of H,
Ps, He, H2, Li+, H2

+, H3
+, and HeH+. PsH is less stable

because of the highly mobile positron and is simulated at
1000 K. The most special case is the hydrogen negative ion,
whose polarizabilities show notable temperature dependency
at relatively low temperatures; H− is simulated at 25–500 K
and the results are extrapolated to 0 K.

For each adiabatic simulation we report the time step,
the total energy, and all the relevant polarizability tensors
depending on the symmetry. Also, the best available 0 K
references from the literature are shown for comparison

TABLE I. Time steps τ , total energies E, and static dipole
polarizabilities αzz and second hyperpolarizabilities γzzzz obtained
from the adiabatic calculations of atoms and ions are matched with
suitable literature references.

τ E αzz γzzzz

Ps 0.03 −0.24999(2)a 36.00(4)a 1.70(4) × 105a

−0.25b 36b 1.7067 × 105b

H 0.03 −0.49996(2)a 4.502(4)a 1331(28)a

0.03 −0.49997(5)c 4.496(23)c 1586(184)c

−0.5d 4.5d 1333.1e

H− 0.1 −0.52799(6)f 206(2)f 7.4(2.9) × 107f

0.03 −0.52781(7)f 209(5)f 5.9(7.0) × 107f

−0.52775g 206.15h 8.03 × 107i

PsH 0.03 −0.78932(7)a 42.27(7)a 1.60(8) × 105a

−0.78913j 42.2836k

He 0.01 −2.9036(2)a 1.382(4)a 42(6)a

−2.90372l 1.38319217m 43.104m

Li+ 0.01 −7.2810(4)a 0.1923(4)a 0.24(8)a

−7.279913n 0.192453n 0.2427p

aThis work.
bE, αzz, and γzzzz of Ps are half, 8-fold, and 128-fold of those of H,
respectively.
cTiihonen et al. [29].
dWaller [36].
eSewell [37].
fThis work (extrapolated to 0 K).
gLin [38]; Nakashima et al. [39].
hKar et al. [40].
iPipin et al. [41].
jFrolov et al. [42].
kYan [43].
lPekeris [44]; Nakashima et al. [39].
mCencek et al. [45].
nJohnson et al. [46].
pGrasso et al. [47].

[29,36–47,49–59]. The simplest group is presented in Table I;
atoms and ions with a single fixed nucleus are isotropic and
have no permanent dipole moment, and thus they only have
nonvanishing dipole polarizability αzz and second hyperpolar-
izability γzzzz. The total energies match at least with three, and
most of the polarizabilities at least with two significant digits.
The biggest discrepancies are with the extrapolated values of
H−, which could stem from the choice of the extrapolation
function (14). The temperature dependencies of αzz and γzzzz

of H− are presented in Fig. 1, and it is likely that instead of
exponential decay, αzz would saturate towards the reference
value. Also, to our knowledge, γzzzz has been reported
for neither of the positron systems, Ps and PsH, prior to
this work.

Table II contains homonuclear molecules and molecular
ions made of protons and electrons. They also lack the
permanent dipole moment, but now the geometry gives rise
to optical anisotropy, i.e., difference between the response
in z and x directions. Consequently, the nonvanishing terms
are αzz �= αxx and γzzzz �= γxxxx �= γzzxx �= γxxyy [31]. The
simulations of the diatomic molecules were carried out at
the approximate equilibrium bond lengths RH2

+ = 2.0a0 and
RH2 = 1.4a0 so that the nuclei were connected by the z axis.
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FIG. 1. Finite temperature data for αzz and γzzzz of H− is plotted
against temperature for two time steps: τ = 0.1 (blue circle) and
τ = 0.03 (red triangle). Exponential fit is used to extrapolate to 0 K.
The black dashed lines mark reference values at 0 K [40,41].

The nuclei in triangular H3
+ molecule were fixed equilaterally

RH3
+ = 1.65a0 apart so that the z axis was perpendicular

to the plane. Again, the agreement of the total energy is
good. With H2

+ and H2, the agreement is also good with
the polarizabilities. The latest and the only references of the
dipole polarizability of H3

+ are from Ref. [57], where they are

assumed inaccurate lower-bound estimates. Indeed, our results
for αzz and αxx are somewhat larger. We also present estimates
for the higher static polarizabilities of H3

+.
The most complicated of our systems is HeH+, because it

contains a permanent dipole moment μz, which also induces
nonzero first hyperpolarizabilities βzzz �= βzxx . With nonzero
net charge, the choice of origin for the dipole moment is
ambiguous. Here, we use the center-of-mass of the nuclei,
which places the origin 0.293609a0 apart from the He nucleus
with the equilibrium bond length of RHeH+ = 1.46a0. All
of the properties are presented in Table III, and up to the
dipole polarizabilities they match well with the literature.
None of the hyperpolarizabilities have been reported before,
although the error boundaries are very dominant with any of
the z-dependent components.

Vaguely in the spirit of Ref. [60], we also performed a
simulation of PsH as sort of a molecule consisting of two
electrons and two “nuclei,” proton and positron. By replacing
the laboratory axis with the local axis between the nuclei,
we were able to compute a nonzero dipole moment of μz =
0.0305(6). In principle, such treatment of PsH causes slight
alterations to the properties of PsH found in Table I and a
symmetry similar to that of HeH+. To demonstrate such small
effects, more laborious calculations would be required, but
we omit the opportunity for now. The essence of this work
is to show that the proposed estimators give decent values
for polarizabilities and hyperpolarizabilities, and so far this
requirement has been amply met.

B. Nonadiabatic simulations

An important step towards realistic and more meaningful
simulation of nonlinear optical properties is the breakdown of
the Born-Oppenheimer approximation. In PIMC, this is done
by allowing quantum statistical description of the nuclei, i.e.,
replacing fixed-point charges with imaginary-time trajectories
similar to the electrons. Besides reduced mass correction to
electron-nucleus interaction, this enables the exact account

TABLE II. Time step τ , total energies E, and static anisotropic dipole polarizabilities αzz �= αxx and second hyperpolarizabilities γzzzz �=
γxxxx �= γzzxx �= γxxyy obtained from the adiabatic calculations of homonuclear molecules and molecular ions are matched with suitable literature
references.

τ R E αzz αxx γzzzz γxxxx γzzxx γxxyy

H2
+ 0.03 2.0 −0.60259(10)a 5.080(4)a 1.7586(8)a −43(17)a 73(2)a 27(2)a 24.2(5)a

−0.602634214b 5.0776490c 1.757648c −193.76d 83.87d 29.73d

H2 0.03 1.4 −1.1746(4)a 6.388(7)a 4.574(5)a 700(49)a 572(26)a 211(10)a 191(7)a

0.03 −1.17434(18)e 6.382(13)e 4.577(10)e 787(100)e 640(73)e

−1.17447477f 6.387493g 4.57861g 682.5g 575.9g 211.9g 192.0g

H3
+ 0.03 1.65 −1.3438(3)a 2.202(2)a 3.549(3)a 51(4)a 58(11)a 19(2)a 19(3)a

−1.3438356h 1.7322i 3.2923i

aThis work.
bTurbiner et al. [49]; Laaksonen et al. [50]; Madsen et al. [51].
cTsogbayar et al. [52].
dBishop et al. [53].
eTiihonen et al. [29].
fKolos et al. [54].
gBishop et al. [55].
hTurbiner et al. [56].
iKawaoka [57].
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TABLE III. Permanent dipole moment and static dipole polarizabilities and hyperpolarizabilities from the adiabatic simulation of HeH+

molecular ion with τ = 0.01.

E μz αzz αxx βzzz βzxx γzzzz γxxxx γzzxx γxxyy

−2.9785(6)a 0.6788(1)a 1.544(21)a 0.8515(7)a −2(4)a −0.17(7)a 11(507)a 7.2(8)a 3(8)a 2.4(2)a

−2.978706b 0.655b 1.5421c 0.85070c

aThis work.
bPachucki [58].
cPavanello et al. [59].

of rovibrational motion in thermal bath. On the downside,
we are not able to distinguish between rotational, vibrational,
and electronic components directly, unless we use artificial
constraints and internal coordinates. Yet, here we aim at
skipping the tedious tabulation and explicit summation of
rovibrational properties and, instead, get the accurate and
thermally averaged estimates served on a silver platter.

We simulated four isolated molecules, namely H2
+, H2,

H3
+ and HeH+, in various temperatures. The maximum

temperature was 1600 K (3200 K for H2), where molecular
stability is still sustained; dissociation of molecules would
result in an undesired explosion in the variance of the dipole
moment products. In Table IV we summarize the obtained
total energies and make polynomial extrapolations to 0 K.
Comparison with the literature [28,58,61–65] shows that the
agreement in total energies is good at least with the smaller
time step τ = 0.03, although the results of HeH+ might be
improved by a smaller time step still. The average bond
lengths are altered by the rovibrational motion. Extrapolation
to 0 K gives RH2

+ = 2.0630(9)a0, RH2 = 1.4482(4)a0, RH3
+ =

1.7231(6)a0, and RHeH+ = 1.5167(4)a0 with τ = 0.03.
In laboratory coordinates with freely moving nuclei, all the

odd terms, i.e., μ and β, vanish due to symmetry and the
anisotropic properties, i.e., α and γ , reduce to orientational

averages. In Fig. 2, we present the temperature dependen-
cies of the average dipole polarizability αZZ and second
hyperpolarizability γZZZZ for each molecule. The data points
are accompanied with a least-squares nonlinear fit according
to Eq. (14). Extrapolated values, i.e., αZZ(0) = a + c, are
presented in Table V and compared with the literature, when
possible. It appears that all of the homonuclear systems exhibit
similar behavior: αZZ increases by the temperature in linear or
quadratic fashion, and the effect is to some extent countered
with exponential decay of γZZZZ . The explanation is simple,
if we assume that the primary contribution to γZZZZ is given
by the rotational states. The rotational hyperpolarizability
emerges from the anisotropy between αzz and αxx : the
molecule has a tendency to assume more favorable orientation,
which is that of higher α. Typically, the lowest rotational
states have the highest hyperpolarizabilities [25], and thus the
dominant part γZZZZ is decreased as the thermal ensemble
shifts towards higher temperatures. Out of the homonuclear
systems, H2

+ goes through the most drastic change in γZZZZ ,
and it has indeed the highest anisotropy.

HeH+ has different response to the temperature: αZZ decays
by the temperature and γZZZZ seems to tend to zero as the
temperature is increased. This is surely influenced by the
permanent dipole moment μz. Even though μZ and βZZZ

TABLE IV. Total energies from nonadiabatic calculations of molecules with two time steps τ = 0.1 and τ = 0.03. The values are
extrapolated to 0 K and compared values from the literature.

τ 0 K 200 K 400 K 800 K 1600 K 3200 K

H2
+ 0.1 −0.5972(8)a −0.59668(6)b −0.59599(6)b −0.59445(9)b −0.59007(9)b

0.03 −0.5975(12)a −0.59682(9)b −0.59599(9)b −0.59438(12)b −0.59006(15)b

−0.597139c

H2 0.1 −1.16518(12)a −1.16456(9)b −1.16394(10)b −1.16256(8)b −1.15952(16)b −1.15050(13)b

0.03 −1.16436(16)a −1.16374(15)b −1.16300(12)b −1.16163(12)b −1.15850(19)b −1.14340(21)b

−1.164025d

H3
+ 0.1 −1.3245(2)a −1.3239(2)b −1.3228(2)b −1.3207(2)b −1.3133(3)b

0.03 −1.3233(3)a −1.3226(3)b −1.3217(3)b −1.3192(3)b −1.3118(3)b

−1.323568e

HeH+ 0.1 −2.9827(3)a −2.9823(3)b −2.9815(2)b −2.9803(2)b −2.9761(3)b

0.03 −2.9722(5)a −2.9717(4)b −2.9712(4)b −2.9697(4)b −2.9656(5)b

−2.96627f

aThis work (extrapolated to 0 K).
bThis work.
cTang et al. [28].
dStanke et al. [61].
eKylänpää et al. [62] ([63]).
fCalculated based on Refs. [58] and [64].
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FIG. 2. Nonadiabatic dipole polarizabilities αZZ and second hyperpolarizabilities γZZZZ are plotted against the temperature. Blue circles
and red triangles mark the simulated data points associated with τ = 0.1 and τ = 0.03, respectively. Least-squares nonlinear fits have been
made according to Eq. (14). When available, the black dashed lines mark reference values at 0 K [28,65] or 295 K [25].

vanish in the nonadiabatic ensemble, the existence of μz

induces large rotational component for αZZ , likewise to the
previous paragraph. Thus, when the anisotropy of μ gets
decreased by higher-order rotational motion, so does the
rotational part of αZZ .

At this point it is fair to note, however, that any qualitative
ideas concerning the rotational or vibrational components are
inspired by previous works, and no such conclusions can be
drawn solely from the raw simulation data of this work. What
is evident, though, is that the difference between the adiabatic
and the nonadiabatic results is huge. This is not an implication
of error but of the importance of nonadiabatic effects and
thermal coupling.

V. SUMMARY

We have derived general estimators of static dipole po-
larizabilities and hyperpolarizabilities for the path-integral

TABLE V. Polarizabilities and hyperpolarizabilities from nonadi-
abatic calculations of atoms are extrapolated to 0 K by using Eq. (14).

τ αZZ γZZZZ

H2
+ 0.1 3.175(34)a 12674(1006)a

0.03 3.168(49)a 12750(1403)a

ref. 3.168725b 11479.805b

H2 0.1 5.397(19)a 3012(604)a

0.03 5.424(24)a 2839(894)a

ref. 5.4139c

H3
+ 0.1 3.873(24)a 3738(642)a

0.03 3.884(39)a 3656(950)a

HeH+ 0.1 529(8)a −1.128(8)×109a

0.03 528(23)a −1.202(21)×109a

aThis work (extrapolated to 0 K).
bTang et al. [28].
cKolos et al. [65].

Monte Carlo method. Using the field-free estimators is
straightforward in any kind of molecular simulation, and it
surpasses our previous finite-field approach in simplicity and
speed [29]. In principle, the computation of nonlinear optical
properties of matter can be done with PIMC directly at any
finite temperature.

As a reference, a variety of well-known one- and two-
electron atoms and molecules were simulated with PIMC:
H, Ps, H−, He, Li+, H2

+, H2, PsH, H3
+, and HeH+.

Agreement with the literature is mostly excellent, with the
exceptions of H− and H3

+, whose static dipole polarizabil-
ities are being improved in this work. Also, we provide
tensorial estimates of the second hyperpolarizabilities of
PsH, H3

+, and HeH+ and hyperpolarizabilities of HeH+.
While our list of two-electron systems is not exhaustive,
the efficiency and universality of our method is still amply
demonstrated.

Beyond the computation of adiabatic, or fixed-nuclei po-
larizabilities, we take two important steps with unprecedented
ease: the breakdown of the Born-Oppenheimer approximation
brings in dielectric contributions emerging from nuclear
motion, and the sampling of thermal ensemble couples them
directly to finite temperature. We estimate the temperature
dependencies of the polarizabilities of four molecules: H2

+,
H2, H3

+, and HeH+ between 0 and 1600 kelvin (3200 K
for H2). Again, we demonstrate good agreement with the
literature, if one exists. The explicit treatment of thermal
averaging gives rise to interesting relationships between
the anisotropic and the average quantities, e.g., anisotropy
αzz �= αxx induces large rotational component to γZZZZ , which
then decays rapidly by the temperature.

Clearly, PIMC is a special method that allows exact
simulation of polarizabilities in novel regimes. The accuracy
of results is controllable by computational effort, whose
limitations are evident but not really imminent in the scope
of our work. Partly for this reason but mainly for the
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simplicity, the higher multipole properties and the effects
of finite density and pressure were left out of this work.
Same goes for solids and more complicated molecules,
such as H2O or CO2, even though the power of PIMC
resides in the accurate many-body correlations. This work
is best reviewed as a necessary first step on the path of
understanding the quantum statistical dielectric properties with
PIMC.
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Erratum: General polarizability and hyperpolarizability estimators for the path-integral Monte
Carlo method applied to small atoms, ions, and molecules at finite temperatures

[Phys. Rev. A 94, 032515 (2016)]

Juha Tiihonen, Ilkka Kylänpää, and Tapio T. Rantala
(Received 7 July 2017; published 19 July 2017)

DOI: 10.1103/PhysRevA.96.019902

In our recent work we derived field-free estimators for static polarizabilities and hyperpolarizabilities for the path-integral
Monte Carlo method. Our derivation contained some unconventional practices of notation and sign. For example, we had replaced
FαFβ with Fαβ , etc., whereas the latter is commonly used for a field gradient, i.e., Fαβ = (∇Fα)β . Also, in Eqs. (5)–(9) there
were some sign errors in contrast to Ref. [1]. However, these signs cancel out in either case, leaving the resulting estimators and
the data unaffected. The correct way to write the equations would be the following:

E(1) = E(0) − μαFα − 1
2ααβFαFβ − 1

6βαβγ FαFβFγ − 1
24γαβγ δFαFβFγ Fδ − · · · , (5)

μα = − lim
F→0

∂

∂Fα

E(1), (6)

ααβ = − lim
F→0

∂

∂Fα

∂

∂Fβ

E(1) = lim
F→0

∂

∂Fβ

μα, (7)

βαβγ = − lim
F→0

∂

∂Fα

∂

∂Fβ

∂

∂Fγ

E(1) = lim
F→0

∂

∂Fγ

ααβ, (8)

γαβγ δ = − lim
F→0

∂

∂Fα

∂

∂Fβ

∂

∂Fγ

∂

∂Fδ

E(1) = lim
F→0

∂

∂Fδ

βαβγ . (9)

Furthermore, we want to publish one more nonvanishing property that was left out in the original article. Namely, βyyy = 1.12(14)
for H+

3 in the adiabatic (fixed-nuclei) simulation.

[1] A. D. Buckingham, in Advances in Chemical Physics: Intermolecular Forces, edited by J. O. Hirschfelder, Advances in Chemical Physics
Vol. 12 (Wiley, Hoboken, NJ, 2007), pp. 107–142.
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Static field-gradient polarizabilities of small atoms
and molecules at finite temperature

Juha Tiihonen,a) Ilkka Kylänpää,b) and Tapio T. Rantala
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In this work, we propose new field-free estimators of static field-gradient polarizabilities for finite
temperature path-integral Monte Carlo method. Namely, dipole–quadrupole polarizability A, dipole–
dipole–quadrupole polarizability B, and quadrupole–quadrupole polarizability C are computed for
several up to two-electron systems: H, H�, He, Li+, Be2+, Ps2, PsH, H+

2, H2, H+
3, and HeH+. We

provide complementary data for ground state electronic properties within the adiabatic approximation
and demonstrate good agreement with available values in the literature. More importantly, we present
fully non-adiabatic results from 50 K to 1600 K, which allow us to analyze and discuss strong thermal
coupling and rovibrational effects in total field-gradient polarizabilities. These phenomena are most
relevant but clearly overlooked, e.g., in the construction of modern polarizable force field models.
However, our main purpose is demonstrating the accuracy and simplicity of our approach in a problem
that is generally challenging. Published by AIP Publishing. https://doi.org/10.1063/1.4999840

I. INTRODUCTION

Computation of the electric field response at quan-
tum mechanical level—polarizability—is a fundamental prob-
lem in electronic structure theory. Approaching it from the
first-principles is challenging but well motivated: polariz-
abilities have implications in many physical properties and
modeling aspects, such as optical response and atomic and
molecular interactions. Method development and understand-
ing of polarizability has been vast over the past several
decades, but the main focus has always been on the bare
ground state properties.1–3 While the finite temperature regime
is formally well established,4 explicit results beyond the
Born–Oppenheimer approximation are scarce. By introducing
efficient polarizability estimators for the finite temperature
path-integral Monte Carlo (PIMC) method, we are aiming to
change that.

In our recent article,5 we proposed a scheme for esti-
mating static dipole polarizabilities in a field-free PIMC sim-
ulation. This was an improvement to our earlier finite-field
approach.6 The resulting properties, including substantial rovi-
brational effects, were those corresponding to an isolated
molecule in low density gas. However, the dipole-induced
polarizabilities only describe the effects of a uniform electric
field.

In this work, we complement our tools by introducing sim-
ilar estimators for the field-gradient polarizabilities. According
to the definitions of Buckingham,1 the foremost proper-
ties are dipole–quadrupole polarizability A, dipole–dipole–
quadrupole polarizability B, and quadrupole–quadrupole

a)tiihonen@iki.fi
b)Present address: Materials Science and Technology Division, Oak Ridge

National Laboratory, Oak Ridge, Tennessee 37831, USA.

polarizability C. As the names suggest, they have a direct
consequence in treating the long-range interactions between
atoms or molecules. There is emerging interest in polar-
izable force field models7,8 and van der Waals coefficient
formulae9 employing polarizabilities of all orders. How-
ever, the employed properties are often only electronic aver-
ages or fully empirical fits, while rovibrational coupling is
completely overlooked. Here, we show that finite tempera-
ture has an immense effect on total molecular field-gradient
polarizabilities.

At first, we present the analytic forms of the field-free
PIMC estimators. After this, we demonstrate their capabil-
ity in a series of simulations for different small atoms, ions,
and molecules. The results are compared against values avail-
able in the literature. However, to the best of our knowl-
edge, many of them are presented here for the first time.
This is most pronounced in the non-adiabatic simulations,
which include all rovibrational and electronic effects at finite
temperature.

II. THEORY

Let us consider a system of N distinguishable particles
in coordinate-space R and at inverse temperature β = �/kBT.
Later, � = 1. The thermal density matrix ρ(R, R′; β) is given
by the density operator

ρ(R, R′; β) = 〈R| ρ̂(β)|R′〉, (1)

where ρ̂ is also identified as a retarded propagator in
imaginary-time,

ρ̂(β) = e−βĤ = e−i(t−t0)Ĥ = Ĝ (t − t0) , (2)

where i(t � t0) = β = 1/kBT.

0021-9606/2017/147(20)/204101/7/$30.00 147, 204101-1 Published by AIP Publishing.
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A. Perturbation of properties

The expectation value 〈O〉 of a property Ô is given by a
weighted trace of the density matrix

〈O〉 = Z−1
∫

dR
〈
R ���Ô ρ̂(β)���R〉

= Z−1
∫

dRdR′
〈
R ���Ô���R′〉 〈R′ | ρ̂(β)| R〉 , (3)

where

Z =
∫

dR〈R| ρ̂(β)|R〉 (4)

is the partition function. If Ô is diagonal, then
∫

dR′
〈
R ���Ô���R′〉 =

∫
dR′〈R|R′〉O(R′) = O(R) (5)

and Eq. (3) simplifies to

〈O〉 = Z−1
∫

dRO(R)ρ(R, R; β). (6)

Now, consider a perturbation λ1. The response of Ô with
respect to this perturbation is given to the first order by a
differential of Eq. (3),

∂

∂λ1
〈O〉 = ∂

∂λ1
Z−1

∫
dR
〈
R ���Ô ρ̂(β)���R〉

= Z−1
∫

dR

〈
R
�����Ô
∂

∂λ1
ρ̂(β)

�����R
〉

− Z−2
∫

dR
〈
R ���Ô ρ̂(β)���R〉

∫
dR

〈
R
�����
∂

∂λ1
ρ̂(β)

�����R
〉

=

〈
O
∂ρ

∂λ1

〉
− 〈O〉

〈
∂ρ

∂λ1

〉
, (7)

where we have used the Hellman–Feynman theorem and
assumed no dependence between λ and Ô or |R〉. The higher
order responses, i.e., differentials of the form ∂

∂λ1

∂
∂λ2
. . . can

be easily derived similar to Eq. (7). In particular, the second
order is given by

∂

∂λ1

∂

∂λ2
〈O〉 = ∂

∂λ1

[〈
O
∂ρ

∂λ2

〉
− 〈O〉

〈
∂ρ

∂λ2

〉]

=

〈
O
∂ρ

∂λ2

∂ρ

∂λ1

〉
−
〈
∂ρ

∂λ1

〉 〈
∂ρ

∂λ2
O

〉

−
〈
O
∂ρ

∂λ1

〉 〈
∂ρ

∂λ2

〉
− 〈O〉

〈
∂ρ

∂λ2

∂ρ

∂λ1

〉

+ 2 〈O〉
〈
∂ρ

∂λ2

〉 〈
∂ρ

∂λ1

〉
, (8)

and so on. Clearly, the calculation of the response boils down to
the differential of the density operator. Using the exact density
matrix from Eqs. (1) and (2), the derivative is given by

∂

∂λ1
ρ̂(β) = β ρ̂(β)

(
− ∂Ĥ
∂λ1

)
. (9)

However, in practical calculations, the exact density
matrix is rarely available. Therefore, it becomes necessary to
approximate ρ̂(β) by dividing it to small intervals. That is, we

consider ρ̂(τ), where τ = β/M and M is an arbitrary large inte-
ger. Based on the properties of Green’s functions,11 we may
then rewrite the propagator from R to R′ as

〈R| ρ̂(β)|R′〉 =
M−1∏
i=0

〈Ri | ρ̂(τ)|Ri+1〉, (10)

where R0 = R and RM = R′ and whose full phase-space path-
integral is written as ∫ dR1. . . dRM . The differential of Eq. (10)
is now given by

∂

∂λ1

M−1∏
i=0

〈Ri | ρ̂(τ)|Ri+1〉 =
M∑

j=1

M−1∏
i=0,i�j

〈
Rj

�����
∂

∂λ1
ρ̂(τ)

�����Rj+1

〉

× 〈Ri | ρ̂(τ)|Ri+1〉

=

M∑
j=1

M−1∏
i=0,i�j

〈
Rj

�����τ ρ̂(τ)
(
− ∂Ĥ
∂λ1

) �����Rj+1

〉

× 〈Ri | ρ̂(τ)|Ri+1〉

=
β

M

M∑
j=1

M−1∏
i=0,i�j

〈
Rj

��� ρ̂(τ)D̂1
���Rj+1

〉

× 〈Ri | ρ̂(τ)|Ri+1〉, (11)

where D̂1 = − ∂Ĥ
∂λ1

. If D̂1 is a diagonal operator, we may use
Eq. (5) such that under the path-integration, each time-slice
yields ∫ dRj+1〈Rj |D̂|Rj+1〉 = O(Rj). This allows us to express
the expectation value of the derivative as
〈
∂ ρ̂(β)
∂λ1

〉
=
β

M

M−1∑
j=0

∫
dR1 . . . dRM

M∏
i=1

ρ(Ri−1, Ri; τ)D1(Rj)

= β
〈
D̄1(β)

〉
, (12)

where D̄1(β) means the average over a sample path with the
total length of Mτ = β. It is important to appreciate this prop-
erty: for a discrete sample path, the correct result can only be
obtained by taking the average over all time-slices rather than
measuring just one. In fact, the latter is only possible, when D̂1

commutes with ρ̂ (that is, Ĥ), but even then using the average is
more efficient in a practical implementation. Finally, we note
that the result of Eq. (12) can be generalized to the product of
multiple derivatives (and, optionally, a diagonal observable Ô)
such that〈
∂ ρ̂(β)
∂λ1

· · · ∂ ρ̂(β)
∂λL

Ô

〉
= βL

〈
D̄1(β) . . . D̄L(β)Ō(β)

〉
, (13)

as long as Ô and all of the D̂ commute with each other. For
convenience and efficiency, the path-average property has been
applied to Ô also. This can be done when the density matrix
is symmetric in the phase-space and imaginary-time.11

B. Field-gradient polarizabilities

Now, let us consider higher order responses to the electric
field, that is, polarizabilities. Let H (0) be the unperturbed many-
body Hamiltonian with full interactions. A perturbation caused
by a uniform external electric field Fα and the field-gradient
Fαβ = (∇Fα)β gives the total Hamiltonian as

Ĥ (1) = Ĥ (0) − μ̂αFα − 1
3 Θ̂αβFαβ − · · · , (14)
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where μ̂α and Θ̂αβ are the dipole and (traceless) quadrupole
moment operators, respectively. Indices α, β, γ, δ, . . . refer
to the Einstein summation of the combinations of x, y, and z.
According to the Buckingham convention,1 the change in total
energy is written as a perturbation expansion of coefficients

E(1) = E(0) − μαFα − 1
2
ααβFαFβ − 1

6
βαβγFαFβFγ

− 1
24
γαβγδFαFβFγFδ − 1

3
ΘαβFαβ

− 1
3

Aγ,αβFγFαβ − 1
6

Bαβ,γδFαFβFγδ

− 1
6

Cαβ,γδFαβFγδ − · · · . (15)

Here, μα and Θαβ are the permanent dipole and quadrupole
moments, respectively. Coefficients α, β, and γ are static
dipole polarizabilities of different orders. They have been
treated earlier.5 In this work, we focus on the field-gradient
polarizabilities A, B, and C, which are called dipole–
quadrupole, dipole–dipole–quadrupole, and quadrupole–
quadrupole polarizabilities, respectively.

We can solve for the individual properties by differentiat-
ing Eq. (15) with respect to the perturbation in the zero-field
limit. In particular, we get

Aα,βγ = −3 lim
F→0

∂

∂Fβγ

∂

∂Fα
E(1) = 3 lim

F→0

∂

∂Fβγ
μα, (16)

Bαβ,γδ = −3 lim
F→0

∂

∂Fγδ

∂

∂Fα

∂

∂Fβ
E(1) = 3 lim

F→0

∂

∂Fγδ

∂

∂Fβ
μα,

(17)

Cαβ,γδ = −3 lim
F→0

∂

∂Fγδ

∂

∂Fαβ
E(1) = lim

F→0

∂

∂Fγδ
Θαβ , (18)

where we have used ∂
∂Fα

E(1) = −μα and ∂
∂Fαβ

E(1) = − 1
3Θαβ .

Equations (16)–(18) already give away how the field-free
estimators can be derived in the density-matrix picture. Using
Eq. (14) as the Hamiltonian, the perturbations λ1 = Fαβ and
λ2 = Fβ yield

− ∂Ĥ
∂Fαβ

=
1
3
Θ̂αβ + O(F),

− ∂Ĥ
∂Fα

= μ̂α + O(F),

where O(F) refers to higher-order terms that vanish as F→ 0.
Based on Eqs. (7), (9), and (13), A is now given by

Aα,βγ = 3 lim
F→0

∂

∂Fβγ
〈μα〉

= 3

[〈
μα
∂ρ

∂Fβγ

〉
− 〈μα〉

〈
∂ρ

∂Fβγ

〉]

= β
[
〈μ̄αΘ̄βγ〉 − 〈μ̄α〉〈Θ̄βγ〉

]
. (19)

Similarly, we get

Cαβ,γδ = lim
F→0

∂

∂Fγδ
〈Θαβ〉

=
β

3

[
〈Θ̄αβΘ̄γδ〉 − 〈Θ̄αβ〉〈Θ̄γδ〉

]
. (20)

Finally, using Eq. (8), we can write B as

Bαβ,γδ = 3 lim
F→0

∂

∂Fγδ

∂

∂Fβ
〈μα〉

= β2
[
〈Θ̄γδ μ̄α μ̄β〉 − 〈Θ̄γδ〉〈μ̄α μ̄β〉 + 2〈Θ̄γδ〉〈μ̄α〉〈μ̄β〉

− 〈Θ̄γδ μ̄α〉〈μ̄β〉 − 〈Θ̄γδ μ̄β〉〈μ̄α〉
]

. (21)

We stress that bar denotes the average over a sample path.
Besides that, the implementation of Eqs. (19)–(21) is very
straightforward because β is a chosen parameter and μ̂α and
Θ̂αβ are diagonal observables.

III. METHOD

Our method of choice is the path-integral Monte Carlo
(PIMC), where the density matrix ρ of N distinguishable par-
ticles is obtained by stochastic sampling. In general, we cannot
express ρ(R, R; β) analytically. Instead, we need to use a dis-
crete path as defined in Eq. (10), which allows us to decompose
the full many-body Hamiltonian accurately at a reasonably
small time step τ = β/M. The method is very accurate, when
the finite time step is chosen small enough to eliminate many-
body errors. However, this also implies either large path-size M
or high temperature, and thus, probing of the low temperature
regime is computationally more demanding. In fact, proper
integration over the M dimensions of dRi is a formidable task
at any discretization. Thus, it is necessary to use Metropolis
sampling and other advanced algorithms for efficient Monte
Carlo integration. This involves nothing out of the ordinary
from an implementation of PIMC, and thus, we shall direct a
curious reader to more dedicated resources, e.g., Refs. 10 and
11.

The convenience of the Metropolis algorithm also
emerges in the sampling of any spatial degrees of free-
dom, including the rovibrational motion of the nuclei. In
particular, we can easily differentiate between adiabatic and
non-adiabatic simulations. We will refer to these as Born–
Oppenheimer (BO) and all-quantum (AQ), respectively. In BO
simulation, the nuclei are fixed in space, whereas in AQ sim-
ulation they are free to move confined only by the implicit
interaction of the electronic bonding. The resulting nuclear
motion yields the correct rovibrational sampling, including
the zero-point motion.12 Likewise, the simulation of positrons
is only a matter of choosing the charge and mass because
full explicit correlation is already included in the density
matrix.

However, the situation is more complicated for identical
particles, especially Fermions. In simulations involving the
exchange interaction, a numerical sign problem arises from
the antisymmetry. Various schemes have been developed to
approach the Fermion sign problem (e.g., Ref. 13), but they
will likely have implications on the polarizability estimators
proposed in this work. Therefore, we will leave that as a sub-
ject for another study and only concentrate on the simulation
of up to two Fermions (effectively, electrons or positrons),
whose spin states we can safely sample using the Boltzmann
statistics.
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IV. RESULTS

We demonstrate the finite temperature computation of
the field-gradient polarizabilities with our path-integral Monte
Carlo code and the estimators based on Eqs. (19)–(21). The
simulations are exact apart from a small time step error from
the many-body correlations. At longer time steps τ, extrap-
olating τ→ 0 helps us to improve the result and provide
upper bound estimates for properties that are converging from
below and vice versa. However, in the adiabatic simulation
with the Boltzmann statistics, the error is most effectively
eliminated by simply using a reasonably small τ. In the fol-
lowing adiabatic (BO) simulations, we shall use τ = 0.025
for H and Ps systems, τ = 0.006 25 for He and Li systems,
and τ = 0.003 125 for Be2+. The non-adiabatic (AQ) results
have been extrapolated linearly to τ→ 0, using τ = 0.025,
0.0125 for HeH+ and τ = 0.05, 0.025 otherwise. The statis-
tical error estimate is given by standard error of the mean
(SEM) with 2σ, i.e., 2SEM. All results are given in atomic
units.

In the following, we present polarizability data and dis-
cussion for a variety of isolated one or two-electron systems:
H, H�, Li+, Be2+, H+

2, H2, PsH, Ps2, H+
3, and HeH+. We run two

kinds of simulations: adiabatic and non-adiabatic. In the adi-
abatic or Born–Oppenheimer approximation (BO), the nuclei
are fixed in space, reducing symmetry and producing vari-
ous directional components to polarizabilities. The adiabatic
approximation inhibits the rovibrational motion, and thus, at
reasonably low temperatures, the difference to absolute zero
is negligible. Therefore, we start by establishing the validity
of our method by comparing our BO results to the available
0 K reference data.

An excellent summary of independent tensorial polariz-
abilities for each point group is given in Ref. 1. In Table I, we
present BO results for all of the spherically symmetric sys-
tems: Bzz ,zz, Czz ,zz and the total energy E. Furthermore, the

TABLE I. Total energies E, dipole–dipole–quadrupole polarizabilities B, and
quadrupole–quadrupole polarizabilities C of spherically symmetric systems,
matched with suitable literature references. All results in atomic units.

E Bzz ,zz Czz ,zz

H �0.49995(3)a
�106.5(3)a 5.003(4)a

�0.5 �106.5b 5.0b

H�

�0.52766(10)a
�4.78(87) × 105a 2568(136)a

�0.527 75c
�4.843 × 105d 2591.6d

He �2.9037(2)a
�7.32(9)a 0.814(2)a

�2.90372c
�7.326 7e 0.815 0e

Li+ �7.2800(7)a
�0.121(3)a 0.037 97(9)a

�7.279913f
�0.121 4e 0.037 96e

Be2+
�13.6547(12)a

�0.008 3(3)a 0.005 106(15)a

�13.655566f
�0.008 393e 0.005 106 7e

PsH �0.7893(3)a 5300(260)a 260(3)a

�0.789 13g

Ps2 �0.515 97(7)a 0(440)h 460(7)a

�0.516 003 8i

aThis work.
bBishop and Pipin.14

cNakashima and Nakatsuji.15

dPipin and Bishop.27

eBishop and Rérat.16

fJohnson and Cheng.17

gFrolov and Smith.28

hThis work; estimating anything other than 0 is unfeasible because of the large
fluctuations.
iBubin et al.29

results for the molecular systems, i.e., H+
2, H2 H+

3, and HeH+,
are given in Table II. Each molecular system has one indepen-
dent quadrupole moment Θzz and four independent dipole–
dipole–quadrupole polarizabilities: Bzz ,zz, Bxx ,xx, Bzz ,xx, and
Bxz ,xz. Similarly, there are three independent components

TABLE II. Total energies E, independent quadrupole moments Θ, dipole–dipole–quadrupole polarizabilities B, and quadrupole–quadrupole polarizabilities C
of molecular systems at fixed orientation, matched with suitable literature references. All results in atomic units.

E Θzz Bzz ,zz Bxx ,xx Bxx ,zz Bxz ,xz Czz ,zz Cxx ,xx Cxz ,xz

H+
2 �0.602 7(2)a 1.530 71(8)a

�41.9(9)a
�13.24(14)a 7.3(3)a

�18.10(4)a 1.913(12)a 1.268(5)a 1.1946(7)a

�0.602 634b 1.530 7c
�41.869d

�13.249d 7.3052d
�18.099d 1.9113d 1.2670d 1.1945d

H2 �1.174 6(4)a 0.456 3(2)a
�90.7(10)a

�66.8(8)a 34.5(10)a
�58.7(3)a 5.99(2)a 4.930(13)a 4.176(6)a

�1.174 474e 0.456 84f
�90.29g

�66.83g 34.37g
�59.00g 5.983g 4.927g 4.180g

H+
3 �1.344 0(4)a

�0.919 53(10)a
�11.7(3)a

�19.0(2)a 9.1(4)a
�11.07(4)a 1.557(10)a 2.078(6)a 1.2441(10)a

�1.343 835 6h

�1.335 18i
�0.926 13i

HeH+
�2.978(2)a 1.249 56(13)a

�5(8)a
�2.07(12)a 1.0(3)a

�2.25(9)a 0.59(2)a 0.396(6)a 0.3382(5)a

�2.978 706j

aThis work.
bTurbiner and Olivares-Pilon.18

cBates and Poots.19

dBishop and Cheung.20

eKolos and Wolniewicz.21

fPoll and Wolniewicz.22

gBishop et al.23

hTurbiner and Lopez Vieyra.25

iCarney and Porter.24 (R = 1.6504).
jPachucki.26
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of quadrupole–quadrupole polarizabilities: Czz ,zz, Cxx ,xx, and
Cxz ,xz. Distinct symmetries also lead to a few non-zero dipole–
quadrupole polarizabilities A: for H+

3, Ay ,yy =�0.653(7) and for
HeH+ Az ,zz = �0.48(4) and Ax ,zx = �0.0660(9). The principal
axis z is by default the line connecting the two nuclei, but
for triangular H+

3, it is perpendicular to the plane of protons.
In BO simulation, the molecules are placed at the equilib-
rium geometries, namely, RH+

2
= 2.0, RH2 = 1.4, RH+

3
= 1.65,

and RHeH+ = 1.46. The dipole and quadrupole moments are
calculated with respect to the center-of-mass. By default, the
temperature is set to T = 2000 K, which still corresponds to
the electronic ground state for most systems. However, to be
certain, we use T = 1000 K for H2, T = 500 K for PsH, and
T = 100 K for H� and Ps2. The data for positronium, Ps, are
missing because the symmetry of masses mē = me makes its
quadrupole moment vanish. The largest discrepancy is in Θzz

of H+
3: based on our calculations and the reference energy, the

cause is more likely in the basis functions of Ref. 24 than in
the effects of temperature, time step, or equilibrium distance.
Otherwise, the agreement is good with most of the available
0 K literature Refs. 14–26. Many properties of the molecular
ions and the positron systems are also reported for the first
time.

To non-adiabatic simulations, we refer as all-quantum
(AQ) since they include all rovibrational and electronic quan-
tum effects. Switching off the adiabatic approximation is
simple: the nuclei are simulated and allowed to move like
electrons, only with bigger mass. For atoms, the difference
is negligible, but in molecules, this arouses considerable
thermal coupling of properties, such as the polarizabilities.
We use mp = 1836.152 672 48me for proton mass and mHe

= 7294.299 536 3me for that of He-nucleus. The AQ sim-
ulations are done in the laboratory coordinates, which is
denoted by capital Z. The results are exact rovibrationally
averaged quantities and therefore spherically symmetric. Con-
sequently, AZ ,ZZ are zero for all systems. The resulting

temperature-dependent data for BZZ ,ZZ and CZZ ,ZZ for H+
2,

H2, H+
3, and HeH+ are presented in Fig. 1 in order to show

that any time step effects are negligible. The actual numeri-
cal and extrapolated data can be found in the supplementary
material.

Any non-zero electric moments of a quantum system cou-
ple to its rotational states, and then this coupling is manifested
in the rotational parts of higher order polarizabilities. At high
temperatures, this rotational coupling is proportional to the
inverse temperature, which has already been proposed4,34 and
demonstrated.5 Now, for homonuclear molecules, H+

2, H2, H+
3,

the first non-zero electric moment is the quadrupole moment
Θ, and thus, all of these systems show ∼1/T decay on B and C.
For HeH+ with non-zero dipole moment μ, the dipole polariz-
ability α is also affected by the coupling.5 Thus, it makes sense
that B of HeH+, involving both α andΘ, is in fact proportional
to ∼1/T2.

However, the rotational polarizabilities do not diverge at
low temperatures because it takes some energy to activate the
rotational states. To model the temperature dependence of the
total B and C, we propose an ad hoc nonlinear function of the
form

f (T ) =

(
a1 · erf(a2T )

T

)x
+ a3, (22)

where a1, a2, and a3 are coefficients and the error function
erf(y) is used to saturate the values in a robust way as T→ 0.
As argued earlier, a natural choice for the characteristic expo-
nent describing the rotational coupling is x = 1 (x = 2 for B of
HeH+). However, we also present x optimized by the root-
mean-squared error (RMSE) as a crude means of consider-
ing nontrivial thermal effects originating from the electronic
and vibrational polarizabilities. Nonlinear fitting to time step
extrapolated data has been done using fitnlm function in Mat-
lab, which also provides 95% confidence intervals. Inversed
squares of SEM estimates of the PIMC data were used as
weights.

FIG. 1. Rovibrationally averaged dipole–dipole–quadrupole polarizabilities BZZ ,ZZ and quadrupole–quadrupole polarizabilities CZZ ,ZZ for nonadiabatic sim-
ulations of molecular systems plotted at different temperatures. A few data points from Ref. 34 have been marked with (a). Fits to Eq. (22) are presented with
solid line for optimal exponent x and dashed line for integer exponent. Dotted lines are 95% confidence boundaries given by the fitting algorithm.
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TABLE III. Total energies, dipole–dipole–quadrupole polarizabilities, and
quadrupole–quadrupole polarizabilities extrapolated to 0 K. Quadratic fit is
used for E, and Eq. (22) with optimal x for B and C. All results in atomic units.

E BZZ ,ZZ CZZ ,ZZ

H+
2 �0.596(2)a 3000(850)a 580(150)a

�0.597 139b

H2 �1.162 5(11)a 160(35)a 32(6)a

�1.164 025c

H+
3 �1.323(5)a 860(720)a 157(39)a

�1.323 568d

HeH+
�2.967 0(8)a 3.4(1.7) × 106a 406(110)a

�2.966 27e

aThis work (extrapolated to 0 K).
bTang et al.30

cStanke et al.31

dKylänpää and Rantala.32

eCalculated based on Refs. 26 and 33.

Extrapolation of Eq. (22) to T = 0 is given by 2√
π

a1a2 + a3.
The corresponding data for B and C are presented in Table III
together with quadratically extrapolated total energies and
appropriate Refs. 26 and 30–33. The raw data and the fit-
ting coefficients can be found in the supplementary material.
Besides Fig. 1, the fitted curves are presented on a logarithmic
scale in Fig. 2. It is easier to see that the rotational polarizability
is saturated at low T but decays as T�x as the rotational states
get activated. Also, it can be observed that the magnitudes of
the rotational parts of B (except for HeH+) and C are clearly
in the same order as the corresponding lower order moments,
Θzz, from Table II.

The high-temperature limit of the fit is given by a3. It
gives the ballpark of the sum of the vibrational and electronic
polarizabilities, whose thermal coupling is much smaller but
not negligible. This is manifested in the characteristic expo-
nent x: the optimal x in a least-squares fit appears to be slightly
smaller than a natural integer, 1 or 2. While the exponent in
T�x is probably not the most natural way to model this, it
shows evidence on how the vibrational and electronic parts
compensate on the decay of rotational polarizability. Fur-
thermore, to first approximation, the electronic part of AQ
polarizability should equal to the isotropic average (see Ref.
4) of the BO values. One delusive example would be cor-
relating the isotropic average 〈B〉ZZ ,ZZ = �74.65 of H2 to
its high-temperature limit, �82.828. Unfortunately, a quick
survey reveals that the high-temperature limit seldom agrees
with the averaged electronic quantities from 0 K. This under-
lines the difficulty of decomposing the dielectric properties
under strong thermal influence, and we attempt to do it no
further.

As a final remark, we discuss the only explicit reference
for the finite temperature total polarizabilities given by Bishop
and Lam.34 As shown in Fig. 1, their results are a good match
for H+

2 but severely overestimated for H2. We suggest that this
is caused by inaccuracy of the vibrational wave function basis
used by the authors. Due to the electronic correlations, their
ground state is not exact but rather an uncontrollable mixture
involving higher excited vibrational eigenstates. According to

FIG. 2. Time step extrapolated data and nonlinear fits for B and C of H+
2 ,

H2, H+
3 , and HeH+ on a logarithmic scale. The fits to Eq. (22) are done with

x = 1 (dashed) or the optimal x (solid). Dotted lines show the effect of replacing
the error function with unity.

their own tables, such vibrational bias leads to unintended over-
estimation of properties, which can be substantial in case of
polarizabilities. This example discloses the inherent sensitiv-
ity of estimating higher order electric properties in many-body
systems.

V. SUMMARY

As a natural continuation to our previous work, we present
a scheme to estimate static field-gradient polarizabilities in a
field-free PIMC simulation. We apply it on a range of small
atoms, ions, and molecules, namely, H, H�, He, Li+, Be2+,
Ps2, PsH, H+

2, H2, H+
3, and HeH+. The simulations with the

adiabatic approximation and equilibrium geometries are done
in the low temperature limit, and they indeed agree well with
the 0 K literature references. However, we do not try to push
the limits of statistical precision in this study, but rather, we
want to give an ample demonstration of our method.

With the given set of systems, the variation in dielectric
properties is already large. For instance, H� or PsH are very
diffuse compared to the heavier ions, Li+ and Be2+. On the
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other hand, HeH+ has a permanent dipole moment and thus
much more diverse dielectric response than the homonuclear
molecules. We want to emphasize that all these properties were
obtained with the same PIMC procedure varying nothing else
than the fundamental properties of the particles.

One of the most advantageous treats of the PIMC method
is the exact simulation of the canonical ensemble. Molecules
have geometrical anisotropy and thus permanent dipole or
quadrupole moments, which then reflect in the higher order
rotational polarizabilities. Our data indicate that the rotational
parts of BZZ ,ZZ and CZZ ,ZZ are dominant at low temperatures
but decay drastically when the temperature is increased. The
latter effect has been anticipated in the literature,4 but even
our overly simplistic model in Eq. (22) shows that there is
plenty of room for improvement. Indeed, the requirements of
explicit correlations and non-adiabatic thermal averaging ren-
der results of this kind very scarce. By this work, we are hoping
to inspire a change to that.

SUPPLEMENTARY MATERIAL

See supplementary material for the raw data of non-
adiabatic PIMC simulations and the non-linear fitting.
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ABSTRACT: We demonstrate computation of total dynamic
multipole polarizabilities using path-integral Monte Carlo
method (PIMC). The PIMC approach enables accurate
thermal and nonadiabatic mixing of electronic, rotational, and
vibrational degrees of freedom. Therefore, we can study the
thermal effects, or lack thereof, in the full multipole spectra of
the chosen one- and two-electron systems: H, Ps, He, Ps2, H2,
and HD+. We first compute multipole−multipole correlation
functions up to octupole order in imaginary time. The real-
domain spectral function is then obtained by analytical
continuation with the maximum entropy method. In general,
sharpness of the active spectra is limited, but the obtained off-
resonant polarizabilities are in good agreement with the
existing literature. Several weak and strong thermal effects are observed. Furthermore, the polarizabilities of Ps2 and some higher
multipole and higher frequency data have not been published before. In addition, we compute isotropic dispersion coefficients
C6, C8, and C10 between pairs of species using the simplified Casimir−Polder formulas.

1. INTRODUCTION
Computing dynamic response functions from quantum
correlation functions is a popular challenge among quantum
Monte Carlo methods, such as path-integral Monte Carlo
(PIMC),1,2 diffusion Monte Carlo (DMC),3 path-integral
molecular dynamics (PIMD),4,5 and their many derivatives.
Purely imaginary-time methods are known to treat quantum
many-body correlations very accurately.6−9 Furthermore, they
enable controllable simulation of equilibrium properties, nuclear
quantum phenomena, and other nonadiabatic effectstypical
banes of the traditional ab initio methods.10−12 Unfortunately,
the strategy of analytic continuation to real-time domain
remains a formidable challenge.
A quantum correlation function of a causal process is analytic

in the complex plane,13 and thus, it can be transformed between
purely imaginary and real axes by Kubo transform.14

Unfortunately, numerical implementation of such an inversion
is an infamous ill-posed problem: even small noise in the
imaginary-time data maps large fluctuations onto the real-time
response. Different strategies have been developed to get around
this problem: complex time propagators,15,16 Pade approxim-
ants,17 SVD sampling18 andMishchenko’s method.19,20 None of
the approaches is superior, yet one of the most popular
approaches is maximum entropy (MaxEnt),21,22 which opti-
mizes the balance between prior information and a least-squares
fit. It will be used in this work, too.
Fortunately, the same means of solution can be applied to a

wide variety of physical problems. For dedicated reviews, see refs
1, 5, and 23. Quantum correlation functions and analytic
continuation have been employed in the computation of, e.g.,
magnetic susceptibility,24 density of states,18 NMR relaxation

rate,25 absorption spectra and transport properties,26,27 polar-
ons,19 and optical conductivity.28

In this work, we focus on the electric field response: dynamic
multipole polarizability. Polarizability is, arguably, the most
important of all electronic properties. It is an important
parameter in nonlinear optics, spectroscopy, and a wide variety
of other physical experiments.29 Furthermore, it is gaining
popularity in molecular interaction models and polarizable force
fields.30,31 Most importantly, the accurate computation of
polarizability is a theoretical challenge and a powerful bench-
mark for any electronic structure methods.32−38

Our purpose is to demonstrate the computation of dynamic
polarizabilities from PIMC simulations. Similar approaches in
imaginary time have been exercised before for static polar-
izabilities,39−43 but, to the best of our knowledge, this work is the
first one featuring real-time response of the given problem.
Explicit all-electron simulation is not the most typical
application of the PIMC method, because of its computational
cost. However, it provides some obvious benefits over the
traditional ab initio methods, such as inherent accounts of finite
temperature and exact many-body correlations. Besides the
electronic structure, PIMC also enables fully nonadiabatic and
quantum mechanical treatment of the nuclear degrees of
freedom: rotation and vibration. All of these have different
thermal effects on polarizability.42,44,45 Especially, the infrared
(IR)-active species have huge thermal effects on rotational
polarizabilities,46,47 which are also closely associated with IR and
Raman spectroscopy.48,49
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We provide exemplary results, i.e., dynamic polarizabilities
and dispersion coefficients up to octupole order, for several
isolated atoms and molecules: H, He, HD+, H2, Ps, and Ps2. The
chosen species feature accurate reference data for valida-
tion47,50−55 but also some exotic properties that have barely
been studied before. In particular, we are able to reproduce
known electronic polarizabilities at low frequencies and provide
an estimate for the rest of the whole power spectrum, where no
prior reference data exist. All the electronic, nuclear, and
nonadiabatic effects are included in these total polarizabilities.
Especially, we can easily quantify the dielectric properties of an
ultimately nonadiabatic problem, Ps2. Finally, we provide
dispersion coefficients C6, C8, and C10 between pairs of the
considered species.
The work is organized as follows. First, we review the

theoretical background by using linear response theory and
properties of Green’s functions. We associate first-order
dynamic polarizabilities with spectral functions, which are
obtained from electric multipole correlation functions by a
nonlinear inversion. In section 3, we review the practical aspects
of computing the imaginary-time correlation functions with
PIMC and performing the numerical inversion with MaxEnt.
Finally, we present and discuss the results with suitable literature
references.

2. THEORY
We consider a quantum system in an external optical
perturbation, that is, a classical electric field F(t). The total
Hamiltonian can be written as

̂ = ̂ + ̂H t H H t( ) ( )0 ext (1)

where Ĥ0 is a time-independent part

∑̂ = ̂ + ̂
>

H T V r( )
i j

ij0
(2)

where T̂ and V̂ij(r) are operators for kinetic energy and Coulomb
interaction energy, respectively. The time-dependent perturba-
tion is

θ̂ = − − ′ · ̂H t t t tF Q( ) ( ) ( )ext (3)

where the Heaviside step function θ(t−t′) denotes switching on
the perturbation at time t′. The interaction Q̂ with the vector
field F can be decomposed in the multipole expansion as56

∑· ̂ = − !
!

[ ] ̂
=

∞ n
n

F n QF Q
2
(2 )n

n
n n

0

( ) ( )

(4)

where we have the net charge F(0) = q in electrostatic potential
Q̂(0) = ϕ. The electric multipole moments (dipole, quadrupole,
and octupole, etc.)

μ Θ Ω̂ = ̂ ̂ = ̂ ̂ = ̂Q Q Q, , , etc.
(1) (2) (3)

(5)

and field gradients

= = ∇ = ∇∇F F FF F F, , , etc.(1) (2) (3) (6)

are typically defined according to the center of mass. The n-dot
product [n] consists of the summation of corresponding
tensorial components to produce a scalar potential, e.g.,
Q(2)[2]F(2) = ∑i,j∇Θij(∇F)ij. Thus, the perturbation up to the
third order is written as

θ

μ Θ Ω

̂ = − − ′

× ̂· + ̂ ∇ + ̂ ∇∇

H t t t

t t tF F F

( ) ( )

( )
1
3

:( ( ))
1
15

( ( ))

ext

(7)

In the following treatment of spherically symmetric systems,
we will omit the tensorial character and only consider scalar
electric moments and field gradients.

2.1. Linear Response theory. In many-body quantum
mechanics, the linear response of some property P can be
summarized as follows. Q̂ denotes any of the perturbing
operators in eq 5 and F(t) a corresponding field term. In a causal
scenario, the perturbation starts at time t′ and the response is
measured at time t > t′. The linear deviation can be written as

∫
∫

∫

δ

θ

χ

=
ℏ

′ ⟨[ ̂ ′ ̂ ]⟩

=
ℏ

′ − ′ ⟨[ ̂ − ′ ̂ ]⟩ ′

= ′ − ′ ′

−∞

−∞

−∞

∞

P t
i

t H t P t

i
t t t P t t Q F t

t t t F t

( ) d ( ), ( ) (8)

d ( ) ( ), (0) ( ) (9)

d ( ) ( ) (10)

t

ext

t

R

where square brackets denote a commutator and angle brackets
a thermal average, ⟨Â⟩≡Tr[ρ̂Â]/Tr[ρ̂], where ρ̂ = e−βĤ

0
and β =

1/kBT. On the second line we have used the time invariance of
thermal equilibrium, and on the third line we have inserted the
retarded susceptibility

χ θ=
ℏ

⟨[ ̂ ̂ ]⟩ = −t
i

t P t Q G t( ) ( ) ( ), (0) ( )R R
(11)

where GR is the retarded Green’s function of P̂ and Q̂ and the
negative sign follows from the usual convention of electric field
perturbation. Frequency-dependent response is given by the
Fourier transform

δ ω δ χ ω ω= =P P t F( ) ( ) ( ) ( )R (12)

based on the convolution theorem in eq 10. We can without loss
of generality treat eq 12 in terms of a single frequencyω, because
arbitrary signals and responses can be superposed from the
harmonic waves.57

The subject of interest is the constant of proportionality, the
complex susceptibility χR(ω). It is also analytic in the upper
complex plane, and thus, it can be expressed with the Kramers−
Kronig relations as21

∫χ ω ω
π

χ ω
ω ω η

= − ′ [ ′ ]
− ′ +−∞

∞

i
( )

d Im ( )R
R

(13)

where η is a positive infinitesimal. For reasons that will become
apparent, we shall write it in terms of a spectral function A(ω):

∫χ ω ω
π

ω
ω ω η

= − ′ ′
− ′ +−∞

∞ A
i

( )
d
2

( )R

(14)

where we defined58

ω ω ω ω χ ω= [ − [ ] ] = − [ ] = [ ]†A i G G G( ) ( ) ( ) 2Im ( ) 2Im ( )R R R R

(15)

where the advanced Green’s function [GR]† is the Hermitian
conjugate of GR. The spectral function A(ω) has real and
positive-semidefinite values, which are related to transition
probabilities. Outside the spectral region, i.e., when A(ω) ∼ 0,
χR(ω) is effectively real and equal to the dielectric response of
the system, i.e., polarizability. Within a spectral peak, χR(ω)
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becomes complex, and the imaginary part is related to the
absorption/emission probability.
2.2. Imaginary-Time Correlation. Most quantum Monte

Carlo methods operate in imaginary time: −it → τ, because
imaginary-time propagators are well-behaved and the acquis-
ition of correlation functions along an imaginary-time trajectory
is straightforward. The imaginary-time Green’s functions are
defined as

τ τ= ⟨ ̂ ̂ ⟩τP Q( ) (0) ( ) (16)

where τ is a time-ordering operator in the imaginary axis.
Equation 16 is the equivalent of χR(t) with a purely imaginary
argument. At finite temperature, the Green’s function is periodic
over the inverse temperature β. That is, 0 ≤ τ ≤ β and eq 16
satisfy τ τ β= ± +( ) ( ), where the positive (negative) sign is
for bosons (fermions). The Fourier transform is given in discrete
Matsubara frequencies ωn:

∫ω τ τ=
β ω τ−i( ) d e ( )n

i

0
n

(17)

which are (2n + 1)π/β for fermions and 2nπ/β for bosons.
As before, is analytic in the upper complex plane and can be

represented with the spectral function:21,22

∫
∫

τ ω
π

τ ω ω

ω ω
π

ω ω ω

=

=

−∞

∞

−∞

∞

K A

i K i A

( )
d
2

( , ) ( ) (18)

( )
d
2

( , ) ( ) (19)n n

where the respective kernels for time and frequency domains are
K(τ,ω) = e−τβ/(1 ± e−βω) (plus for bosons, minus for fermions)
and K(iωn,ω) = 1/(iωn − ω). That is, imaginary-time Green’s
functions can be analytically continued to the real domain by
inverting eq 18 or 19. For that, the spectral function is a good
agent, because it is (usually) positive-semidefinite and
regularized. However, as both kernels are highly nonlinear,
numerical inversion is challenging, to say the least.
2.3. Multipole Polarizability. Dynamic multipole polar-

izability α is by definition the linear response of an electric
moment P to a perturbation F that couples to Q, i.e., α(ω) =
χR(ω). In particular, one can calculate the Fourier transform of
eq 9 for a harmonic perturbation F(t′) = eiωt′F:

∫
∫
∫

δ ω

θ

=
ℏ
× ′ − ′ ⟨[ ̂ − ′ ̂ ]⟩ ′

=
ℏ

− ′ ′ ⟨[ ̂ − ′ ̂ ]⟩

ω

ω

ω

−∞

∞ −

−∞
∞ − −

P
i

t

t t t P t t Q F

i
t t P t t Q F

( ) d e

d ( ) ( ), (0) e

d( ) e ( ), (0)

i t

t
i t

i t t

0

( )

(20)

where F is an amplitude. The integral can be calculated, when
the correlation function is expanded in the energy eigenstates:

∑ ∑
⟨[ ̂ − ′ ̂ ]⟩

= ′ − ′
β

ω ω
∞ − ∞

− − + −

P t t Q

Z
P Q Q P

( ), (0)

e
( e e )

n

E

m
nm mn

i t t
mn nm

i t t( ) ( )
n

mn mn

(21)

where ωmn = (Em − En)/ℏ and, e.g., Qmn = ⟨m|Q̂|n⟩. Assuming
that F(t′) → 0 as t − t′ → ∞, one can then identify the
susceptibility as

∑ ∑χ ω
ω ω ω ω

α ω α ω
α ω

=
ℏ −

+
+

≡ ⟨ ⟩ + ⟨ ⟩
≡ ⟨ ⟩

β∞ − ∞

− +

Z

P Q Q P
( )

e
(22)

( ) ( ) (23)

( ) (24)

R

n

E

m

nm mn

mn

mn nm

mn

n

where α−(ω) and α+(ω) are the so-called resonant and
antiresonant polarizabilities. In the zero Kelvin limit, i.e., β →
∞, one recovers the usual sum-over-states definition of
polarizability from eq 23.
In this work, we will consider isotropic polarizabilities, such as

those of gaseous atoms and molecules. Consequently, all
polarizabilities with an “odd” degree, such as χμΘ

R , cancel out in
spherical averaging. We will thus consider the following even
first-order properties (but omit χμΩ

R for simplicity)

α χ

α χ

α χ

≡ −

≡ −

≡ −

μμ

ΘΘ

ΩΩ

(dipole dipole) (25)

(quadrupole quadrupole) (26)

(octupole octupole) (27)

R

R

R

1

2

3

where P and Q are in turn replaced by μ, Θ, and Ω. These are
scalar polarizabilities, meaning that the tensorial character is also
lost in isotropic sampling.
Alternatively, one could compute polarizability in the internal

coordinates of a molecule and find anisotropy, which leads to a
tensorial response. While it goes against the measurable realm,
moving to internal coordinates has some virtues: the first-order
anisotropy adds insight into the optical response of the
molecule, and it also reflects strongly to the rotational higher-
order perturbations, the hyperpolarizabilities.41−43,46 Often,
only tensorial electronic polarizabilities have been reported,
which omit the nuclear effects or treat them separately. In that
case, isotropic averaging is required to make such results
comparable with those in the “laboratory coordinates”. For
diatomic molecules, it is given in the first two degrees by46,59

α α α
α α α α

⟨ ⟩ = +
⟨ ⟩ = + +

(2 )/3 (28)

( 8 8 )/15 (29)

xx zz

zz zz zx zx xx xx

1

2 , , ,

where z is the principal axis.
2.4. Dispersion Coefficients. Lastly, we use polarizabilities

in the computation of van der Waals, or more precisely, London
dispersion coefficients. The coefficients are used to model
attractive interactions between atoms and molecules due to
quantum fluctuations of electric moments. After spherical
averaging, the radial pair interaction between species A and B
is quantified as

= − − − −V r
C
r

C
r

C
r

( ) ...AB
AB AB AB
6
6

8
8

10
10 (30)

where C6, C8, and C10 are the dispersion coefficients. Accurate
calculation of the higher-order terms C8 and C10 can be
especially challenging, while their effect can be considerable.60

According to the simplified Casimir−Polder formulas, the
coefficients are defined in terms of dynamic polarizabilities with
imaginary-frequency argument:50
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∫
∫
∫

∫

π
ω α ω α ω

π
ω α ω α ω α ω α ω

π
ω α ω α ω α ω α ω

π
ω α ω α ω
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= +

= +

+

∞

∞

∞

∞

C i i
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1 1
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0
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10
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1 3 3 1

0
2 2

Based on eq 17, the required polarizabilities are obtained from
the imaginary-time correlation functions at discrete Matsubara
frequencies by a regular Fourier transform. The continuous
integral can be evaluated with good accuracy by interpolating the
smooth Matsubara data.

3. METHOD
The workflow of this study can be summarized in five steps:

1. PIMC computation of imaginary-time correlation func-
tion τ( );

2. Fourier transform to imaginary Matsubara frequencies
ωi( )n ;

3. MaxEnt inversion of eq 19 to obtain A(ω);
4. transformation with eq 14 to obtain dynamic polar-

izability α(ω);
5. calculation of dispersion coefficients from α(iωn).

We will provide an overview and some practical details in the
following subsections.
3.1. Path-Integral Monte Carlo. To compute imaginary-

time correlation functions τ( ), we use a private implementa-
tion of the standard path-integral Monte Carlo method
(PIMC).1,2,61 Depending on the nature of the problem, other
methods could be used as well; e.g., see refs 5 and 39. Measuring
the correlation function itself is straightforward; the important
factors are the accuracy and efficiency of the simulation. All-
electron simulation of atomic species is not yet common with
the PIMC method, because of its computational cost. However,
it is needed to properly extract electronic properties, such as
polarizabilities, in combination with the nuclear quantum
effects: rotation, vibration, and, in principle, nonadiabatic
coupling.
In thermal equilibrium defined by β = 1/kT, expectation

values are given by

ρ β⟨ ⟩ = [ ̂ ̂]−O Z OTr ( )1
(34)

where Z = Trρ̂(β) and ρ̂(β) = e−βĤ. The essence of PIMC is
expansion of the density matrix ρ(β) into a discrete imaginary-
time path

∫
∫
∫

ρ β ρ β

ρ τ

ρ τ ρ τ

= ⟨ | ̂ | ⟩

= ⟨ | ̂ Δ | ⟩

= ⟨ | ̂ Δ | ⟩ ⟨ | ̂ Δ | ⟩−

R R R R R

R R R

R dR R R R R

( , ; ) d ( )

d ( )

d ... ( ) ... ( )

M

M M M1 0 1 1

(35)

where R is a position representation of the many-body state,M =
β/Δτ≫ 1 is the Trotter number, and R = RM = R0 closes the ring
polymer. Accuracy of the propagator e−ΔτĤ can be controlled by
adjusting the short time stepΔτ. In this work, we use exact pair-
density matrices that are obtained from the Coulomb potential
by matrix squaring,61,62 and Δτ dictates the validity of the pair
approximation.

In particular, a correlation function between P̂ and Q̂ is given
by

∫

∫∑

τ τ

ρ τ ρ τ

ρ τ ρ τ

⟨ Δ ⟩ = ⟨ ⟩
=
× ⟨ | ̂ Δ | ⟩ ⟨ | ̂ Δ | ⟩

=

× ⟨ | ̂ Δ | ⟩ ⟨ | ̂ Δ | ⟩

τ
−

−

− −

=

−

− +

m P Q
Z R R

R R R R P R Q R

Z M R R

R R R R P R Q R

( ) (0) ( )
d ... d

( ) ... ( ) ( ) ( )

(36)

d ... d

( ) ... ( ) ( ) ( )

(37)

M

M M m

k

M

M

M M k m k

1
1

0 1 1 0

1 1

0

1

1

0 1 1

where 0 ≤ m and m + k ≤ M − 1 are periodic in M and O(Rm)
denotes a measurement at a particular time slice. Equation 37
also utilizes symmetry of the equilibrium so that the average
correlation can be measured with respect to any, or every, time
slice. In practice, careless computation of allM ×M correlations
can be very costly in terms of both performance and data storage.
A lot of efficiency can be recovered by utilizing the symmetry
properties and optimizing loops and memory usage of the
implementation. More details and an optimized pseudocode are
provided in Appendix A.
Another computationally intensive part is sampling the

integral ∫ dR over all possible paths. In PIMC, the many-body
trajectory R is a Markovian walker that is sampled in thermal
equilibrium using the Metropolis algorithm. Sampling efficiency
is a result of many factors, such as the temperature, density,
number of particles, fermion/boson statistics, and the finite time
step Δτ. In this work, we use the bisection method2 in
combination with random rotations. Also, for now we only
simulate systems with distinguishable particles that can be
solved exactly using the so-called boltzmannon statistics. By
choosing to exclude identical fermions, we avoid having to treat
self-canceling permutations that lead to degradation of efficiency
due to the infamous sign problem.63

3.2. Fourier Transforming τ( ). When a satisfactory
estimate of τ⟨ ⟩( ) has been produced, it is time for
postprocessing. The first follow-up step is Fourier transforming

τ( ) to give ωi( )n in terms of discrete Matsubara frequencies
ωn. The alternative would be using eq 18 for the MaxEnt
inversion, but the frequency kernel K(iωn,ω) is considered
better behaving.22 TheMatsubara data are also equated with the
polarizability; i.e., ω α ω=i i( ) ( )n n , which will be used in eqs
31−33).
The Fourier transform can be performed discretely; i.e.,

∫

∑

ω τ τ

τ τ

=

= Δ Δ

β ω τ

ω τ
→∞ =

−
Δ

i

m

( ) d e ( ) (38)

lim e ( ) (39)

n
i

M m

M
i m M

0

0

1
/

n

n

whereΔτ = β/M defines the sampling resolution. Practically,Δτ
needs not to be zero, but a small finite value provides enough
accuracy for a reasonable number of Matsubara frequencies. A
typical process is visualized in Figure 1: fast Fourier transform
(FFT) maps M original MC values of τ⟨ ⟩m( ) into equally
many Matsubara frequencies. Beyond a fraction of the
frequencies, there will be an error, unless Δτ is artificially
decreased by some integer factor, e.g., 8. This consists of
numerical interpolation of the data, which can be done for
example with cubic splines. Alternatively, the spline-interpolated
data can be Fourier transformed analytically,22 but the practical
difference is negligible. Furthermore, due to the linearity of
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Fourier transform, it does not matter, whether we transform the
sample average or average over transforms of samples; i.e.,

ω τ τ⟨ ⟩ = ⟨ ⟩ = ⟨ ⟩i( ) ( ) ( )n (40)

We prefer the right-hand side (rhs) of eq 40, because it provides
a tangible interface to the statistics of ω⟨ ⟩i( )n .
In conclusion, using FFT with the originalΔτ is tempting but

only realiable for the lowest fraction of Matsubara frequencies.
This can be resolved by boosting the sampling resolution of

τ( ) and, thus, reaching even higher frequencies. On the other
hand, FFT is exact at the static limit, i.e., α(iωn=ω=0). There we
have, for instance

∑

∑ ∑

∑ ∑

α τ τ

τ μ μ

τ μ μ

β μ

= Δ ⟨ Δ ⟩

= Δ

= Δ

= ⟨ ̅ ⟩

ω τ

=

−
Δ

=

−
−

=

−

+

−

=

−

=

−

m

M R R

M M R R

(0) e ( )

( ) ( )

( ) ( )

m

M
i m M

m

M

k

M

k k m

m

M

m
k

M

k

1
0

1
/

1

0

1
1

0

1

2

0

1

0

1

2

n

where bar denotes an average over a sample path. The last form
eclipses the static field-derivative estimators that have been
proposed earlier.42,43 The relative number of independent
measurements needed by these static estimators is reduced from
Md+1 to (d + 1)M, where d is the degree of polarizability, here 1.

3.3. Maximum Entropy Method. Solving integral eq 18 or
19 is challenging, when on the left-hand side is noisy or
incomplete. While quantum Monte Carlo results can be, in
principle, improved indefinitely, the statistical noise cannot be
fully eliminated. Thus, evenminor fluctuations in the high values
of τ or ω can reflect strongly in the resulting spectral function
A(ω). Normally, one could discretize τ or ω and solve the
resulting linear system

=G KA (41)

where G and A are discrete input and output vectors,
respectively, and K is a transformation matrix to be inverted.
Unfortunately, here the kernel producing K is highly nonlinear.
We could end up with very diverse results just by using different
grids or MC samples.
Therefore, a robust method is needed for the inversion, and

one of the most popular is maximum entropy (MaxEnt).21,22

MaxEnt uses Bayesian inference to pick the most probable A out
of all possible solutions with a given G. This is equal to
maximizing

| = |
P

P P
P

AG
GA A

G
( )

( ) ( )
( ) (42)

First, P(G) can be considered fixed. Second, the relative
probability of G given A can be quantified by the central limit
theorem as

| ∝ χ−P GA( ) e /22

(43)

where

χ = − ̅ − ̅−G G C G G( ) ( )2 T 1
(44)

where ̅ =G KA is the proposed forward mapping and C is the
covariance matrix. In other words, χ2 is a least-squares fitting
error between the input and the proposed mapping. Lastly, the
prior probability can be defined as

∝P A( ) eaS (45)

where

∫ ω
π

ω ω
ω

= −S A
A
D

d
2

( ) ln
( )
( ) (46)

is called the relative entropy.D(ω) is the so-called default model
that sets an a priori bias for the entropy. It can be used to steer
the fitting by setting it to resemble the expected shape of the
spectral function.
Combining eqs 43 and 45, the inversion boils down to

maximizing

χ| = −P A G aSln ( ) /22 (47)

for a given frequency grid and a. Again, a is an adjustable
parameter that balances the fit between the least-squares error
and the default model: too small a favors overfitting to statistical
noise, while too large a returns the default model and shuns any
new information. There are several strategies for identifying the
optimal a, e.g., classical, historic, and the Bryan’s approach. It is
indeed one of the most important practical choices, along with
specifying the ω-grid and the default model D(ω).
In this work, we use OmegaMaxEnt software (ΩMaxEnt,

version 2018-01) by Bergeron and Tremblay.22 It uses fitted
spectral moments to regulate the output and maximum
curvature of the log(χ2)−log(a) plot to identify the optimal a.

Figure 1. Top, total τ( )1 of He at 2000 K. Noisy fluctuation near ⟨μ⟩2

= 0 is depicted in the inset. Bottom, same data given in discrete
Matsubara frequencies, α1(iωn). Discrete Fourier transform wrongfully
produces periodic data. One way to approach the trueMatsubara data is
to increase the period by adjusting the relative interpolation density
from 1/Δτ to infinity. Since the absolute magnitude of αl(iωn) drops
fast, and only a fraction ofMatsubara frequencies contribute to αl(ω) or
dispersion coefficients, we have chosen Δτ/8 as a safe interpolation
frequency.
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It is thus relatively independent of the choice of D(ω), which
makes for a good black box. For further details on the
implementation and techniques, we refer to ref 22 and the
user documentation.
A few practical notes on the use of ΩMaxEnt are in order.

First, for first-order polarizabilities we choose a bosonic
calculation, which enforces the problem to positive frequencies,
only. For the input, we use a real-valued ω ≥i( 0)n and its re-re
covariance matrix C, which are estimated from a set of Fourier
transformed PIMC results. In practice, the input data must be
truncated to nmax lowest Matsubara frequencies based on a few
rules of thumb: there has to be many enough high frequencies to
converge the estimation of spectral moments; yet, for too large
nmax, the inputs become unreliable due to random noise. A
particular problem is the covariance matrix C, which will be
inverted and needs to be nonsingular. However, by increasing
the number of MC samples, we get a more accurate estimate of
C, and enable more Matsubara frequencies to be used. In this
work, the number is usually between 50 and 800.
A non-uniform grid in main spectral range is manually adjusted

to promote resolution in the active spectral regions: the
electronic peaks and, with some molecules, the low-frequency
rotational spectra. We choose not to modify D(ω) from the
software default, which is a normalized Gaussian function
centered at ω = 0, whose variance depends on the estimated
spectral moments. Finally, the output data are given in the form

ω ωA( )/1
2

, where the negative frequencies obey antisymmetry

A(ω) =−A(−ω). Unfortunately, we cannot reliably estimate the
error of A(ω), but the typical qualitative error is that collections
of sharp peaks are replaced by a single soft form. This is
exemplified in Figure 2, which also demonstrates one of the

integral properties of MaxEnt: while increasingly tedious,
providing better input improves the result by sharpening the
spectrum while roughly maintaining its original weight.
3.4. Integral Transforms. The last two steps only involve

integral transforms of discrete numerical data. For both, the

actual integration is done numerically using the trapezoidal rule
with dense cubic spline interpolation.
The first transform, eq 14, can be rewritten as

∫

∫
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(48)

which is convenient, because the input is given as A(ω ≥ 0). It
also represents the resonant and antiresonant terms of
polarizability. Practically, the integration can be truncated after
the main spectral region, at around ℏω′ ∼ 10 at maximum.
Setting the dissipation term to η = 0.001 appears to produce
convergent results.
The calculation of dispersion coefficients involves products of

polarizabilities for two species (or just one paired with itself).
Thus, the integrand is nonlinear in the MC data, which has a few
consequences: First, random fluctuations in ⟨α(iωn)⟩ may not
exactly cancel out. This cannot be eliminated completely, but
some of the noise can be filtered out by smoothing the data
before integration with the moving average technique. Second,
the error estimate for each integrated term ΔC* is written as

∫ ω α ω α ω

α ω α ω

α ω α ω α ω α ω
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+ Δ
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where l1 and l2 take values of 1, 2, and 3, and the integral is in
practice replaced by a sum over the components of Δω. As
before, ⟨α(iωn)⟩ decays fast in the growing n, and thus, the
integration can be safely truncated at, e.g., n = M.

4. RESULTS
We estimate dynamic polarizability for a collection of systems
with one or two electrons: H, He, Ps, Ps2, HD

+, and H2. The list
is not exhaustive, but diverse enough to demonstrate the most
important physical effects and features of the method. The
results involve three quantities, τ( )l , αl(iωn), and complex
αl(ω) computed for three multipole processes: dipole−dipole (l
= 1), quadrupole−quadrupole (l = 2), and octupole−octupole (l
= 3). Each system is simulated independently with two time
steps Δτ to probe for time-step error and to rule out the
possibility of numerical artifacts. The smaller time step is used
for the main results (solid line), while the bigger provides a
“sanity check” (dotted line): the results are roughly as reliable as
the two independent results are inseparable. The molecular
simulations are repeated at various temperatures between 200
and 1600 K to probe for weak and strong thermal effects. Finally,
we use αl(iωn) to compute dispersion coefficients between pairs
of species at 300 K. For reference, Table 1 contains a
compilation of all static polarizabilities and total energies, and
their statistical error estimates: 2σ standard error of the mean
(2SEM). Agreement with the available references is excellent.
All results are given in atomic units.

4.1. H andHe.To establish computation of purely electronic
spectra, we start with atomic species: isolated H and He. The
systems are simulated in clamped-nuclei approximation at T =
2000 K. At low temperatures, they are effectively in their
electronic ground states. Hence, the spectra and polarizabilities

Figure 2. Improvement of the MaxEnt spectrum of He at 2000 K as a
function of input data quality. The real (solid) and imaginary (dotted)
components of the dynamic polarizability α1(ω) are plotted using a
variable number of data blocks N, an arbitrary measure of computa-
tional effort. Even low-quality data produce a qualitatively meaningful
spectrum. The off-resonant data are good, but near the active spectral
region the MaxEnt data divert from the 0 K reference.50 Providing
better input data improves the sharpness systematically. However, using
this means to achieve narrow peaks with purely physical spectral
broadening leads to ill-conditioned scaling of computation. A better
strategy would be improving the default modelD(ω) (dashed), which is
rather plain in this work.
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are in good agreement with 0 K references.50,64 The time steps
are Δτ = 0.05, 0.1 for H and Δτ = 0.0125, 0.025 for He. The
correlation functions τ( )l and their Fourier transforms αl(iωn)

are presented in Figure 3. Real-domain dynamic polarizabilities
αl(ω) are obtained by analytic continuation and presented in
Figures 4 and 5. The imaginary part Im[αl(ω)] and the spectrum

Table 1. Comparison of Total Energies and Static Polarizabilities (with 2SEM Estimates) from the PIMC Simulations and
Available 0 K Referencesa

T (K) E Δτ α1(0) α2(0) α3(0)

H 2000 −0.49993(2) 0.05 4.5023(9) 15.011(7) 131.4(2)
300 −0.5000(2) 0.02 4.50(3) 15.03(12) 132(3)
0 −0.5 4.5b 15.0b 131.25b

He 2000 −2.9036(4) 0.0125 1.382(3) 2.435(9) 10.49(9)
300 −2.904(2) 0.02 1.38(4) 2.43(6) 10.5(4)
0 −2.90372c 1.383192d 2.445083d 10.620329d

H2 1600 −1.15855(9) 0.05 5.519(5) 26.83(5) 125.7(7)
800 −1.16168(12) 0.05 5.463(6) 34.38(9) 123.0(8)
400 −1.1630(2) 0.05 5.424(10) 47.7(3) 121.4(9)
300 −1.1633(8) 0.02 5.42(6) 53.4(10) 118(3)
200 −1.1637(3) 0.05 5.43(3) 66.1(5) 121(2)
0 −1.164025e 5.395708f 12.455708f

0 5.4139g

HD+ 1600 −0.59047(12) 0.05 11.96(3) 152.5(5) 156.7(6)
800 −0.59493(12) 0.05 19.04(4) 257(2) 214.9(9)
400 −0.59663(12) 0.05 33.73(7) 468(4) 345(2)
300 −0.5968(3) 0.02 43.6(4) 601(14) 426(8)
200 −0.5972(2) 0.05 62.3(3) 848(10) 557(6)
0 −0.597898h 395.306326h 2050.233354h 773.42727h

Ps2 400 −0.51598(8) 0.05 71.57(8) 1390(20) 5.3(4) × 104

300 −0.5158(2) 0.02 71.9(3) 1390(30) 5.2(4) × 104

200 −0.51593(12) 0.05 71.7(2) 1370(20) 5.1(3) × 104

0 −0.516004i
aFor H and He, the results are adiabatic, i.e., from clamped-nuclei simulations; otherwise, the results are fully nonadiabatic including rovibrational
motion. All values are given in atomic units. bBishop and Pipin.50 cPekeris,51 dYan et al.52 (data truncated). ePachucki and Komasa53 (data
truncated). fBishop and Pipin50 (isotropic averaging; separation R = 1.449; mismatch of α2 is due to the missing rotational component). gKolos and
Wolniewicz54 (isotropic averaging; separation R = 1.4). hTang et al.47 (data truncated). iUsukura and Suzuki55 (data truncated).

Figure 3. Correlation functions τ( )l and Fourier transforms αl(iωn) of H, He, and H2. With atoms, the thermal dependence is negligible, and the
results match with 0 K reference values.50 With H2, there is a weak centrifugal effect that separates 200 and 1600 K results from each other and the
reference in the dipole and octupole processes. On the other hand, a permanent quadrupole correlation causes a huge and thermally dependent
orientational effect that is shown in the inset of α2. It overrides the centrifugal effect and is also missing from the reference.
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Al(ω) are related, so the latter is not presented separately. The
real part Re[αl(ω)] provides the optical response.
Overall, agreement with the references is excellent at low

frequencies, but the amount of detail is limited in the active
spectral region (see Table 1 and Figures 3, 4, and 5). The same
holds for all of the simulated electronic spectra. The lower
moments of the MaxEnt spectrum, weight and alignment, are
generally accurate. However, the higher moments providing

sharpness and distinction between bound transitions are lost in
the noise. Spectral weight of the continuum is relatively small for
the dipole process but increases substantially with the higher
multipole transitions. Our polarizabilities are slightly higher than
the reference near the first electronic excitation. This mismatch
results from ”spilling” of the spectrum to inappropriate
frequencies due to the artificial spectral broadening. The true
frequency ranges between the lowest multipole transition and
continuum are 0.375 < ℏω < 0.5 for H and around 0.76 < ℏω <
0.90 for He.

4.2. Ps2. Next, we consider the nonadiabatic regime with
dipositronium, Ps2: an exotic system, whose dielectric proper-
ties, to the best of our knowledge, have not been simulated
before. The positron mass equals that of electron me ̅ = me, and
the simulation is thus fully nonadiabatic. Annihilation is not
considered. Ps2 is likely to dissociate at T > 800 K,65 so we
simulate it at temperaturesT = 200 and 400 Kwith time stepsΔτ
= 0.05 and 0.1. We have compiled the results of correlation
functions and imaginary-frequency polarizability to Figure 6 and
real-frequency dynamic polarizabilities to Figure 7. Total
energies and static polarizabilities are found in Table 1. Pure
positronic systems have much larger dielectric response than
regular atoms, but otherwise they act similarly. As seen in the
figures, all the imaginary-domain correlations have similar
scaling and only different orders of magnitude.
An interesting question is the relationship between Ps2 and Ps,

the latter of which can be solved analytically. First, the bound
dipole spectrum ranges of Ps (0.1875 < ℏω < 0.25) agree with
those of Ps2 (0.18160 < ℏω < 0.2424055) and the results of this
work. The higher multipole spectra are shifted to higher
frequencies. Second, the imaginary-time dipole correlation of
Ps2 at 300 K is approximately twice that of Ps, as shown in Figure
8. For two completely uncorrelated positroniums, this quotient
would be exactly 2. The small difference is related to the binding
energy of Ps2. The quadrupole correlations cannot be compared,

Figure 4.Dynamic polarizabilities α(ω) of H and H2. The spectral peaks of H are lower than those of H2, but their proportions remain approximately
the same in higher multipoles. While the results for H are in good agreement, H2 shows thermal and nuclear effects that are missing from the 0 K
references.50 The quadrupole polarizability α2(ω) of H2 has a large thermal effect due to rotational coupling: the low-frequency (IR) spectrum spreads
out, and the huge orientational polarizability decreases toward higher temperatures. At higher frequencies, the difference to 0 K is explained by
vibrational and centrifugal effects, and a different bond length used in ref 50. Unfortunately, different shapes of the electronic peaks are not entirely due
to electron−nucleus coupling: the spectral broadening due toMaxEnt inversion is worse with the heavier, low-temperature simulations. Consequently,
the results are generally sharper with the longer time step (dotted) than the shorter one (solid).

Figure 5. Real dynamic polarizabilities Re[α(ω)] and spectral
functions A(ω) of He at 2000 K. In higher multipoles, the spectral
moments grow in magnitude and frequency. The results are in good
agreement between big (dotted) and small (solid) time steps and the 0
K reference.50

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00859
J. Chem. Theory Comput. 2018, 14, 5750−5763

5757



because α2 is zero for Ps. The octupole processes converge to a
quotient of approximately 30, but the response at lowMatsubara
frequencies does not show any intuitive behavior. The transient
occurs at ℏωn < 15, which involves the first ∼2500 Matsubara
frequencies at 300 K.
4.3. H2 and HD+. Finally, we study combined electronic,

nonadiabatic, thermal, and nuclear quantum effects featured in
two molecular systems: H2 and HD+. For both systems, the
temperatures are T = 200, 400, 800, and 1600 K and time steps
Δτ = 0.05 and 0.1. The simulation is nonadiabatic with fully
quantized nuclei, using mp = 1836.15267248me and md =

3670.480492233me for the respective masses of proton and
deuteron. The correlation functions and imaginary-frequency
polarizabilities are presented in Figures 3 and 9 depending on
the multipole symmetry. Dynamic polarizabilities are shown in
Figures 4 for H2 and 10 for HD+.
While the molecules are effectively in their electronic ground

states, their nuclear motion depends on the temperature. This
may cause a weak or a strong effect on the total molecular
polarizability. The weak effect is related to centrifugal distortion:
the bond becomes longer, if a molecule is in a high rotational
ensemble (high temperature); hence, the electric moments
usually get slightly larger.42 This is most readily seen by
comparing 200 and 1600 K data of τ( )l in Figures 3 and 9.
The strong effect is caused by nonzero electric moments. The

molecule pursues a favorable orientation with the perturbing
field, which causes a dominant, orientational contribution to the
average polarizability.41 High rotational ensemble interferes
with the orientation, and hence, the rotational effect fades off as
the temperature increases.42,43,46 In higher orders, this effect is
reproduced between nonzero anisotropy of tensorial polar-
izability and an associated hyperpolarizability.42,43,46 Here,
permanent moments are present in α2 of H2 and each αl of
HD+, whose figures also have insets showing the strong decay of
the rotational polarizability as T increases. At the low-
temperature limit, all rotational motion is deactivated and the
static polarizability saturates to a finite value.43 Beyond the static
limit, the rotational effect fades off rapidly in terms of both real

Figure 6. Logarithmic plots of τ( ) and α(iωn) of Ps2 at 200 and 400 K.
Different multipole correlations have similar scaling but different orders
of magnitude. A small thermal effect increment is observed at the higher
temperature. This is most pronounced in the octupole order, which is
depicted in the insets.

Figure 7. Dynamic polarizabilities α(ω) of Ps2 at 200 and 400 K. Here, all the spectra are located roughly at the same frequency interval, but the
spectral weights escalate in higher multipoles. There is a small thermal increment in the higher multipole polarizabilities, as supported by Figure 6. The
differences in spectral sharpness, however, are mostly due to the numerics.

Figure 8. Scaled quotients between αl(iωn) of Ps2 and Ps at 300 K. The
scaling factor is chosen such that the fraction converges to unity as iωn
→∞. For instance, it is understandable that the dipole polarizability of
Ps2 almost equals twice that of Ps.
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and imaginary frequencies. This limits the spectral activity of
rotation to infrared frequencies. At higher frequencies, the
optical properties are dictated by the electronic spectra.
Therefore, our results for H2 beyond infrared agree with
isotropic averages computed with eqs 28 and 29, and the
available electronic reference data.50

4.4. Dispersion Coefficients. Lastly, we demonstrate an

additional use of imaginary-frequency polarizability data:

computing London dispersion coefficients using eqs 31−33.
For this purpose, we simulated H, He, H2, HD

+, Ps, and Ps2, the

same as before but using compatible temperature and time step:

Figure 9. Correlation functions τ( ) and Fourier transforms α(iωn) of HD
+ at variable temperatures. A weak centrifugal effect is seen as τ( )l

saturates to slightly different finite values: the effect is also inverted between the dipole and the higher orders. On the other hand, α(iωn) exhibits a
strong rotational effect, which decays fast in both the temperature and the Matsubara frequencies. Thermal and time-step effects are not as complex as
they first seem: rather, the error of cubic spline interpolation is demonstrated by applying it for the smaller time step (solid) but not the bigger one
(dotted). The actual data points are marked with circles. The large-scale data of α(iωn) are shown in the insets and do not have notable thermal effects
at higher frequencies.

Figure 10. Dynamic polarizabilities α(ω) of HD+ at variable temperatures. HD+ is IR-active in all multipoles, and thus, in each plot, we can see
broadening of the IR spectrum and thermal decay of the orientational effect. The temperature causes considerable shifting and broadening also to the
electronic spectra, only a part of which is explained by the numerical deficiency of MaxEnt. There is a reasonable agreement between the bigger
(dotted) and the smaller (solid) time steps.
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T = 300 K andΔτ = 0.02. Proof-of-concept results between each
pair of species are presented in Table 2.

Most results match the available 0 K references,47,50,52

because as we have shown, the thermal dependency of
polarizabilities is negligible for most of the systems considered
here. Exceptions are the polarizabilities associated with
permanent electric moments: α2 of H2 and all αl of HD

+. As
seen in Figures 3 and 9, they have quickly vanishing and
thermally dependent rotational peaks at low Matsubara
frequencies. This leads to a small yet noticeable difference
between our 300 K results and the 0 K electron-only references:
the peaks effectively increase the values of the dispersion
coefficients; the effect of rotational coupling is attractive.
Otherwise (e.g., Ps systems) the coefficients are being reported
for the first time. Our approach provides a rather direct but
accurate interface for incorporating nuclear quantum effects,
orientational averaging, and thermal trends into weak molecular
interactions.

5. SUMMARY
We have given a detailed demonstration of estimating dynamic
multipole polarizabilities from all-electron PIMC simulations. In
particular, we have computed autocorrelation functions of the
three lowest electric multipoles and analytically continued them

with the MaxEnt method. We have validated our approach by
reproducing well-known reference values for some one- and
two-electron systems: H, He, and H2. However, we have also
provided new complementary data, such as the higher-moment
spectra and polarizabilities of H2, HD

+, and Ps2. Similarly, we
have provided van derWaals dispersion coefficients between the
aforementioned species. The coefficients are spherically
averaged and include a full thermal ensemble of electric
interactions at 300 K.
Indeed, the paradigm of our approach is to provide mixing, as

opposed to separation, of the degrees of freedom. Of course,
explicit decomposition of the electronic, rovibrational, non-
adiabatic, and thermal problems can be very insightful in simple
systems, such as those featured in this work. For instance, the
existing models for rotational spectrum, zero-point vibration,
and absorption cross-section, etc., are very intuitive and precise.
Such quantum phenomena we can merely pinpoint from the
PIMC results, but not quite reverse engineer. The electronic
spectrum itself is a challenge to reproduce at the sharpness and
precision of ab initio methods. However, for the purpose of exact
mixing of all the degrees of freedom, PIMC provides a rather
unique and controllable interface. This will be useful in more
complex environments, where harmonic and adiabatic approx-
imations start to fail.
The shortcomings of our approach are mostly due to the ill-

posed nature of analytic continuation. A method beoynd
MaxEnt is called for but, as of today, not readily available. A
universal remedy is increasing computation: ”to solve an ill-
posed problem, nothing beats good data”, as stated by Jarrell and
Gubernatis.21 After all, what counts as heavy today can well be
the standard of tomorrow. In that sense, all-electron simulation
with PIMC holds the future prospect of a high-accuracy
electronic structure benchmark. A natural follow-up for the
future will be the simulation of systems that are challenged with
the exchange interaction, the fermion sign problem.
In the end, polarizability itself is rather a single example of

dynamic response based on quantum correlation functions; the
proposed scheme works as a template to numerous similar
problems, and vice versa. A lot more will be learned and achieved
by developing better practices for producing and processing
QMC data, and here we have only taken a first step.

■ APPENDIX A: OPTIMIZING AUTOCORRELATION IN
PIMC

Computation of an imaginary-time autocorrelation function can
be the bottleneck of a PIMC simulation, when the number of
time slices is large. It is thus reasonable to briefly discuss
optimization of such a procedure.
We consider measurement of a correlation function from a

sample trajectory R, which hasM time slices separated by a time
stepΔτ. A single measurement means choosing a reference time
slice Rk and correlating it with another time slice Rk+m such that

τΔ = +C m P R Q R( ) ( ) ( )PQ k k m (50)

where k + m goes from 0 to M − 1 and symmetry CPQ(mΔτ) =
CPQ(−mΔτ) is assumed. As pointed out in eq 37, the imaginary
time slices are equivalent: by shifting the reference time slice, i.e.,
k goes from 0 to M−1, we get M independent correlation
functions from a single sample trajectory R. While efficient in
terms of sampling, making M2 measurements is an intensive
computational task.

Table 2. Dispersion Coefficients (with 2SEM Estimates) for
Pairs of Atoms and Molecules at 300 K, Using Δτ = 0.02a

C6 C8 C10

H−H 6.50(4) 124.7(4) 3300(9)
6.4990267b,d 124.39908b,d 3285.8284b,d

H−He 2.82(4) 41.9(3) 873(4)
2.8213439b,d 41.828b,d 871.23b,d

H−H2 8.78(7) 164.8(8)f 4003(12)
8.7843286d 161.31542d

H−HD+ 6.35(12)f 135(5)f 2620(50)f

5.3815691c 99.592513c 2023.6873c

H−Ps 34.8(3) 318(2) 11560(60)
H−Ps2 68.7(4) 4210(50) 3.35(6) × 105

He−He 1.46(2) 14.09(9) 182.7(8)
1.4609778b,d 14.117857b 183.69107b

He−H2 4.01(5) 56.4(4)f 1008(4)
4.0128132d 55.381453d

He−HD+ 2.65(9)f 41(3)f 507(10)f

2.3441447c 31.043629c 416.42889c

He−Ps 13.4(2) 60.9(6) 3040(30)
He−Ps2 26.4(4) 1520(30) 1.17(3)×105

H2−H2 12.04(12) 219.1(1.3) 4870(20)
12.058168d

H2−HD+ 8.4(3) 184(8) 3800(200)
H2−Ps 45.2(4) 401(4) 13270(70)
H2−Ps2 89.2(8) 5470(70) 4.32(8) × 105

HD+−HD+ 11.7(1.2) 530(70) 16000(3000)
HD+−Ps 37(1) 510(40) 7940(120)
HD+−Ps2 74(3) 4800(200) 3.7(2) × 105

Ps−Ps 207.3(1.3) 0e 68400(400)
Ps−Ps2 410(3) 21000(300) 1.59(4) × 105

Ps2−Ps2 811(5) 83200(800) 1.000(12) × 107

aAvailable 0 K data provided for reference. bYan et al.52 cTang et al.47
dBishop and Pipin.50 eThe quadrupole moment of Ps is zero by the
symmetry of masses. fThe mismatch is due to orientational and
thermal effects that are missing from the reference.
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A few optimizations can make the practical calculation
significantly faster. First, rather than measuring P orQ on the fly,
an array of measurements should be stored into memory, e.g., Pk

= P(Rk). If the observable is tensorial, a contiguous memory
layout should be preferred for the imaginary-time dimension.
Second, unnecessary checkups and modification of indices
should be avoided. The following pseudocode achieves this:

where D is another array that only has M/2 indices. Namely,
only half the data needs to be recorded because of the symmetry.
Moreover, if we are computing an autocorrelation function, i.e.,
Q = P, the previous code simplifies to

The previous loops are also easy to parallelize. Third, using a
finite stride is advised between the measurements and
subsequent sample trajectories: e.g., only every 100th sample
is measured. However, a stride in imaginary time should not be
used, because it could resonate with the statistical properties of
the data. Finally, using a compressed binary data format, such as
the hierarchical data format (HDF), and storing the data in
average bins or blocks over a large number of measurements are
strongly recommended.
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(20) Nordström, J.; Schött, J.; Locht, I. L.; Di Marco, I. A GPU code
for analytic continuation through a sampling method. SoftwareX 2016,
5, 178−182.
(21) Jarrell, M.; Gubernatis, J. Bayesian inference and the analytic
continuation of imaginary-time quantum Monte Carlo data. Phys. Rep.
1996, 269, 133−195.
(22) Bergeron, D.; Tremblay, A.-M. S. Algorithms for optimized
maximum entropy and diagnostic tools for analytic continuation. Phys.
Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2016, 94 (3),
023303.
(23) Zwanzig, R. Time-Correlation Functions and Transport
Coefficients in Statistical Mechanics. Annu. Rev. Phys. Chem. 1965,
16, 67−102.
(24) Zhang, F. C.; Lee, T. K. Spectral density and magnetic
susceptibility for the asymmetric degenerate Anderson model. Phys.
Rev. B: Condens. Matter Mater. Phys. 1984, 30, 1556−1558.
(25) Sandvik, A.W. NMR relaxation rates for the spin-1/2Heisenberg
chain. Phys. Rev. B: Condens. Matter Mater. Phys. 1995, 52, R9831−
R9834.
(26) Gallicchio, E.; Berne, B. J. On the calculation of dynamical
properties of solvated electrons by maximum entropy analytic
continuation of path integral Monte Carlo data. J. Chem. Phys. 1996,
105, 7064−7078.
(27) Aarts, G.; Resco, J. M. M. Transport coefficients, spectral
functions and the lattice. J. High Energy Phys. 2002, 2002, 053−053.
(28) Gunnarsson, O.; Haverkort, M. W.; Sangiovanni, G. Analytical
continuation of imaginary axis data for optical conductivity. Phys. Rev.
B: Condens. Matter Mater. Phys. 2010, 82, 165125.
(29)Mitroy, J.; Safronova,M. S.; Clark, C.W. Theory and applications
of atomic and ionic polarizabilities. J. Phys. B: At., Mol. Opt. Phys. 2010,
43, 202001.
(30) Baker, C. M. Polarizable force fields for molecular dynamics
simulations of biomolecules. Wiley Interdiscip. Rev. Comput. Mol. Sci.
2015, 5, 241−254.
(31) Leontyev, I.; Stuchebrukhov, A. Accounting for electronic
polarization in non-polarizable force fields. Phys. Chem. Chem. Phys.
2011, 13, 2613−2626.
(32) Liu, S.; Dykstra, C. E. Multipole polarizabilities and hyper-
polarizabilities of AHn and A2Hn molecules from derivative Hartree-
Fock theory. J. Phys. Chem. 1987, 91, 1749−1754.
(33) Kurtz, H. A.; Stewart, J. J. P.; Dieter, K. M. Calculation of the
nonlinear optical properties of molecules. J. Comput. Chem. 1990, 11,
82−87.
(34) Dzuba, V. A.; Flambaum, V. V.; Kozlov, M. G. Combination of
the many-body perturbation theory with the configuration-interaction
method. Phys. Rev. A: At., Mol., Opt. Phys. 1996, 54, 3948−3959.
(35) Jamorski, C.; Casida, M. E.; Salahub, D. R. Dynamic
polarizabilities and excitation spectra from a molecular implementation
of time-dependent density-functional response theory: N2as a case
study. J. Chem. Phys. 1996, 104, 5134−5147.
(36) Schipper, P. R. T.; Gritsenko, O. V.; van Gisbergen, S. J. A.;
Baerends, E. J. Molecular calculations of excitation energies and
(hyper)polarizabilities with a statistical average of orbital model
exchange-correlation potentials. J. Chem. Phys. 2000, 112, 1344−1352.
(37) Chu, X.; Dalgarno, A. Linear response time-dependent density
functional theory for van der Waals coefficients. J. Chem. Phys. 2004,
121, 4083.
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(43) Tiihonen, J.; Kylan̈paä,̈ I.; Rantala, T. T. Static field-gradient
polarizabilities of small atoms and molecules at finite temperature. J.
Chem. Phys. 2017, 147, 204101.
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