
1 Computation of Dynamic Polarizabilities and van der Waals
2 Coefficients from Path-Integral Monte Carlo
3 Juha Tiihonen,* Ilkka Kylan̈paä,̈† and Tapio T. Rantala
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5 ABSTRACT: We demonstrate computation of total dynamic
6 multipole polarizabilities using path-integral Monte Carlo
7 method (PIMC). The PIMC approach enables accurate
8 thermal and nonadiabatic mixing of electronic, rotational, and
9 vibrational degrees of freedom. Therefore, we can study the
10 thermal effects, or lack thereof, in the full multipole spectra of
11 the chosen one- and two-electron systems: H, Ps, He, Ps2, H2,
12 and HD+. We first compute multipole−multipole correlation
13 functions up to octupole order in imaginary time. The real-
14 domain spectral function is then obtained by analytical
15 continuation with the maximum entropy method. In general,
16 sharpness of the active spectra is limited, but the obtained off-
17 resonant polarizabilities are in good agreement with the
18 existing literature. Several weak and strong thermal effects are observed. Furthermore, the polarizabilities of Ps2 and some higher
19 multipole and higher frequency data have not been published before. In addition, we compute isotropic dispersion coefficients
20 C6, C8, and C10 between pairs of species using the simplified Casimir−Polder formulas.

1. INTRODUCTION
21 Computing dynamic response functions from quantum
22 correlation functions is a popular challenge among quantum
23 Monte Carlo methods, such as path-integral Monte Carlo
24 (PIMC),1,2 diffusion Monte Carlo (DMC),3 path-integral
25 molecular dynamics (PIMD),4,5 and their many derivatives.
26 Purely imaginary-time methods are known to treat quantum
27 many-body correlations very accurately.6−9 Furthermore, they
28 enable controllable simulation of equilibrium properties,
29 nuclear quantum phenomena, and other nonadiabatic
30 effectstypical banes of the traditional ab initio methods.10−12

31 Unfortunately, the strategy of analytic continuation to real-
32 time domain remains a formidable challenge.
33 A quantum correlation function of a causal process is
34 analytic in the complex plane,13 and thus, it can be transformed
35 between purely imaginary and real axes by Kubo transform.14

36 Unfortunately, numerical implementation of such an inversion
37 is an infamous ill-posed problem: even small noise in the
38 imaginary-time data maps large fluctuations onto the real-time
39 response. Different strategies have been developed to get
40 around this problem: complex time propagators,15,16 Pade
41 approximants,17 SVD sampling18 and Mishchenko’s meth-
42 od.19,20 None of the approaches is superior, yet one of the
43 most popular approaches is maximum entropy (MaxEnt),21,22

44 which optimizes the balance between prior information and a
45 least-squares fit. It will be used in this work, too.
46 Fortunately, the same means of solution can be applied to a
47 wide variety of physical problems. For dedicated reviews, see
48 refs 1, 5, and 23. Quantum correlation functions and analytic
49 continuation have been employed in the computation of, e.g.,
50 magnetic susceptibility,24 density of states,18 NMR relaxation

51rate,25 absorption spectra and transport properties,26,27 polar-
52ons,19 and optical conductivity.28

53In this work, we focus on the electric field response: dynamic
54multipole polarizability. Polarizability is, arguably, the most
55important of all electronic properties. It is an important
56parameter in nonlinear optics, spectroscopy, and a wide variety
57of other physical experiments.29 Furthermore, it is gaining
58popularity in molecular interaction models and polarizable
59force fields.30,31 Most importantly, the accurate computation of
60polarizability is a theoretical challenge and a powerful
61benchmark for any electronic structure methods.32−38

62Our purpose is to demonstrate the computation of dynamic
63polarizabilities from PIMC simulations. Similar approaches in
64imaginary time have been exercised before for static polar-
65izabilities,39−43 but, to the best of our knowledge, this work is
66the first one featuring real-time response of the given problem.
67Explicit all-electron simulation is not the most typical
68application of the PIMC method, because of its computational
69cost. However, it provides some obvious benefits over the
70traditional ab initio methods, such as inherent accounts of
71finite temperature and exact many-body correlations. Besides
72the electronic structure, PIMC also enables fully nonadiabatic
73and quantum mechanical treatment of the nuclear degrees of
74freedom: rotation and vibration. All of these have different
75thermal effects on polarizability.42,44,45 Especially, the infrared
76(IR)-active species have huge thermal effects on rotational
77polarizabilities,46,47 which are also closely associated with IR
78and Raman spectroscopy.48,49
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79 We provide exemplary results, i.e., dynamic polarizabilities
80 and dispersion coefficients up to octupole order, for several
81 isolated atoms and molecules: H, He, HD+, H2, Ps, and Ps2.
82 The chosen species feature accurate reference data for
83 validation47,50−55 but also some exotic properties that have
84 barely been studied before. In particular, we are able to
85 reproduce known electronic polarizabilities at low frequencies
86 and provide an estimate for the rest of the whole power
87 spectrum, where no prior reference data exist. All the
88 electronic, nuclear, and nonadiabatic effects are included in
89 these total polarizabilities. Especially, we can easily quantify the
90 dielectric properties of an ultimately nonadiabatic problem,
91 Ps2. Finally, we provide dispersion coefficients C6, C8, and C10
92 between pairs of the considered species.
93 The work is organized as follows. First, we review the
94 theoretical background by using linear response theory and
95 properties of Green’s functions. We associate first-order
96 dynamic polarizabilities with spectral functions, which are
97 obtained from electric multipole correlation functions by a
98 nonlinear inversion. In section 3, we review the practical
99 aspects of computing the imaginary-time correlation functions
100 with PIMC and performing the numerical inversion with
101 MaxEnt. Finally, we present and discuss the results with
102 suitable literature references.

2. THEORY
103 We consider a quantum system in an external optical
104 perturbation, that is, a classical electric field F(t). The total
105 Hamiltonian can be written as

H t H H t( ) ( )0 ext
̂ = ̂ + ̂

106 (1)

107 where Ĥ0 is a time-independent part

H T V r( )
i j

ij0 ∑̂ = ̂ + ̂
>108 (2)

109 where T̂ and V̂ij(r) are operators for kinetic energy and
110 Coulomb interaction energy, respectively. The time-dependent
111 perturbation is

H t t t tF Q( ) ( ) ( )ext θ̂ = − − ′ · ̂
112 (3)

113 where the Heaviside step function θ(t−t′) denotes switching
114 on the perturbation at time t′. The interaction Q̂ with the
115 vector field F can be decomposed in the multipole expansion
116 as56

n
n

F n QF Q
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0
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117 (4)

118 where we have the net charge F(0) = q in electrostatic potential
119 Q̂(0) = ϕ. The electric multipole moments (dipole, quadrupole,
120 and octupole, etc.)

Q Q Q, , , etc.
(1) (2) (3)μ Θ Ω̂ = ̂ ̂ = ̂ ̂ = ̂

121 (5)

122 and field gradients

F F FF F F, , , etc.(1) (2) (3)= = ∇ = ∇∇123 (6)

124 are typically defined according to the center of mass. The n-dot
125 product [n] consists of the summation of corresponding
126 tensorial components to produce a scalar potential, e.g.,
127 Q(2)[2]F(2) = ∑i,j∇Θij(∇F)ij. Thus, the perturbation up to the
128 third order is written as
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129(7)

130In the following treatment of spherically symmetric systems,
131we will omit the tensorial character and only consider scalar
132electric moments and field gradients.
1332.1. Linear Response theory. In many-body quantum
134mechanics, the linear response of some property P can be
135summarized as follows. Q̂ denotes any of the perturbing
136operators in eq 5 and F(t) a corresponding field term. In a
137causal scenario, the perturbation starts at time t′ and the
138response is measured at time t > t′. The linear deviation can be
139written as

P t
i
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140where square brackets denote a commutator and angle
141brackets a thermal average, ⟨Â⟩ ≡ Tr[ρ̂Â]/Tr[ρ̂], where ρ̂ =

142e−βĤ
0
and β = 1/kBT. On the second line we have used the time

143invariance of thermal equilibrium, and on the third line we
144have inserted the retarded susceptibility

t
i

t P t Q G t( ) ( ) ( ), (0) ( )R Rχ θ=
ℏ

⟨[ ̂ ̂ ]⟩ = −
145(11)

146where GR is the retarded Green’s function of P̂ and Q̂ and the
147negative sign follows from the usual convention of electric field
148perturbation. Frequency-dependent response is given by the
149Fourier transform

P P t F( ) ( ) ( ) ( )Rδ ω δ χ ω ω= = 150(12)

151based on the convolution theorem in eq 10. We can without
152loss of generality treat eq 12 in terms of a single frequency ω,
153because arbitrary signals and responses can be superposed
154from the harmonic waves.57

155The subject of interest is the constant of proportionality, the
156complex susceptibility χR(ω). It is also analytic in the upper
157complex plane, and thus, it can be expressed with the
158Kramers−Kronig relations as21

i
( )

d Im ( )R
R

∫χ ω ω
π

χ ω
ω ω η

= − ′ [ ′ ]
− ′ +−∞

∞

159(13)

160where η is a positive infinitesimal. For reasons that will become
161apparent, we shall write it in terms of a spectral function A(ω):

A
i

( )
d
2

( )R ∫χ ω ω
π

ω
ω ω η

= − ′ ′
− ′ +−∞

∞

162(14)

163where we defined58

A i G G G( ) ( ) ( ) 2Im ( ) 2Im ( )R R R Rω ω ω ω χ ω= [ − [ ] ] = − [ ] = [ ]†

164(15)

165where the advanced Green’s function [GR]† is the Hermitian
166conjugate of GR. The spectral function A(ω) has real and
167positive-semidefinite values, which are related to transition
168probabilities. Outside the spectral region, i.e., when A(ω) ∼ 0,
169χR(ω) is effectively real and equal to the dielectric response of
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170 the system, i.e., polarizability. Within a spectral peak, χR(ω)
171 becomes complex, and the imaginary part is related to the
172 absorption/emission probability.
173 2.2. Imaginary-Time Correlation. Most quantum Monte
174 Carlo methods operate in imaginary time: −it → τ, because
175 imaginary-time propagators are well-behaved and the acquis-
176 ition of correlation functions along an imaginary-time
177 trajectory is straightforward. The imaginary-time Green’s
178 functions are defined as

P Q( ) (0) ( )τ τ= ⟨ ̂ ̂ ⟩τ179 (16)

180 where τ is a time-ordering operator in the imaginary axis.
181 Equation 16 is the equivalent of χR(t) with a purely imaginary
182 argument. At finite temperature, the Green’s function is
183 periodic over the inverse temperature β. That is, 0 ≤ τ ≤ β and
184 eq 16 satisfy ( ) ( )τ τ β= ± + , where the positive
185 (negative) sign is for bosons (fermions). The Fourier
186 transform is given in discrete Matsubara frequencies ωn:

i( ) d e ( )n
i

0
n∫ω τ τ=

β
ω τ−

187 (17)

188 which are (2n + 1)π/β for fermions and 2nπ/β for bosons.
189 As before, is analytic in the upper complex plane and can
190 be represented with the spectral function:21,22
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191 where the respective kernels for time and frequency domains
192 are K(τ,ω) = e−τβ/(1 ± e−βω) (plus for bosons, minus for
193 fermions) and K(iωn,ω) = 1/(iωn − ω). That is, imaginary-
194 time Green’s functions can be analytically continued to the real
195 domain by inverting eq 18 or 19. For that, the spectral function
196 is a good agent, because it is (usually) positive-semidefinite
197 and regularized. However, as both kernels are highly nonlinear,
198 numerical inversion is challenging, to say the least.
199 2.3. Multipole Polarizability. Dynamic multipole polar-
200 izability α is by definition the linear response of an electric
201 moment P to a perturbation F that couples to Q, i.e., α(ω) =
202 χR(ω). In particular, one can calculate the Fourier transform of
203 eq 9 for a harmonic perturbation F(t′) = eiωt′F:
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205 where F is an amplitude. The integral can be calculated, when
206 the correlation function is expanded in the energy eigenstates:
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208 where ωmn = (Em − En)/ℏ and, e.g., Qmn = ⟨m|Q̂|n⟩. Assuming
209 that F(t′) → 0 as t − t′ → ∞, one can then identify the
210 susceptibility as
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211where α−(ω) and α+(ω) are the so-called resonant and
212antiresonant polarizabilities. In the zero Kelvin limit, i.e., β →
213∞, one recovers the usual sum-overstates definition of
214polarizability from eq 23.
215In this work, we will consider isotropic polarizabilities, such
216as those of gaseous atoms and molecules. Consequently, all
217polarizabilities with an “odd” degree, such as χμΘ

R , cancel out in
218spherical averaging. We will thus consider the following even
219first-order properties (but omit χμΩ

R for simplicity)

(dipole dipole) (25)

(quadrupole quadrupole) (26)

(octupole octupole) (27)

R

R

R

1

2

3

α χ

α χ

α χ

≡ −

≡ −

≡ −

μμ

ΘΘ

ΩΩ

220where P and Q are in turn replaced by μ, Θ, and Ω. These are
221scalar polarizabilities, meaning that the tensorial character is
222also lost in isotropic sampling.
223Alternatively, one could compute polarizability in the
224internal coordinates of a molecule and find anisotropy, which
225leads to a tensorial response. While it goes against the
226measurable realm, moving to internal coordinates has some
227virtues: the first-order anisotropy adds insight into the optical
228response of the molecule, and it also reflects strongly to the
229rotational higher-order perturbations, the hyperpolarizabil-
230ities.41−43,46 Often, only tensorial electronic polarizabilities
231have been reported, which omit the nuclear effects or treat
232them separately. In that case, isotropic averaging is required to
233make such results comparable with those in the “laboratory
234coordinates”. For diatomic molecules, it is given in the first two
235degrees by46,59

(2 )/3 (28)

( 8 8 )/15 (29)

xx zz

zz zz zx zx xx xx

1

2 , , ,

α α α

α α α α

⟨ ⟩ = +

⟨ ⟩ = + +

236where z is the principal axis.
2372.4. Dispersion Coefficients. Lastly, we use polar-
238izabilities in the computation of van der Waals, or more
239precisely, London dispersion coefficients. The coefficients are
240used to model attractive interactions between atoms and
241molecules due to quantum fluctuations of electric moments.
242After spherical averaging, the radial pair interaction between
243species A and B is quantified as

V r
C

r
C

r
C
r

( ) ...AB
AB AB AB

6
6

8
8

10
10= − − − −

244(30)

245where C6, C8, and C10 are the dispersion coefficients. Accurate
246calculation of the higher-order terms C8 and C10 can be
247especially challenging, while their effect can be considerable.60

248According to the simplified Casimir−Polder formulas, the
249coefficients are defined in terms of dynamic polarizabilities
250with imaginary-frequency argument:50
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251 Based on eq 17, the required polarizabilities are obtained from
252 the imaginary-time correlation functions at discrete Matsubara
253 frequencies by a regular Fourier transform. The continuous
254 integral can be evaluated with good accuracy by interpolating
255 the smooth Matsubara data.

3. METHOD
256 The workflow of this study can be summarized in five steps:

257 1. PIMC computation of imaginary-time correlation
258 function ( )τ ;
259 2. Fourier transform to imaginary Matsubara frequencies

i( )nω ;
260 3. MaxEnt inversion of eq 19 to obtain A(ω);
261 4. transformation with eq 14 to obtain dynamic polar-
262 izability α(ω);
263 5. calculation of dispersion coefficients from α(iωn).

264 We will provide an overview and some practical details in
265 the following subsections.
266 3.1. Path-Integral Monte Carlo. To compute imaginary-
267 time correlation functions ( )τ , we use a private implementa-
268 tion of the standard path-integral Monte Carlo method
269 (PIMC).1,2,61 Depending on the nature of the problem,
270 other methods could be used as well; e.g., see refs 5 and 39.
271 Measuring the correlation function itself is straightforward; the
272 important factors are the accuracy and efficiency of the
273 simulation. All-electron simulation of atomic species is not yet
274 common with the PIMC method, because of its computational
275 cost. However, it is needed to properly extract electronic
276 properties, such as polarizabilities, in combination with the
277 nuclear quantum effects: rotation, vibration, and, in principle,
278 nonadiabatic coupling.
279 In thermal equilibrium defined by β = 1/kT, expectation
280 values are given by

O Z OTr ( )1 ρ β⟨ ⟩ = [ ̂ ̂]−
281 (34)

282 where Z = Trρ̂(β) and ρ̂(β) = e−βĤ. The essence of PIMC is
283 expansion of the density matrix ρ(β) into a discrete imaginary-
284 time path

R R R R R

R R R

R dR R R R R

( , ; ) d ( )
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285 (35)

286 where R is a position representation of the many-body state, M
287 = β/Δτ≫ 1 is the Trotter number, and R = RM = R0 closes the
288 ring polymer. Accuracy of the propagator e−ΔτĤ can be
289 controlled by adjusting the short time step Δτ. In this work, we
290 use exact pair-density matrices that are obtained from the
291 Coulomb potential by matrix squaring,61,62 and Δτ dictates the
292 validity of the pair approximation.

293In particular, a correlation function between P̂ and Q̂ is given
294by
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295where 0 ≤ m and m + k ≤ M − 1 are periodic in M and O(Rm)
296denotes a measurement at a particular time slice. Equation 37
297also utilizes symmetry of the equilibrium so that the average
298correlation can be measured with respect to any, or every, time
299slice. In practice, careless computation of all M × M
300correlations can be very costly in terms of both performance
301and data storage. A lot of efficiency can be recovered by
302utilizing the symmetry properties and optimizing loops and
303memory usage of the implementation. More details and an
304optimized pseudocode are provided in Appendix A.
305Another computationally intensive part is sampling the
306integral ∫ dR over all possible paths. In PIMC, the many-body
307trajectory R is a Markovian walker that is sampled in thermal
308equilibrium using the Metropolis algorithm. Sampling
309efficiency is a result of many factors, such as the temperature,
310density, number of particles, fermion/boson statistics, and the
311finite time step Δτ. In this work, we use the bisection method2

312in combination with random rotations. Also, for now we only
313simulate systems with distinguishable particles that can be
314solved exactly using the so-called boltzmannon statistics. By
315choosing to exclude identical fermions, we avoid having to
316treat self-canceling permutations that lead to degradation of
317efficiency due to the infamous sign problem.63

3183.2. Fourier Transforming ( )τ . When a satisfactory
319estimate of ( )τ⟨ ⟩ has been produced, it is time for
320postprocessing. The first follow-up step is Fourier transforming

( )τ to give i( )nω in terms of discrete Matsubara frequencies
321ωn. The alternative would be using eq 18 for the MaxEnt
322inversion, but the frequency kernel K(iωn,ω) is considered
323better behaving.22 The Matsubara data are also equated with
324the polarizability; i.e., i i( ) ( )n nω α ω= , which will be used in
325eqs 31−33).
326The Fourier transform can be performed discretely; i.e.,

i

m

( ) d e ( ) (38)

lim e ( ) (39)

n
i

M m

M
i m M

0

0

1
/

n

n

∫

∑

ω τ τ

τ τ

=

= Δ Δ

β
ω τ

ω τ

→∞ =

−
Δ

327where Δτ = β/M defines the sampling resolution. Practically,
328Δτ needs not to be zero, but a small finite value provides
329enough accuracy for a reasonable number of Matsubara
330 f1frequencies. A typical process is visualized in Figure 1: fast
331Fourier transform (FFT) maps M original MC values of

m( )τ⟨ ⟩ into equally many Matsubara frequencies. Beyond a
332fraction of the frequencies, there will be an error, unless Δτ is
333artificially decreased by some integer factor, e.g., 8. This
334consists of numerical interpolation of the data, which can be
335done for example with cubic splines. Alternatively, the spline-
336interpolated data can be Fourier transformed analytically,22 but
337the practical difference is negligible. Furthermore, due to the
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338 linearity of Fourier transform, it does not matter, whether we
339 transform the sample average or average over transforms of
340 samples; i.e.,

i( ) ( ) ( )nω τ τ⟨ ⟩ = ⟨ ⟩ = ⟨ ⟩341 (40)

342 We prefer the right-hand side (rhs) of eq 40, because it
343 provides a tangible interface to the statistics of i( )nω⟨ ⟩.
344 In conclusion, using FFT with the original Δτ is tempting
345 but only realiable for the lowest fraction of Matsubara
346 frequencies. This can be resolved by boosting the sampling
347 resolution of ( )τ and, thus, reaching even higher frequencies.
348 On the other hand, FFT is exact at the static limit, i.e.,
349 α(iωn=ω=0). There we have, for instance

m

M R R

M M R R

(0) e ( )

( ) ( )

( ) ( )

m

M
i m M

m

M

k

M

k k m

m

M

m
k

M

k

1
0

1
/

1

0

1
1

0

1

2

0

1

0

1

2

n∑

∑ ∑

∑ ∑

α τ τ

τ μ μ

τ μ μ

β μ

= Δ ⟨ Δ ⟩

= Δ

= Δ

= ⟨ ̅ ⟩

ω τ

=

−
Δ

=

−
−

=

−

+

−

=

−

=

−

350 where bar denotes an average over a sample path. The last
351 form eclipses the static field-derivative estimators that have
352 been proposed earlier.42,43 The relative number of independent
353 measurements needed by these static estimators is reduced

354from Md+1 to (d + 1)M, where d is the degree of polarizability,
355here 1.
3563.3. Maximum Entropy Method. Solving integral eq 18
357or 19 is challenging, when on the left-hand side is noisy or
358incomplete. While quantum Monte Carlo results can be, in
359principle, improved indefinitely, the statistical noise cannot be
360fully eliminated. Thus, even minor fluctuations in the high
361values of τ or ω can reflect strongly in the resulting spectral
362function A(ω). Normally, one could discretize τ or ω and solve
363the resulting linear system

G KA= 364(41)

365where G and A are discrete input and output vectors,
366respectively, and K is a transformation matrix to be inverted.
367Unfortunately, here the kernel producing K is highly nonlinear.
368We could end up with very diverse results just by using
369different grids or MC samples.
370Therefore, a robust method is needed for the inversion, and
371one of the most popular is maximum entropy (MaxEnt).21,22

372MaxEnt uses Bayesian inference to pick the most probable A
373out of all possible solutions with a given G. This is equal to
374maximizing

P
P P

P
A G

G A A
G

( )
( ) ( )

( )
| = |

375(42)

376First, P(G) can be considered fixed. Second, the relative
377probability of G given A can be quantified by the central limit
378theorem as

P G A( ) e /22
| ∝ χ−

379(43)

380where

G G C G G( ) ( )2 T 1χ = − ̅ − ̅−
381(44)

382where G KA̅ = is the proposed forward mapping and C is the
383covariance matrix. In other words, χ2 is a least-squares fitting
384error between the input and the proposed mapping. Lastly, the
385prior probability can be defined as

P A( ) eaS∝ 386(45)
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389is called the relative entropy. D(ω) is the so-called default
390model that sets an a priori bias for the entropy. It can be used
391to steer the fitting by setting it to resemble the expected shape
392of the spectral function.
393Combining eqs 43 and 45, the inversion boils down to
394maximizing

P A G aSln ( ) /22χ| = − 395(47)

396for a given frequency grid and a. Again, a is an adjustable
397parameter that balances the fit between the least-squares error
398and the default model: too small a favors overfitting to
399statistical noise, while too large a returns the default model and
400shuns any new information. There are several strategies for
401identifying the optimal a, e.g., classical, historic, and the
402Bryan’s approach. It is indeed one of the most important
403practical choices, along with specifying the ω-grid and the
404default model D(ω).

Figure 1. Top, total ( )1 τ of He at 2000 K. Noisy fluctuation near
⟨μ⟩2 = 0 is depicted in the inset. Bottom, same data given in discrete
Matsubara frequencies, α1(iωn). Discrete Fourier transform wrong-
fully produces periodic data. One way to approach the true Matsubara
data is to increase the period by adjusting the relative interpolation
density from 1/Δτ to infinity. Since the absolute magnitude of αl(iωn)
drops fast, and only a fraction of Matsubara frequencies contribute to
αl(ω) or dispersion coefficients, we have chosen Δτ/8 as a safe
interpolation frequency.
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405 In this work, we use OmegaMaxEnt software (ΩMaxEnt,
406 version 2018-01) by Bergeron and Tremblay.22 It uses fitted
407 spectral moments to regulate the output and maximum
408 curvature of the log(χ2)−log(a) plot to identify the optimal
409 a. It is thus relatively independent of the choice of D(ω),
410 which makes for a good black box. For further details on the
411 implementation and techniques, we refer to ref 22 and the user
412 documentation.
413 A few practical notes on the use of ΩMaxEnt are in order.
414 First, for first-order polarizabilities we choose a bosonic
415 calculation, which enforces the problem to positive frequencies,
416 only. For the input, we use a real-valued i( 0)nω ≥ and its re-
417 re covariance matrix C, which are estimated from a set of
418 Fourier transformed PIMC results. In practice, the input data
419 must be truncated to nmax lowest Matsubara frequencies based
420 on a few rules of thumb: there has to be many enough high
421 frequencies to converge the estimation of spectral moments;
422 yet, for too large nmax, the inputs become unreliable due to
423 random noise. A particular problem is the covariance matrix C,
424 which will be inverted and needs to be nonsingular. However,
425 by increasing the number of MC samples, we get a more
426 accurate estimate of C, and enable more Matsubara frequencies
427 to be used. In this work, the number is usually between 50 and
428 800.
429 A non-uniform grid in main spectral range is manually adjusted
430 to promote resolution in the active spectral regions: the
431 electronic peaks and, with some molecules, the low-frequency
432 rotational spectra. We choose not to modify D(ω) from the
433 software default, which is a normalized Gaussian function
434 centered at ω = 0, whose variance depends on the estimated
435 spectral moments. Finally, the output data are given in the

436 form A( )/1
2

ω ω, where the negative frequencies obey

437 antisymmetry A(ω) = −A(−ω). Unfortunately, we cannot
438 reliably estimate the error of A(ω), but the typical qualitative
439 error is that collections of sharp peaks are replaced by a single

f2 440 soft form. This is exemplified in Figure 2, which also
441 demonstrates one of the integral properties of MaxEnt: while
442 increasingly tedious, providing better input improves the result

443by sharpening the spectrum while roughly maintaining its
444original weight.
4453.4. Integral Transforms. The last two steps only involve
446integral transforms of discrete numerical data. For both, the
447actual integration is done numerically using the trapezoidal
448rule with dense cubic spline interpolation.
449The first transform, eq 14, can be rewritten as
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450(48)

451which is convenient, because the input is given as A(ω ≥ 0). It
452also represents the resonant and antiresonant terms of
453polarizability. Practically, the integration can be truncated
454after the main spectral region, at around ℏω′ ∼ 10 at
455maximum. Setting the dissipation term to η = 0.001 appears to
456produce convergent results.
457The calculation of dispersion coefficients involves products
458of polarizabilities for two species (or just one paired with
459itself). Thus, the integrand is nonlinear in the MC data, which
460has a few consequences: First, random fluctuations in ⟨α(iωn)⟩
461may not exactly cancel out. This cannot be eliminated
462completely, but some of the noise can be filtered out by
463smoothing the data before integration with the moving average
464technique. Second, the error estimate for each integrated term
465ΔC* is written as
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467where l1 and l2 take values of 1, 2, and 3, and the integral is in
468practice replaced by a sum over the components of Δω. As
469before, ⟨α(iωn)⟩ decays fast in the growing n, and thus, the
470integration can be safely truncated at, e.g., n = M.

4. RESULTS
471We estimate dynamic polarizability for a collection of systems
472with one or two electrons: H, He, Ps, Ps2, HD

+, and H2. The
473list is not exhaustive, but diverse enough to demonstrate the
474most important physical effects and features of the method.
475The results involve three quantities, ( )l τ , αl(iωn), and
476complex αl(ω) computed for three multipole processes:
477dipole−dipole (l = 1), quadrupole−quadrupole (l = 2), and
478octupole−octupole (l = 3). Each system is simulated
479independently with two time steps Δτ to probe for time-step
480error and to rule out the possibility of numerical artifacts. The
481smaller time step is used for the main results (solid line), while
482the bigger provides a “sanity check” (dotted line): the results
483are roughly as reliable as the two independent results are
484inseparable. The molecular simulations are repeated at various
485temperatures between 200 and 1600 K to probe for weak and
486strong thermal effects. Finally, we use αl(iωn) to compute
487dispersion coefficients between pairs of species at 300 K. For
488 t1reference, Table 1 contains a compilation of all static
489polarizabilities and total energies, and their statistical error
490estimates: 2σ standard error of the mean (2SEM). Agreement

Figure 2. Improvement of the MaxEnt spectrum of He at 2000 K as a
function of input data quality. The real (solid) and imaginary (dotted)
components of the dynamic polarizability α1(ω) are plotted using a
variable number of data blocks N, an arbitrary measure of
computational effort. Even low-quality data produce a qualitatively
meaningful spectrum. The off-resonant data are good, but near the
active spectral region the MaxEnt data divert from the 0 K
reference.50 Providing better input data improves the sharpness
systematically. However, using this means to achieve narrow peaks
with purely physical spectral broadening leads to ill-conditioned
scaling of computation. A better strategy would be improving the
default model D(ω) (dashed), which is rather plain in this work.
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491

with the available references is excellent. All results are given in

492 atomic units.

4934.1. H and He. To establish computation of purely

494electronic spectra, we start with atomic species: isolated H and
495He. The systems are simulated in clamped-nuclei approx-

Table 1. Comparison of Total Energies and Static Polarizabilities (with 2SEM Estimates) from the PIMC Simulations and
Available 0 K Referencesa

T (K) E Δτ α1(0) α2(0) α3(0)

H 2000 −0.49993(2) 0.05 4.5023(9) 15.011(7) 131.4(2)
300 −0.5000(2) 0.02 4.50(3) 15.03(12) 132(3)
0 −0.5 4.5b 15.0b 131.25b

He 2000 −2.9036(4) 0.0125 1.382(3) 2.435(9) 10.49(9)
300 −2.904(2) 0.02 1.38(4) 2.43(6) 10.5(4)
0 −2.90372c 1.383192d 2.445083d 10.620329d

H2 1600 −1.15855(9) 0.05 5.519(5) 26.83(5) 125.7(7)
800 −1.16168(12) 0.05 5.463(6) 34.38(9) 123.0(8)
400 −1.1630(2) 0.05 5.424(10) 47.7(3) 121.4(9)
300 −1.1633(8) 0.02 5.42(6) 53.4(10) 118(3)
200 −1.1637(3) 0.05 5.43(3) 66.1(5) 121(2)
0 −1.164025e 5.395708f 12.455708f

0 5.4139g

HD+ 1600 −0.59047(12) 0.05 11.96(3) 152.5(5) 156.7(6)
800 −0.59493(12) 0.05 19.04(4) 257(2) 214.9(9)
400 −0.59663(12) 0.05 33.73(7) 468(4) 345(2)
300 −0.5968(3) 0.02 43.6(4) 601(14) 426(8)
200 −0.5972(2) 0.05 62.3(3) 848(10) 557(6)
0 −0.597898h 395.306326h 2050.233354h 773.42727h

Ps2 400 −0.51598(8) 0.05 71.57(8) 1390(20) 5.3(4) × 104

300 −0.5158(2) 0.02 71.9(3) 1390(30) 5.2(4) × 104

200 −0.51593(12) 0.05 71.7(2) 1370(20) 5.1(3) × 104

0 −0.516004i
aFor H and He, the results are adiabatic, i.e., from clamped-nuclei simulations; otherwise, the results are fully nonadiabatic including rovibrational
motion. All values are given in atomic units. bBishop and Pipin.50 cPekeris,51 dYan et al.52 (data truncated). ePachucki and Komasa53 (data
truncated). fBishop and Pipin50 (isotropic averaging; separation R = 1.449; mismatch of α2 is due to the missing rotational component). gKolos and
Wolniewicz54 (isotropic averaging; separation R = 1.4). hTang et al.47 (data truncated). iUsukura and Suzuki55 (data truncated).

Figure 3. Correlation functions ( )l τ and Fourier transforms αl(iωn) of H, He, and H2. With atoms, the thermal dependence is negligible, and the
results match with 0 K reference values.50 With H2, there is a weak centrifugal effect that separates 200 and 1600 K results from each other and the
reference in the dipole and octupole processes. On the other hand, a permanent quadrupole correlation causes a huge and thermally dependent
orientational effect that is shown in the inset of α2. It overrides the centrifugal effect and is also missing from the reference.
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496 imation at T = 2000 K. At low temperatures, they are
497 effectively in their electronic ground states. Hence, the spectra
498 and polarizabilities are in good agreement with 0 K
499 references.50,64 The time steps are Δτ = 0.05, 0.1 for H and
500 Δτ = 0.0125, 0.025 for He. The correlation functions ( )l τ and

f3 501 their Fourier transforms αl(iωn) are presented in Figure 3.
502 Real-domain dynamic polarizabilities αl(ω) are obtained by

f4f5 503 analytic continuation and presented in Figures 4 and 5. The
504 imaginary part Im[αl(ω)] and the spectrum Al(ω) are related,
505 so the latter is not presented separately. The real part
506 Re[αl(ω)] provides the optical response.
507 Overall, agreement with the references is excellent at low
508 frequencies, but the amount of detail is limited in the active
509 spectral region (see Table 1 and Figures 3, 4, and 5). The same
510 holds for all of the simulated electronic spectra. The lower
511 moments of the MaxEnt spectrum, weight and alignment, are
512 generally accurate. However, the higher moments providing
513 sharpness and distinction between bound transitions are lost in
514 the noise. Spectral weight of the continuum is relatively small
515 for the dipole process but increases substantially with the
516 higher multipole transitions. Our polarizabilities are slightly
517 higher than the reference near the first electronic excitation.
518 This mismatch results from ”spilling” of the spectrum to
519 inappropriate frequencies due to the artificial spectral broad-
520 ening. The true frequency ranges between the lowest multipole
521 transition and continuum are 0.375 < ℏω < 0.5 for H and
522 around 0.76 < ℏω < 0.90 for He.
523 4.2. Ps2. Next, we consider the nonadiabatic regime with
524 dipositronium, Ps2: an exotic system, whose dielectric
525 properties, to the best of our knowledge, have not been
526 simulated before. The positron mass equals that of electron me ̅
527 = me, and the simulation is thus fully nonadiabatic.
528 Annihilation is not considered. Ps2 is likely to dissociate at T
529 > 800 K,65 so we simulate it at temperatures T = 200 and 400
530 K with time steps Δτ = 0.05 and 0.1. We have compiled the

531results of correlation functions and imaginary-frequency
532 f6polarizability to Figure 6 and real-frequency dynamic polar-
533 f7izabilities to Figure 7. Total energies and static polarizabilities
534are found in Table 1. Pure positronic systems have much larger
535dielectric response than regular atoms, but otherwise they act
536similarly. As seen in the figures, all the imaginary-domain
537correlations have similar scaling and only different orders of
538magnitude.

Figure 4. Dynamic polarizabilities α(ω) of H and H2. The spectral peaks of H are lower than those of H2, but their proportions remain
approximately the same in higher multipoles. While the results for H are in good agreement, H2 shows thermal and nuclear effects that are missing
from the 0 K references.50 The quadrupole polarizability α2(ω) of H2 has a large thermal effect due to rotational coupling: the low-frequency (IR)
spectrum spreads out, and the huge orientational polarizability decreases toward higher temperatures. At higher frequencies, the difference to 0 K is
explained by vibrational and centrifugal effects, and a different bond length used in ref 50. Unfortunately, different shapes of the electronic peaks are
not entirely due to electron−nucleus coupling: the spectral broadening due to MaxEnt inversion is worse with the heavier, low-temperature
simulations. Consequently, the results are generally sharper with the longer time step (dotted) than the shorter one (solid).

Figure 5. Real dynamic polarizabilities Re[α(ω)] and spectral
functions A(ω) of He at 2000 K. In higher multipoles, the spectral
moments grow in magnitude and frequency. The results are in good
agreement between big (dotted) and small (solid) time steps and the
0 K reference.50
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539 An interesting question is the relationship between Ps2 and
540 Ps, the latter of which can be solved analytically. First, the
541 bound dipole spectrum ranges of Ps (0.1875 < ℏω < 0.25)
542 agree with those of Ps2 (0.18160 < ℏω < 0.2424055) and the
543 results of this work. The higher multipole spectra are shifted to
544 higher frequencies. Second, the imaginary-time dipole
545 correlation of Ps2 at 300 K is approximately twice that of Ps,

f8 546 as shown in Figure 8. For two completely uncorrelated
547 positroniums, this quotient would be exactly 2. The small
548 difference is related to the binding energy of Ps2. The
549 quadrupole correlations cannot be compared, because α2 is

550zero for Ps. The octupole processes converge to a quotient of
551approximately 30, but the response at low Matsubara
552frequencies does not show any intuitive behavior. The
553transient occurs at ℏωn < 15, which involves the first ∼2500
554Matsubara frequencies at 300 K.
5554.3. H2 and HD+. Finally, we study combined electronic,
556nonadiabatic, thermal, and nuclear quantum effects featured in
557two molecular systems: H2 and HD+. For both systems, the
558temperatures are T = 200, 400, 800, and 1600 K and time steps
559Δτ = 0.05 and 0.1. The simulation is nonadiabatic with fully
560quantized nuclei, using mp = 1836.15267248me and md =
5613670.480492233me for the respective masses of proton and
562deuteron. The correlation functions and imaginary-frequency
563 f9polarizabilities are presented in Figures 3 and 9 depending on
564the multipole symmetry. Dynamic polarizabilities are shown in
565 f10Figures 4 for H2 and 10 for HD+.
566While the molecules are effectively in their electronic ground
567states, their nuclear motion depends on the temperature. This
568may cause a weak or a strong effect on the total molecular
569polarizability. The weak effect is related to centrifugal
570distortion: the bond becomes longer, if a molecule is in a
571high rotational ensemble (high temperature); hence, the
572electric moments usually get slightly larger.42 This is most
573readily seen by comparing 200 and 1600 K data of ( )l τ in
574Figures 3 and 9.
575The strong effect is caused by nonzero electric moments.
576The molecule pursues a favorable orientation with the

Figure 6. Logarithmic plots of ( )τ and α(iωn) of Ps2 at 200 and 400
K. Different multipole correlations have similar scaling but different
orders of magnitude. A small thermal effect increment is observed at
the higher temperature. This is most pronounced in the octupole
order, which is depicted in the insets.

Figure 7. Dynamic polarizabilities α(ω) of Ps2 at 200 and 400 K. Here, all the spectra are located roughly at the same frequency interval, but the
spectral weights escalate in higher multipoles. There is a small thermal increment in the higher multipole polarizabilities, as supported by Figure 6.
The differences in spectral sharpness, however, are mostly due to the numerics.

Figure 8. Scaled quotients between αl(iωn) of Ps2 and Ps at 300 K.
The scaling factor is chosen such that the fraction converges to unity
as iωn → ∞. For instance, it is understandable that the dipole
polarizability of Ps2 almost equals twice that of Ps.
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577 perturbing field, which causes a dominant, orientational
578 contribution to the average polarizability.41 High rotational
579 ensemble interferes with the orientation, and hence, the
580 rotational effect fades off as the temperature increases.42,43,46 In
581 higher orders, this effect is reproduced between nonzero
582 anisotropy of tensorial polarizability and an associated

583hyperpolarizability.42,43,46 Here, permanent moments are
584present in α2 of H2 and each αl of HD

+, whose figures also
585have insets showing the strong decay of the rotational
586polarizability as T increases. At the low-temperature limit, all
587rotational motion is deactivated and the static polarizability
588saturates to a finite value.43 Beyond the static limit, the

Figure 9. Correlation functions ( )τ and Fourier transforms α(iωn) of HD
+ at variable temperatures. A weak centrifugal effect is seen as ( )l τ

saturates to slightly different finite values: the effect is also inverted between the dipole and the higher orders. On the other hand, α(iωn) exhibits a
strong rotational effect, which decays fast in both the temperature and the Matsubara frequencies. Thermal and time-step effects are not as complex
as they first seem: rather, the error of cubic spline interpolation is demonstrated by applying it for the smaller time step (solid) but not the bigger
one (dotted). The actual data points are marked with circles. The large-scale data of α(iωn) are shown in the insets and do not have notable
thermal effects at higher frequencies.

Figure 10. Dynamic polarizabilities α(ω) of HD+ at variable temperatures. HD+ is IR-active in all multipoles, and thus, in each plot, we can see
broadening of the IR spectrum and thermal decay of the orientational effect. The temperature causes considerable shifting and broadening also to
the electronic spectra, only a part of which is explained by the numerical deficiency of MaxEnt. There is a reasonable agreement between the bigger
(dotted) and the smaller (solid) time steps.
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589 rotational effect fades off rapidly in terms of both real and
590 imaginary frequencies. This limits the spectral activity of
591 rotation to infrared frequencies. At higher frequencies, the
592 optical properties are dictated by the electronic spectra.
593 Therefore, our results for H2 beyond infrared agree with
594 isotropic averages computed with eqs 28 and 29, and the
595 available electronic reference data.50

596 4.4. Dispersion Coefficients. Lastly, we demonstrate an
597 additional use of imaginary-frequency polarizability data:
598 computing London dispersion coefficients using eqs 31−33.
599 For this purpose, we simulated H, He, H2, HD

+, Ps, and Ps2,
600 the same as before but using compatible temperature and time
601 step: T = 300 K and Δτ = 0.02. Proof-of-concept results

t2 602 between each pair of species are presented in Table 2.

603 Most results match the available 0 K references,47,50,52

604 because as we have shown, the thermal dependency of
605 polarizabilities is negligible for most of the systems considered
606 here. Exceptions are the polarizabilities associated with
607 permanent electric moments: α2 of H2 and all αl of HD

+. As
608 seen in Figures 3 and 9, they have quickly vanishing and
609 thermally dependent rotational peaks at low Matsubara
610 frequencies. This leads to a small yet noticeable difference
611 between our 300 K results and the 0 K electron-only
612 references: the peaks effectively increase the values of the

613dispersion coefficients; the effect of rotational coupling is
614attractive. Otherwise (e.g., Ps systems) the coefficients are
615being reported for the first time. Our approach provides a
616rather direct but accurate interface for incorporating nuclear
617quantum effects, orientational averaging, and thermal trends
618into weak molecular interactions.

5. SUMMARY

619We have given a detailed demonstration of estimating dynamic
620multipole polarizabilities from all-electron PIMC simulations.
621In particular, we have computed autocorrelation functions of
622the three lowest electric multipoles and analytically continued
623them with the MaxEnt method. We have validated our
624approach by reproducing well-known reference values for some
625one- and two-electron systems: H, He, and H2. However, we
626have also provided new complementary data, such as the
627higher-moment spectra and polarizabilities of H2, HD

+, and
628Ps2. Similarly, we have provided van der Waals dispersion
629coefficients between the aforementioned species. The co-
630efficients are spherically averaged and include a full thermal
631ensemble of electric interactions at 300 K.
632Indeed, the paradigm of our approach is to provide mixing,
633as opposed to separation, of the degrees of freedom. Of course,
634explicit decomposition of the electronic, rovibrational, non-
635adiabatic, and thermal problems can be very insightful in
636simple systems, such as those featured in this work. For
637instance, the existing models for rotational spectrum, zero-
638point vibration, and absorption cross-section, etc., are very
639intuitive and precise. Such quantum phenomena we can merely
640pinpoint from the PIMC results, but not quite reverse
641engineer. The electronic spectrum itself is a challenge to
642reproduce at the sharpness and precision of ab initio methods.
643However, for the purpose of exact mixing of all the degrees of
644freedom, PIMC provides a rather unique and controllable
645interface. This will be useful in more complex environments,
646where harmonic and adiabatic approximations start to fail.
647The shortcomings of our approach are mostly due to the ill-
648posed nature of analytic continuation. A method beoynd
649MaxEnt is called for but, as of today, not readily available. A
650universal remedy is increasing computation: ”to solve an ill-
651posed problem, nothing beats good data”, as stated by Jarrell
652and Gubernatis.21 After all, what counts as heavy today can
653well be the standard of tomorrow. In that sense, all-electron
654simulation with PIMC holds the future prospect of a high-
655accuracy electronic structure benchmark. A natural follow-up
656for the future will be the simulation of systems that are
657challenged with the exchange interaction, the fermion sign
658problem.
659In the end, polarizability itself is rather a single example of
660dynamic response based on quantum correlation functions; the
661proposed scheme works as a template to numerous similar
662problems, and vice versa. A lot more will be learned and
663achieved by developing better practices for producing and
664processing QMC data, and here we have only taken a first step.

665■ APPENDIX A: OPTIMIZING AUTOCORRELATION
666IN PIMC

667Computation of an imaginary-time autocorrelation function
668can be the bottleneck of a PIMC simulation, when the number
669of time slices is large. It is thus reasonable to briefly discuss
670optimization of such a procedure.

Table 2. Dispersion Coefficients (with 2SEM Estimates) for
Pairs of Atoms and Molecules at 300 K, Using Δτ = 0.02a

C6 C8 C10

H−H 6.50(4) 124.7(4) 3300(9)
6.4990267b,d 124.39908b,d 3285.8284b,d

H−He 2.82(4) 41.9(3) 873(4)
2.8213439b,d 41.828b,d 871.23b,d

H−H2 8.78(7) 164.8(8)f 4003(12)
8.7843286d 161.31542d

H−HD+ 6.35(12)f 135(5)f 2620(50)f

5.3815691c 99.592513c 2023.6873c

H−Ps 34.8(3) 318(2) 11560(60)
H−Ps2 68.7(4) 4210(50) 3.35(6) × 105

He−He 1.46(2) 14.09(9) 182.7(8)
1.4609778b,d 14.117857b 183.69107b

He−H2 4.01(5) 56.4(4)f 1008(4)
4.0128132d 55.381453d

He−HD+ 2.65(9)f 41(3)f 507(10)f

2.3441447c 31.043629c 416.42889c

He−Ps 13.4(2) 60.9(6) 3040(30)
He−Ps2 26.4(4) 1520(30) 1.17(3)×105

H2−H2 12.04(12) 219.1(1.3) 4870(20)
12.058168d

H2−HD+ 8.4(3) 184(8) 3800(200)
H2−Ps 45.2(4) 401(4) 13270(70)
H2−Ps2 89.2(8) 5470(70) 4.32(8) × 105

HD+−HD+ 11.7(1.2) 530(70) 16000(3000)
HD+−Ps 37(1) 510(40) 7940(120)
HD+−Ps2 74(3) 4800(200) 3.7(2) × 105

Ps−Ps 207.3(1.3) 0e 68400(400)
Ps−Ps2 410(3) 21000(300) 1.59(4) × 105

Ps2−Ps2 811(5) 83200(800) 1.000(12) × 107

aAvailable 0 K data provided for reference. bYan et al.52 cTang et al.47
dBishop and Pipin.50 eThe quadrupole moment of Ps is zero by the
symmetry of masses. fThe mismatch is due to orientational and
thermal effects that are missing from the reference.
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671 We consider measurement of a correlation function from a
672 sample trajectory R, which has M time slices separated by a
673 time step Δτ. A single measurement means choosing a
674 reference time slice Rk and correlating it with another time slice
675 Rk+m such that

C m P R Q R( ) ( ) ( )PQ k k mτΔ = +676 (50)

677 where k + m goes from 0 to M − 1 and symmetry CPQ(mΔτ) =
678 CPQ(−mΔτ) is assumed. As pointed out in eq 37, the
679 imaginary time slices are equivalent: by shifting the reference
680 time slice, i.e., k goes from 0 to M−1, we get M independent
681 correlation functions from a single sample trajectory R. While
682 efficient in terms of sampling, making M2 measurements is an
683 intensive computational task.
684 A few optimizations can make the practical calculation
685 significantly faster. First, rather than measuring P or Q on the
686 fly, an array of measurements should be stored into memory,
687 e.g., Pk = P(Rk). If the observable is tensorial, a contiguous
688 memory layout should be preferred for the imaginary-time
689 dimension. Second, unnecessary checkups and modification of
690 indices should be avoided. The following pseudocode achieves
691 this:

692 where D is another array that only has M/2 indices. Namely,
693 only half the data needs to be recorded because of the
694 symmetry. Moreover, if we are computing an autocorrelation
695 function, i.e., Q = P, the previous code simplifies to

696 The previous loops are also easy to parallelize. Third, using a
697 finite stride is advised between the measurements and
698 subsequent sample trajectories: e.g., only every 100th sample

699is measured. However, a stride in imaginary time should not be
700used, because it could resonate with the statistical properties of
701the data. Finally, using a compressed binary data format, such
702as the hierarchical data format (HDF), and storing the data in
703average bins or blocks over a large number of measurements
704are strongly recommended.
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