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ABSTRACT: We demonstrate computation of total dynamic
multipole polarizabilities using path-integral Monte Carlo
method (PIMC). The PIMC approach enables accurate
thermal and nonadiabatic mixing of electronic, rotational, and
vibrational degrees of freedom. Therefore, we can study the
thermal effects, or lack thereof, in the full multipole spectra of
the chosen one- and two-electron systems: H, Ps, He, Ps2, H2,
and HD+. We first compute multipole−multipole correlation
functions up to octupole order in imaginary time. The real-
domain spectral function is then obtained by analytical
continuation with the maximum entropy method. In general,
sharpness of the active spectra is limited, but the obtained off-
resonant polarizabilities are in good agreement with the
existing literature. Several weak and strong thermal effects are observed. Furthermore, the polarizabilities of Ps2 and some higher
multipole and higher frequency data have not been published before. In addition, we compute isotropic dispersion coefficients
C6, C8, and C10 between pairs of species using the simplified Casimir−Polder formulas.

1. INTRODUCTION
Computing dynamic response functions from quantum
correlation functions is a popular challenge among quantum
Monte Carlo methods, such as path-integral Monte Carlo
(PIMC),1,2 diffusion Monte Carlo (DMC),3 path-integral
molecular dynamics (PIMD),4,5 and their many derivatives.
Purely imaginary-time methods are known to treat quantum
many-body correlations very accurately.6−9 Furthermore, they
enable controllable simulation of equilibrium properties, nuclear
quantum phenomena, and other nonadiabatic effectstypical
banes of the traditional ab initio methods.10−12 Unfortunately,
the strategy of analytic continuation to real-time domain
remains a formidable challenge.
A quantum correlation function of a causal process is analytic

in the complex plane,13 and thus, it can be transformed between
purely imaginary and real axes by Kubo transform.14

Unfortunately, numerical implementation of such an inversion
is an infamous ill-posed problem: even small noise in the
imaginary-time data maps large fluctuations onto the real-time
response. Different strategies have been developed to get around
this problem: complex time propagators,15,16 Pade approxim-
ants,17 SVD sampling18 andMishchenko’s method.19,20 None of
the approaches is superior, yet one of the most popular
approaches is maximum entropy (MaxEnt),21,22 which opti-
mizes the balance between prior information and a least-squares
fit. It will be used in this work, too.
Fortunately, the same means of solution can be applied to a

wide variety of physical problems. For dedicated reviews, see refs
1, 5, and 23. Quantum correlation functions and analytic
continuation have been employed in the computation of, e.g.,
magnetic susceptibility,24 density of states,18 NMR relaxation

rate,25 absorption spectra and transport properties,26,27 polar-
ons,19 and optical conductivity.28

In this work, we focus on the electric field response: dynamic
multipole polarizability. Polarizability is, arguably, the most
important of all electronic properties. It is an important
parameter in nonlinear optics, spectroscopy, and a wide variety
of other physical experiments.29 Furthermore, it is gaining
popularity in molecular interaction models and polarizable force
fields.30,31 Most importantly, the accurate computation of
polarizability is a theoretical challenge and a powerful bench-
mark for any electronic structure methods.32−38

Our purpose is to demonstrate the computation of dynamic
polarizabilities from PIMC simulations. Similar approaches in
imaginary time have been exercised before for static polar-
izabilities,39−43 but, to the best of our knowledge, this work is the
first one featuring real-time response of the given problem.
Explicit all-electron simulation is not the most typical
application of the PIMC method, because of its computational
cost. However, it provides some obvious benefits over the
traditional ab initio methods, such as inherent accounts of finite
temperature and exact many-body correlations. Besides the
electronic structure, PIMC also enables fully nonadiabatic and
quantum mechanical treatment of the nuclear degrees of
freedom: rotation and vibration. All of these have different
thermal effects on polarizability.42,44,45 Especially, the infrared
(IR)-active species have huge thermal effects on rotational
polarizabilities,46,47 which are also closely associated with IR and
Raman spectroscopy.48,49
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We provide exemplary results, i.e., dynamic polarizabilities
and dispersion coefficients up to octupole order, for several
isolated atoms and molecules: H, He, HD+, H2, Ps, and Ps2. The
chosen species feature accurate reference data for valida-
tion47,50−55 but also some exotic properties that have barely
been studied before. In particular, we are able to reproduce
known electronic polarizabilities at low frequencies and provide
an estimate for the rest of the whole power spectrum, where no
prior reference data exist. All the electronic, nuclear, and
nonadiabatic effects are included in these total polarizabilities.
Especially, we can easily quantify the dielectric properties of an
ultimately nonadiabatic problem, Ps2. Finally, we provide
dispersion coefficients C6, C8, and C10 between pairs of the
considered species.
The work is organized as follows. First, we review the

theoretical background by using linear response theory and
properties of Green’s functions. We associate first-order
dynamic polarizabilities with spectral functions, which are
obtained from electric multipole correlation functions by a
nonlinear inversion. In section 3, we review the practical aspects
of computing the imaginary-time correlation functions with
PIMC and performing the numerical inversion with MaxEnt.
Finally, we present and discuss the results with suitable literature
references.

2. THEORY
We consider a quantum system in an external optical
perturbation, that is, a classical electric field F(t). The total
Hamiltonian can be written as

̂ = ̂ + ̂H t H H t( ) ( )0 ext (1)

where Ĥ0 is a time-independent part

∑̂ = ̂ + ̂
>

H T V r( )
i j

ij0
(2)

where T̂ and V̂ij(r) are operators for kinetic energy and Coulomb
interaction energy, respectively. The time-dependent perturba-
tion is

θ̂ = − − ′ · ̂H t t t tF Q( ) ( ) ( )ext (3)

where the Heaviside step function θ(t−t′) denotes switching on
the perturbation at time t′. The interaction Q̂ with the vector
field F can be decomposed in the multipole expansion as56

∑· ̂ = − !
!

[ ] ̂
=

∞ n
n

F n QF Q
2

(2 )n

n
n n

0

( ) ( )

(4)

where we have the net charge F(0) = q in electrostatic potential
Q̂(0) = ϕ. The electric multipole moments (dipole, quadrupole,
and octupole, etc.)

μ Θ Ω̂ = ̂ ̂ = ̂ ̂ = ̂Q Q Q, , , etc.
(1) (2) (3)

(5)

and field gradients

= = ∇ = ∇∇F F FF F F, , , etc.(1) (2) (3) (6)

are typically defined according to the center of mass. The n-dot
product [n] consists of the summation of corresponding
tensorial components to produce a scalar potential, e.g.,
Q(2)[2]F(2) = ∑i,j∇Θij(∇F)ij. Thus, the perturbation up to the
third order is written as
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̂ = − − ′

× ̂· + ̂ ∇ + ̂ ∇∇

H t t t

t t tF F F

( ) ( )

( )
1
3

:( ( ))
1

15
( ( ))

ext

(7)

In the following treatment of spherically symmetric systems,
we will omit the tensorial character and only consider scalar
electric moments and field gradients.

2.1. Linear Response theory. In many-body quantum
mechanics, the linear response of some property P can be
summarized as follows. Q̂ denotes any of the perturbing
operators in eq 5 and F(t) a corresponding field term. In a causal
scenario, the perturbation starts at time t′ and the response is
measured at time t > t′. The linear deviation can be written as

∫

∫

∫

δ

θ

χ

=
ℏ

′ ⟨[ ̂ ′ ̂ ]⟩

=
ℏ

′ − ′ ⟨[ ̂ − ′ ̂ ]⟩ ′

= ′ − ′ ′

−∞

−∞

−∞

∞

P t
i

t H t P t

i
t t t P t t Q F t

t t t F t

( ) d ( ), ( ) (8)

d ( ) ( ), (0) ( ) (9)

d ( ) ( ) (10)

t

ext

t

R

where square brackets denote a commutator and angle brackets
a thermal average, ⟨Â⟩≡Tr[ρ̂Â]/Tr[ρ̂], where ρ̂ = e−βĤ

0
and β =

1/kBT. On the second line we have used the time invariance of
thermal equilibrium, and on the third line we have inserted the
retarded susceptibility

χ θ=
ℏ

⟨[ ̂ ̂ ]⟩ = −t
i

t P t Q G t( ) ( ) ( ), (0) ( )R R
(11)

where GR is the retarded Green’s function of P̂ and Q̂ and the
negative sign follows from the usual convention of electric field
perturbation. Frequency-dependent response is given by the
Fourier transform

δ ω δ χ ω ω= =P P t F( ) ( ) ( ) ( )R (12)

based on the convolution theorem in eq 10. We can without loss
of generality treat eq 12 in terms of a single frequencyω, because
arbitrary signals and responses can be superposed from the
harmonic waves.57

The subject of interest is the constant of proportionality, the
complex susceptibility χR(ω). It is also analytic in the upper
complex plane, and thus, it can be expressed with the Kramers−
Kronig relations as21

∫χ ω ω
π

χ ω
ω ω η

= − ′ [ ′ ]
− ′ +−∞

∞

i
( )

d Im ( )R
R

(13)

where η is a positive infinitesimal. For reasons that will become
apparent, we shall write it in terms of a spectral function A(ω):

∫χ ω ω
π

ω
ω ω η

= − ′ ′
− ′ +−∞

∞ A
i

( )
d
2

( )R

(14)

where we defined58

ω ω ω ω χ ω= [ − [ ] ] = − [ ] = [ ]†A i G G G( ) ( ) ( ) 2Im ( ) 2Im ( )R R R R

(15)

where the advanced Green’s function [GR]† is the Hermitian
conjugate of GR. The spectral function A(ω) has real and
positive-semidefinite values, which are related to transition
probabilities. Outside the spectral region, i.e., when A(ω) ∼ 0,
χR(ω) is effectively real and equal to the dielectric response of
the system, i.e., polarizability. Within a spectral peak, χR(ω)
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becomes complex, and the imaginary part is related to the
absorption/emission probability.
2.2. Imaginary-Time Correlation. Most quantum Monte

Carlo methods operate in imaginary time: −it → τ, because
imaginary-time propagators are well-behaved and the acquis-
ition of correlation functions along an imaginary-time trajectory
is straightforward. The imaginary-time Green’s functions are
defined as

τ τ= ⟨ ̂ ̂ ⟩τP Q( ) (0) ( ) (16)

where τ is a time-ordering operator in the imaginary axis.
Equation 16 is the equivalent of χR(t) with a purely imaginary
argument. At finite temperature, the Green’s function is periodic
over the inverse temperature β. That is, 0 ≤ τ ≤ β and eq 16
satisfy τ τ β= ± +( ) ( ), where the positive (negative) sign is
for bosons (fermions). The Fourier transform is given in discrete
Matsubara frequencies ωn:

∫ω τ τ=
β

ω τ−i( ) d e ( )n
i

0
n

(17)

which are (2n + 1)π/β for fermions and 2nπ/β for bosons.
As before, is analytic in the upper complex plane and can be

represented with the spectral function:21,22

∫

∫

τ ω
π

τ ω ω

ω ω
π

ω ω ω

=

=

−∞

∞

−∞

∞

K A

i K i A

( )
d
2

( , ) ( ) (18)

( )
d
2

( , ) ( ) (19)n n

where the respective kernels for time and frequency domains are
K(τ,ω) = e−τβ/(1 ± e−βω) (plus for bosons, minus for fermions)
and K(iωn,ω) = 1/(iωn − ω). That is, imaginary-time Green’s
functions can be analytically continued to the real domain by
inverting eq 18 or 19. For that, the spectral function is a good
agent, because it is (usually) positive-semidefinite and
regularized. However, as both kernels are highly nonlinear,
numerical inversion is challenging, to say the least.
2.3. Multipole Polarizability. Dynamic multipole polar-

izability α is by definition the linear response of an electric
moment P to a perturbation F that couples to Q, i.e., α(ω) =
χR(ω). In particular, one can calculate the Fourier transform of
eq 9 for a harmonic perturbation F(t′) = eiωt′F:

∫
∫

∫
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θ

=
ℏ
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0
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(20)

where F is an amplitude. The integral can be calculated, when
the correlation function is expanded in the energy eigenstates:

∑ ∑
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= ′ − ′
β

ω ω
∞ − ∞

− − + −
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n

mn mn

(21)

where ωmn = (Em − En)/ℏ and, e.g., Qmn = ⟨m|Q̂|n⟩. Assuming
that F(t′) → 0 as t − t′ → ∞, one can then identify the
susceptibility as
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where α−(ω) and α+(ω) are the so-called resonant and
antiresonant polarizabilities. In the zero Kelvin limit, i.e., β →
∞, one recovers the usual sum-over-states definition of
polarizability from eq 23.
In this work, we will consider isotropic polarizabilities, such as

those of gaseous atoms and molecules. Consequently, all
polarizabilities with an “odd” degree, such as χμΘ

R , cancel out in
spherical averaging. We will thus consider the following even
first-order properties (but omit χμΩ

R for simplicity)

α χ

α χ

α χ

≡ −

≡ −

≡ −

μμ

ΘΘ

ΩΩ

(dipole dipole) (25)

(quadrupole quadrupole) (26)

(octupole octupole) (27)

R

R

R

1

2

3

where P and Q are in turn replaced by μ, Θ, and Ω. These are
scalar polarizabilities, meaning that the tensorial character is also
lost in isotropic sampling.
Alternatively, one could compute polarizability in the internal

coordinates of a molecule and find anisotropy, which leads to a
tensorial response. While it goes against the measurable realm,
moving to internal coordinates has some virtues: the first-order
anisotropy adds insight into the optical response of the
molecule, and it also reflects strongly to the rotational higher-
order perturbations, the hyperpolarizabilities.41−43,46 Often,
only tensorial electronic polarizabilities have been reported,
which omit the nuclear effects or treat them separately. In that
case, isotropic averaging is required to make such results
comparable with those in the “laboratory coordinates”. For
diatomic molecules, it is given in the first two degrees by46,59

α α α

α α α α

⟨ ⟩ = +

⟨ ⟩ = + +

(2 )/3 (28)

( 8 8 )/15 (29)

xx zz

zz zz zx zx xx xx

1

2 , , ,

where z is the principal axis.
2.4. Dispersion Coefficients. Lastly, we use polarizabilities

in the computation of van der Waals, or more precisely, London
dispersion coefficients. The coefficients are used to model
attractive interactions between atoms and molecules due to
quantum fluctuations of electric moments. After spherical
averaging, the radial pair interaction between species A and B
is quantified as

= − − − −V r
C

r
C

r
C
r

( ) ...AB
AB AB AB

6
6

8
8

10
10 (30)

where C6, C8, and C10 are the dispersion coefficients. Accurate
calculation of the higher-order terms C8 and C10 can be
especially challenging, while their effect can be considerable.60

According to the simplified Casimir−Polder formulas, the
coefficients are defined in terms of dynamic polarizabilities with
imaginary-frequency argument:50
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∫

∫

∫
∫
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∞
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10
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2 2

Based on eq 17, the required polarizabilities are obtained from
the imaginary-time correlation functions at discrete Matsubara
frequencies by a regular Fourier transform. The continuous
integral can be evaluated with good accuracy by interpolating the
smooth Matsubara data.

3. METHOD
The workflow of this study can be summarized in five steps:

1. PIMC computation of imaginary-time correlation func-
tion τ( );

2. Fourier transform to imaginary Matsubara frequencies
ωi( )n ;

3. MaxEnt inversion of eq 19 to obtain A(ω);
4. transformation with eq 14 to obtain dynamic polar-

izability α(ω);
5. calculation of dispersion coefficients from α(iωn).

We will provide an overview and some practical details in the
following subsections.
3.1. Path-Integral Monte Carlo. To compute imaginary-

time correlation functions τ( ), we use a private implementa-
tion of the standard path-integral Monte Carlo method
(PIMC).1,2,61 Depending on the nature of the problem, other
methods could be used as well; e.g., see refs 5 and 39. Measuring
the correlation function itself is straightforward; the important
factors are the accuracy and efficiency of the simulation. All-
electron simulation of atomic species is not yet common with
the PIMC method, because of its computational cost. However,
it is needed to properly extract electronic properties, such as
polarizabilities, in combination with the nuclear quantum
effects: rotation, vibration, and, in principle, nonadiabatic
coupling.
In thermal equilibrium defined by β = 1/kT, expectation

values are given by

ρ β⟨ ⟩ = [ ̂ ̂]−O Z OTr ( )1
(34)

where Z = Trρ̂(β) and ρ̂(β) = e−βĤ. The essence of PIMC is
expansion of the density matrix ρ(β) into a discrete imaginary-
time path

∫
∫
∫

ρ β ρ β

ρ τ

ρ τ ρ τ

= ⟨ | ̂ | ⟩

= ⟨ | ̂ Δ | ⟩

= ⟨ | ̂ Δ | ⟩ ⟨ | ̂ Δ | ⟩−

R R R R R

R R R

R dR R R R R

( , ; ) d ( )

d ( )

d ... ( ) ... ( )

M

M M M1 0 1 1

(35)

where R is a position representation of the many-body state,M =
β/Δτ≫ 1 is the Trotter number, and R = RM = R0 closes the ring
polymer. Accuracy of the propagator e−ΔτĤ can be controlled by
adjusting the short time stepΔτ. In this work, we use exact pair-
density matrices that are obtained from the Coulomb potential
by matrix squaring,61,62 and Δτ dictates the validity of the pair
approximation.

In particular, a correlation function between P̂ and Q̂ is given
by

∫

∫∑

τ τ

ρ τ ρ τ

ρ τ ρ τ

⟨ Δ ⟩ = ⟨ ⟩
=

× ⟨ | ̂ Δ | ⟩ ⟨ | ̂ Δ | ⟩

=

× ⟨ | ̂ Δ | ⟩ ⟨ | ̂ Δ | ⟩

τ
−

−

− −

=

−

− +

m P Q
Z R R

R R R R P R Q R

Z M R R

R R R R P R Q R

( ) (0) ( )
d ... d

( ) ... ( ) ( ) ( )

(36)

d ... d

( ) ... ( ) ( ) ( )

(37)

M

M M m

k

M

M

M M k m k

1
1

0 1 1 0

1 1

0

1

1

0 1 1

where 0 ≤ m and m + k ≤ M − 1 are periodic in M and O(Rm)
denotes a measurement at a particular time slice. Equation 37
also utilizes symmetry of the equilibrium so that the average
correlation can be measured with respect to any, or every, time
slice. In practice, careless computation of allM ×M correlations
can be very costly in terms of both performance and data storage.
A lot of efficiency can be recovered by utilizing the symmetry
properties and optimizing loops and memory usage of the
implementation. More details and an optimized pseudocode are
provided in Appendix A.
Another computationally intensive part is sampling the

integral ∫ dR over all possible paths. In PIMC, the many-body
trajectory R is a Markovian walker that is sampled in thermal
equilibrium using the Metropolis algorithm. Sampling efficiency
is a result of many factors, such as the temperature, density,
number of particles, fermion/boson statistics, and the finite time
step Δτ. In this work, we use the bisection method2 in
combination with random rotations. Also, for now we only
simulate systems with distinguishable particles that can be
solved exactly using the so-called boltzmannon statistics. By
choosing to exclude identical fermions, we avoid having to treat
self-canceling permutations that lead to degradation of efficiency
due to the infamous sign problem.63

3.2. Fourier Transforming τ( ). When a satisfactory
estimate of τ⟨ ⟩( ) has been produced, it is time for
postprocessing. The first follow-up step is Fourier transforming

τ( ) to give ωi( )n in terms of discrete Matsubara frequencies
ωn. The alternative would be using eq 18 for the MaxEnt
inversion, but the frequency kernel K(iωn,ω) is considered
better behaving.22 TheMatsubara data are also equated with the
polarizability; i.e., ω α ω=i i( ) ( )n n , which will be used in eqs
31−33).
The Fourier transform can be performed discretely; i.e.,

∫

∑

ω τ τ

τ τ

=

= Δ Δ

β
ω τ

ω τ

→∞ =

−
Δ

i

m

( ) d e ( ) (38)

lim e ( ) (39)

n
i

M m

M
i m M

0

0

1
/

n

n

whereΔτ = β/M defines the sampling resolution. Practically,Δτ
needs not to be zero, but a small finite value provides enough
accuracy for a reasonable number of Matsubara frequencies. A
typical process is visualized in Figure 1: fast Fourier transform
(FFT) maps M original MC values of τ⟨ ⟩m( ) into equally
many Matsubara frequencies. Beyond a fraction of the
frequencies, there will be an error, unless Δτ is artificially
decreased by some integer factor, e.g., 8. This consists of
numerical interpolation of the data, which can be done for
example with cubic splines. Alternatively, the spline-interpolated
data can be Fourier transformed analytically,22 but the practical
difference is negligible. Furthermore, due to the linearity of
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Fourier transform, it does not matter, whether we transform the
sample average or average over transforms of samples; i.e.,

ω τ τ⟨ ⟩ = ⟨ ⟩ = ⟨ ⟩i( ) ( ) ( )n (40)

We prefer the right-hand side (rhs) of eq 40, because it provides
a tangible interface to the statistics of ω⟨ ⟩i( )n .
In conclusion, using FFT with the originalΔτ is tempting but

only realiable for the lowest fraction of Matsubara frequencies.
This can be resolved by boosting the sampling resolution of

τ( ) and, thus, reaching even higher frequencies. On the other
hand, FFT is exact at the static limit, i.e., α(iωn=ω=0). There we
have, for instance

∑

∑ ∑

∑ ∑

α τ τ

τ μ μ

τ μ μ

β μ

= Δ ⟨ Δ ⟩

= Δ

= Δ

= ⟨ ̅ ⟩

ω τ

=

−
Δ

=

−
−

=

−

+

−

=

−

=

−

m

M R R

M M R R

(0) e ( )

( ) ( )

( ) ( )

m

M
i m M

m

M

k

M

k k m

m

M

m
k

M

k

1
0

1
/

1

0

1
1

0

1

2

0

1

0

1

2

n

where bar denotes an average over a sample path. The last form
eclipses the static field-derivative estimators that have been
proposed earlier.42,43 The relative number of independent
measurements needed by these static estimators is reduced from
Md+1 to (d + 1)M, where d is the degree of polarizability, here 1.

3.3. Maximum Entropy Method. Solving integral eq 18 or
19 is challenging, when on the left-hand side is noisy or
incomplete. While quantum Monte Carlo results can be, in
principle, improved indefinitely, the statistical noise cannot be
fully eliminated. Thus, evenminor fluctuations in the high values
of τ or ω can reflect strongly in the resulting spectral function
A(ω). Normally, one could discretize τ or ω and solve the
resulting linear system

=G KA (41)

where G and A are discrete input and output vectors,
respectively, and K is a transformation matrix to be inverted.
Unfortunately, here the kernel producing K is highly nonlinear.
We could end up with very diverse results just by using different
grids or MC samples.
Therefore, a robust method is needed for the inversion, and

one of the most popular is maximum entropy (MaxEnt).21,22

MaxEnt uses Bayesian inference to pick the most probable A out
of all possible solutions with a given G. This is equal to
maximizing

| = |
P

P P
P

A G
G A A

G
( )

( ) ( )
( ) (42)

First, P(G) can be considered fixed. Second, the relative
probability of G given A can be quantified by the central limit
theorem as

| ∝ χ−P G A( ) e /22

(43)

where

χ = − ̅ − ̅−G G C G G( ) ( )2 T 1
(44)

where ̅ =G KA is the proposed forward mapping and C is the
covariance matrix. In other words, χ2 is a least-squares fitting
error between the input and the proposed mapping. Lastly, the
prior probability can be defined as

∝P A( ) eaS (45)
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is called the relative entropy.D(ω) is the so-called default model
that sets an a priori bias for the entropy. It can be used to steer
the fitting by setting it to resemble the expected shape of the
spectral function.
Combining eqs 43 and 45, the inversion boils down to

maximizing

χ| = −P A G aSln ( ) /22 (47)

for a given frequency grid and a. Again, a is an adjustable
parameter that balances the fit between the least-squares error
and the default model: too small a favors overfitting to statistical
noise, while too large a returns the default model and shuns any
new information. There are several strategies for identifying the
optimal a, e.g., classical, historic, and the Bryan’s approach. It is
indeed one of the most important practical choices, along with
specifying the ω-grid and the default model D(ω).
In this work, we use OmegaMaxEnt software (ΩMaxEnt,

version 2018-01) by Bergeron and Tremblay.22 It uses fitted
spectral moments to regulate the output and maximum
curvature of the log(χ2)−log(a) plot to identify the optimal a.

Figure 1. Top, total τ( )1 of He at 2000 K. Noisy fluctuation near ⟨μ⟩2

= 0 is depicted in the inset. Bottom, same data given in discrete
Matsubara frequencies, α1(iωn). Discrete Fourier transform wrongfully
produces periodic data. One way to approach the trueMatsubara data is
to increase the period by adjusting the relative interpolation density
from 1/Δτ to infinity. Since the absolute magnitude of αl(iωn) drops
fast, and only a fraction ofMatsubara frequencies contribute to αl(ω) or
dispersion coefficients, we have chosen Δτ/8 as a safe interpolation
frequency.
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It is thus relatively independent of the choice of D(ω), which
makes for a good black box. For further details on the
implementation and techniques, we refer to ref 22 and the
user documentation.
A few practical notes on the use of ΩMaxEnt are in order.

First, for first-order polarizabilities we choose a bosonic
calculation, which enforces the problem to positive frequencies,
only. For the input, we use a real-valued ω ≥i( 0)n and its re-re
covariance matrix C, which are estimated from a set of Fourier
transformed PIMC results. In practice, the input data must be
truncated to nmax lowest Matsubara frequencies based on a few
rules of thumb: there has to be many enough high frequencies to
converge the estimation of spectral moments; yet, for too large
nmax, the inputs become unreliable due to random noise. A
particular problem is the covariance matrix C, which will be
inverted and needs to be nonsingular. However, by increasing
the number of MC samples, we get a more accurate estimate of
C, and enable more Matsubara frequencies to be used. In this
work, the number is usually between 50 and 800.
A non-uniform grid in main spectral range is manually adjusted

to promote resolution in the active spectral regions: the
electronic peaks and, with some molecules, the low-frequency
rotational spectra. We choose not to modify D(ω) from the
software default, which is a normalized Gaussian function
centered at ω = 0, whose variance depends on the estimated
spectral moments. Finally, the output data are given in the form

ω ωA( )/1
2

, where the negative frequencies obey antisymmetry

A(ω) =−A(−ω). Unfortunately, we cannot reliably estimate the
error of A(ω), but the typical qualitative error is that collections
of sharp peaks are replaced by a single soft form. This is
exemplified in Figure 2, which also demonstrates one of the

integral properties of MaxEnt: while increasingly tedious,
providing better input improves the result by sharpening the
spectrum while roughly maintaining its original weight.
3.4. Integral Transforms. The last two steps only involve

integral transforms of discrete numerical data. For both, the

actual integration is done numerically using the trapezoidal rule
with dense cubic spline interpolation.
The first transform, eq 14, can be rewritten as
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which is convenient, because the input is given as A(ω ≥ 0). It
also represents the resonant and antiresonant terms of
polarizability. Practically, the integration can be truncated after
the main spectral region, at around ℏω′ ∼ 10 at maximum.
Setting the dissipation term to η = 0.001 appears to produce
convergent results.
The calculation of dispersion coefficients involves products of

polarizabilities for two species (or just one paired with itself).
Thus, the integrand is nonlinear in the MC data, which has a few
consequences: First, random fluctuations in ⟨α(iωn)⟩ may not
exactly cancel out. This cannot be eliminated completely, but
some of the noise can be filtered out by smoothing the data
before integration with the moving average technique. Second,
the error estimate for each integrated term ΔC* is written as
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where l1 and l2 take values of 1, 2, and 3, and the integral is in
practice replaced by a sum over the components of Δω. As
before, ⟨α(iωn)⟩ decays fast in the growing n, and thus, the
integration can be safely truncated at, e.g., n = M.

4. RESULTS
We estimate dynamic polarizability for a collection of systems
with one or two electrons: H, He, Ps, Ps2, HD

+, and H2. The list
is not exhaustive, but diverse enough to demonstrate the most
important physical effects and features of the method. The
results involve three quantities, τ( )l , αl(iωn), and complex
αl(ω) computed for three multipole processes: dipole−dipole (l
= 1), quadrupole−quadrupole (l = 2), and octupole−octupole (l
= 3). Each system is simulated independently with two time
steps Δτ to probe for time-step error and to rule out the
possibility of numerical artifacts. The smaller time step is used
for the main results (solid line), while the bigger provides a
“sanity check” (dotted line): the results are roughly as reliable as
the two independent results are inseparable. The molecular
simulations are repeated at various temperatures between 200
and 1600 K to probe for weak and strong thermal effects. Finally,
we use αl(iωn) to compute dispersion coefficients between pairs
of species at 300 K. For reference, Table 1 contains a
compilation of all static polarizabilities and total energies, and
their statistical error estimates: 2σ standard error of the mean
(2SEM). Agreement with the available references is excellent.
All results are given in atomic units.

4.1. H andHe.To establish computation of purely electronic
spectra, we start with atomic species: isolated H and He. The
systems are simulated in clamped-nuclei approximation at T =
2000 K. At low temperatures, they are effectively in their
electronic ground states. Hence, the spectra and polarizabilities

Figure 2. Improvement of the MaxEnt spectrum of He at 2000 K as a
function of input data quality. The real (solid) and imaginary (dotted)
components of the dynamic polarizability α1(ω) are plotted using a
variable number of data blocks N, an arbitrary measure of computa-
tional effort. Even low-quality data produce a qualitatively meaningful
spectrum. The off-resonant data are good, but near the active spectral
region the MaxEnt data divert from the 0 K reference.50 Providing
better input data improves the sharpness systematically. However, using
this means to achieve narrow peaks with purely physical spectral
broadening leads to ill-conditioned scaling of computation. A better
strategy would be improving the default modelD(ω) (dashed), which is
rather plain in this work.
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are in good agreement with 0 K references.50,64 The time steps
are Δτ = 0.05, 0.1 for H and Δτ = 0.0125, 0.025 for He. The
correlation functions τ( )l and their Fourier transforms αl(iωn)

are presented in Figure 3. Real-domain dynamic polarizabilities
αl(ω) are obtained by analytic continuation and presented in
Figures 4 and 5. The imaginary part Im[αl(ω)] and the spectrum

Table 1. Comparison of Total Energies and Static Polarizabilities (with 2SEM Estimates) from the PIMC Simulations and
Available 0 K Referencesa

T (K) E Δτ α1(0) α2(0) α3(0)

H 2000 −0.49993(2) 0.05 4.5023(9) 15.011(7) 131.4(2)
300 −0.5000(2) 0.02 4.50(3) 15.03(12) 132(3)
0 −0.5 4.5b 15.0b 131.25b

He 2000 −2.9036(4) 0.0125 1.382(3) 2.435(9) 10.49(9)
300 −2.904(2) 0.02 1.38(4) 2.43(6) 10.5(4)
0 −2.90372c 1.383192d 2.445083d 10.620329d

H2 1600 −1.15855(9) 0.05 5.519(5) 26.83(5) 125.7(7)
800 −1.16168(12) 0.05 5.463(6) 34.38(9) 123.0(8)
400 −1.1630(2) 0.05 5.424(10) 47.7(3) 121.4(9)
300 −1.1633(8) 0.02 5.42(6) 53.4(10) 118(3)
200 −1.1637(3) 0.05 5.43(3) 66.1(5) 121(2)
0 −1.164025e 5.395708f 12.455708f

0 5.4139g

HD+ 1600 −0.59047(12) 0.05 11.96(3) 152.5(5) 156.7(6)
800 −0.59493(12) 0.05 19.04(4) 257(2) 214.9(9)
400 −0.59663(12) 0.05 33.73(7) 468(4) 345(2)
300 −0.5968(3) 0.02 43.6(4) 601(14) 426(8)
200 −0.5972(2) 0.05 62.3(3) 848(10) 557(6)
0 −0.597898h 395.306326h 2050.233354h 773.42727h

Ps2 400 −0.51598(8) 0.05 71.57(8) 1390(20) 5.3(4) × 104

300 −0.5158(2) 0.02 71.9(3) 1390(30) 5.2(4) × 104

200 −0.51593(12) 0.05 71.7(2) 1370(20) 5.1(3) × 104

0 −0.516004i
aFor H and He, the results are adiabatic, i.e., from clamped-nuclei simulations; otherwise, the results are fully nonadiabatic including rovibrational
motion. All values are given in atomic units. bBishop and Pipin.50 cPekeris,51 dYan et al.52 (data truncated). ePachucki and Komasa53 (data
truncated). fBishop and Pipin50 (isotropic averaging; separation R = 1.449; mismatch of α2 is due to the missing rotational component). gKolos and
Wolniewicz54 (isotropic averaging; separation R = 1.4). hTang et al.47 (data truncated). iUsukura and Suzuki55 (data truncated).

Figure 3. Correlation functions τ( )l and Fourier transforms αl(iωn) of H, He, and H2. With atoms, the thermal dependence is negligible, and the
results match with 0 K reference values.50 With H2, there is a weak centrifugal effect that separates 200 and 1600 K results from each other and the
reference in the dipole and octupole processes. On the other hand, a permanent quadrupole correlation causes a huge and thermally dependent
orientational effect that is shown in the inset of α2. It overrides the centrifugal effect and is also missing from the reference.
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Al(ω) are related, so the latter is not presented separately. The
real part Re[αl(ω)] provides the optical response.
Overall, agreement with the references is excellent at low

frequencies, but the amount of detail is limited in the active
spectral region (see Table 1 and Figures 3, 4, and 5). The same
holds for all of the simulated electronic spectra. The lower
moments of the MaxEnt spectrum, weight and alignment, are
generally accurate. However, the higher moments providing

sharpness and distinction between bound transitions are lost in
the noise. Spectral weight of the continuum is relatively small for
the dipole process but increases substantially with the higher
multipole transitions. Our polarizabilities are slightly higher than
the reference near the first electronic excitation. This mismatch
results from ”spilling” of the spectrum to inappropriate
frequencies due to the artificial spectral broadening. The true
frequency ranges between the lowest multipole transition and
continuum are 0.375 < ℏω < 0.5 for H and around 0.76 < ℏω <
0.90 for He.

4.2. Ps2. Next, we consider the nonadiabatic regime with
dipositronium, Ps2: an exotic system, whose dielectric proper-
ties, to the best of our knowledge, have not been simulated
before. The positron mass equals that of electron me ̅ = me, and
the simulation is thus fully nonadiabatic. Annihilation is not
considered. Ps2 is likely to dissociate at T > 800 K,65 so we
simulate it at temperaturesT = 200 and 400 Kwith time stepsΔτ
= 0.05 and 0.1. We have compiled the results of correlation
functions and imaginary-frequency polarizability to Figure 6 and
real-frequency dynamic polarizabilities to Figure 7. Total
energies and static polarizabilities are found in Table 1. Pure
positronic systems have much larger dielectric response than
regular atoms, but otherwise they act similarly. As seen in the
figures, all the imaginary-domain correlations have similar
scaling and only different orders of magnitude.
An interesting question is the relationship between Ps2 and Ps,

the latter of which can be solved analytically. First, the bound
dipole spectrum ranges of Ps (0.1875 < ℏω < 0.25) agree with
those of Ps2 (0.18160 < ℏω < 0.2424055) and the results of this
work. The higher multipole spectra are shifted to higher
frequencies. Second, the imaginary-time dipole correlation of
Ps2 at 300 K is approximately twice that of Ps, as shown in Figure
8. For two completely uncorrelated positroniums, this quotient
would be exactly 2. The small difference is related to the binding
energy of Ps2. The quadrupole correlations cannot be compared,

Figure 4.Dynamic polarizabilities α(ω) of H and H2. The spectral peaks of H are lower than those of H2, but their proportions remain approximately
the same in higher multipoles. While the results for H are in good agreement, H2 shows thermal and nuclear effects that are missing from the 0 K
references.50 The quadrupole polarizability α2(ω) of H2 has a large thermal effect due to rotational coupling: the low-frequency (IR) spectrum spreads
out, and the huge orientational polarizability decreases toward higher temperatures. At higher frequencies, the difference to 0 K is explained by
vibrational and centrifugal effects, and a different bond length used in ref 50. Unfortunately, different shapes of the electronic peaks are not entirely due
to electron−nucleus coupling: the spectral broadening due toMaxEnt inversion is worse with the heavier, low-temperature simulations. Consequently,
the results are generally sharper with the longer time step (dotted) than the shorter one (solid).

Figure 5. Real dynamic polarizabilities Re[α(ω)] and spectral
functions A(ω) of He at 2000 K. In higher multipoles, the spectral
moments grow in magnitude and frequency. The results are in good
agreement between big (dotted) and small (solid) time steps and the 0
K reference.50

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00859
J. Chem. Theory Comput. 2018, 14, 5750−5763

5757

http://dx.doi.org/10.1021/acs.jctc.8b00859


because α2 is zero for Ps. The octupole processes converge to a
quotient of approximately 30, but the response at lowMatsubara
frequencies does not show any intuitive behavior. The transient
occurs at ℏωn < 15, which involves the first ∼2500 Matsubara
frequencies at 300 K.
4.3. H2 and HD+. Finally, we study combined electronic,

nonadiabatic, thermal, and nuclear quantum effects featured in
two molecular systems: H2 and HD+. For both systems, the
temperatures are T = 200, 400, 800, and 1600 K and time steps
Δτ = 0.05 and 0.1. The simulation is nonadiabatic with fully
quantized nuclei, using mp = 1836.15267248me and md =

3670.480492233me for the respective masses of proton and
deuteron. The correlation functions and imaginary-frequency
polarizabilities are presented in Figures 3 and 9 depending on
the multipole symmetry. Dynamic polarizabilities are shown in
Figures 4 for H2 and 10 for HD+.
While the molecules are effectively in their electronic ground

states, their nuclear motion depends on the temperature. This
may cause a weak or a strong effect on the total molecular
polarizability. The weak effect is related to centrifugal distortion:
the bond becomes longer, if a molecule is in a high rotational
ensemble (high temperature); hence, the electric moments
usually get slightly larger.42 This is most readily seen by
comparing 200 and 1600 K data of τ( )l in Figures 3 and 9.
The strong effect is caused by nonzero electric moments. The

molecule pursues a favorable orientation with the perturbing
field, which causes a dominant, orientational contribution to the
average polarizability.41 High rotational ensemble interferes
with the orientation, and hence, the rotational effect fades off as
the temperature increases.42,43,46 In higher orders, this effect is
reproduced between nonzero anisotropy of tensorial polar-
izability and an associated hyperpolarizability.42,43,46 Here,
permanent moments are present in α2 of H2 and each αl of
HD+, whose figures also have insets showing the strong decay of
the rotational polarizability as T increases. At the low-
temperature limit, all rotational motion is deactivated and the
static polarizability saturates to a finite value.43 Beyond the static
limit, the rotational effect fades off rapidly in terms of both real

Figure 6. Logarithmic plots of τ( ) and α(iωn) of Ps2 at 200 and 400 K.
Different multipole correlations have similar scaling but different orders
of magnitude. A small thermal effect increment is observed at the higher
temperature. This is most pronounced in the octupole order, which is
depicted in the insets.

Figure 7. Dynamic polarizabilities α(ω) of Ps2 at 200 and 400 K. Here, all the spectra are located roughly at the same frequency interval, but the
spectral weights escalate in higher multipoles. There is a small thermal increment in the higher multipole polarizabilities, as supported by Figure 6. The
differences in spectral sharpness, however, are mostly due to the numerics.

Figure 8. Scaled quotients between αl(iωn) of Ps2 and Ps at 300 K. The
scaling factor is chosen such that the fraction converges to unity as iωn
→∞. For instance, it is understandable that the dipole polarizability of
Ps2 almost equals twice that of Ps.
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and imaginary frequencies. This limits the spectral activity of
rotation to infrared frequencies. At higher frequencies, the
optical properties are dictated by the electronic spectra.
Therefore, our results for H2 beyond infrared agree with
isotropic averages computed with eqs 28 and 29, and the
available electronic reference data.50

4.4. Dispersion Coefficients. Lastly, we demonstrate an

additional use of imaginary-frequency polarizability data:

computing London dispersion coefficients using eqs 31−33.
For this purpose, we simulated H, He, H2, HD

+, Ps, and Ps2, the

same as before but using compatible temperature and time step:

Figure 9. Correlation functions τ( ) and Fourier transforms α(iωn) of HD
+ at variable temperatures. A weak centrifugal effect is seen as τ( )l

saturates to slightly different finite values: the effect is also inverted between the dipole and the higher orders. On the other hand, α(iωn) exhibits a
strong rotational effect, which decays fast in both the temperature and the Matsubara frequencies. Thermal and time-step effects are not as complex as
they first seem: rather, the error of cubic spline interpolation is demonstrated by applying it for the smaller time step (solid) but not the bigger one
(dotted). The actual data points are marked with circles. The large-scale data of α(iωn) are shown in the insets and do not have notable thermal effects
at higher frequencies.

Figure 10. Dynamic polarizabilities α(ω) of HD+ at variable temperatures. HD+ is IR-active in all multipoles, and thus, in each plot, we can see
broadening of the IR spectrum and thermal decay of the orientational effect. The temperature causes considerable shifting and broadening also to the
electronic spectra, only a part of which is explained by the numerical deficiency of MaxEnt. There is a reasonable agreement between the bigger
(dotted) and the smaller (solid) time steps.
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T = 300 K andΔτ = 0.02. Proof-of-concept results between each
pair of species are presented in Table 2.

Most results match the available 0 K references,47,50,52

because as we have shown, the thermal dependency of
polarizabilities is negligible for most of the systems considered
here. Exceptions are the polarizabilities associated with
permanent electric moments: α2 of H2 and all αl of HD

+. As
seen in Figures 3 and 9, they have quickly vanishing and
thermally dependent rotational peaks at low Matsubara
frequencies. This leads to a small yet noticeable difference
between our 300 K results and the 0 K electron-only references:
the peaks effectively increase the values of the dispersion
coefficients; the effect of rotational coupling is attractive.
Otherwise (e.g., Ps systems) the coefficients are being reported
for the first time. Our approach provides a rather direct but
accurate interface for incorporating nuclear quantum effects,
orientational averaging, and thermal trends into weak molecular
interactions.

5. SUMMARY
We have given a detailed demonstration of estimating dynamic
multipole polarizabilities from all-electron PIMC simulations. In
particular, we have computed autocorrelation functions of the
three lowest electric multipoles and analytically continued them

with the MaxEnt method. We have validated our approach by
reproducing well-known reference values for some one- and
two-electron systems: H, He, and H2. However, we have also
provided new complementary data, such as the higher-moment
spectra and polarizabilities of H2, HD

+, and Ps2. Similarly, we
have provided van derWaals dispersion coefficients between the
aforementioned species. The coefficients are spherically
averaged and include a full thermal ensemble of electric
interactions at 300 K.
Indeed, the paradigm of our approach is to provide mixing, as

opposed to separation, of the degrees of freedom. Of course,
explicit decomposition of the electronic, rovibrational, non-
adiabatic, and thermal problems can be very insightful in simple
systems, such as those featured in this work. For instance, the
existing models for rotational spectrum, zero-point vibration,
and absorption cross-section, etc., are very intuitive and precise.
Such quantum phenomena we can merely pinpoint from the
PIMC results, but not quite reverse engineer. The electronic
spectrum itself is a challenge to reproduce at the sharpness and
precision of ab initio methods. However, for the purpose of exact
mixing of all the degrees of freedom, PIMC provides a rather
unique and controllable interface. This will be useful in more
complex environments, where harmonic and adiabatic approx-
imations start to fail.
The shortcomings of our approach are mostly due to the ill-

posed nature of analytic continuation. A method beoynd
MaxEnt is called for but, as of today, not readily available. A
universal remedy is increasing computation: ”to solve an ill-
posed problem, nothing beats good data”, as stated by Jarrell and
Gubernatis.21 After all, what counts as heavy today can well be
the standard of tomorrow. In that sense, all-electron simulation
with PIMC holds the future prospect of a high-accuracy
electronic structure benchmark. A natural follow-up for the
future will be the simulation of systems that are challenged with
the exchange interaction, the fermion sign problem.
In the end, polarizability itself is rather a single example of

dynamic response based on quantum correlation functions; the
proposed scheme works as a template to numerous similar
problems, and vice versa. A lot more will be learned and achieved
by developing better practices for producing and processing
QMC data, and here we have only taken a first step.

■ APPENDIX A: OPTIMIZING AUTOCORRELATION IN
PIMC

Computation of an imaginary-time autocorrelation function can
be the bottleneck of a PIMC simulation, when the number of
time slices is large. It is thus reasonable to briefly discuss
optimization of such a procedure.
We consider measurement of a correlation function from a

sample trajectory R, which hasM time slices separated by a time
stepΔτ. A single measurement means choosing a reference time
slice Rk and correlating it with another time slice Rk+m such that

τΔ = +C m P R Q R( ) ( ) ( )PQ k k m (50)

where k + m goes from 0 to M − 1 and symmetry CPQ(mΔτ) =
CPQ(−mΔτ) is assumed. As pointed out in eq 37, the imaginary
time slices are equivalent: by shifting the reference time slice, i.e.,
k goes from 0 to M−1, we get M independent correlation
functions from a single sample trajectory R. While efficient in
terms of sampling, making M2 measurements is an intensive
computational task.

Table 2. Dispersion Coefficients (with 2SEM Estimates) for
Pairs of Atoms and Molecules at 300 K, Using Δτ = 0.02a

C6 C8 C10

H−H 6.50(4) 124.7(4) 3300(9)
6.4990267b,d 124.39908b,d 3285.8284b,d

H−He 2.82(4) 41.9(3) 873(4)
2.8213439b,d 41.828b,d 871.23b,d

H−H2 8.78(7) 164.8(8)f 4003(12)
8.7843286d 161.31542d

H−HD+ 6.35(12)f 135(5)f 2620(50)f

5.3815691c 99.592513c 2023.6873c

H−Ps 34.8(3) 318(2) 11560(60)
H−Ps2 68.7(4) 4210(50) 3.35(6) × 105

He−He 1.46(2) 14.09(9) 182.7(8)
1.4609778b,d 14.117857b 183.69107b

He−H2 4.01(5) 56.4(4)f 1008(4)
4.0128132d 55.381453d

He−HD+ 2.65(9)f 41(3)f 507(10)f

2.3441447c 31.043629c 416.42889c

He−Ps 13.4(2) 60.9(6) 3040(30)
He−Ps2 26.4(4) 1520(30) 1.17(3)×105

H2−H2 12.04(12) 219.1(1.3) 4870(20)
12.058168d

H2−HD+ 8.4(3) 184(8) 3800(200)
H2−Ps 45.2(4) 401(4) 13270(70)
H2−Ps2 89.2(8) 5470(70) 4.32(8) × 105

HD+−HD+ 11.7(1.2) 530(70) 16000(3000)
HD+−Ps 37(1) 510(40) 7940(120)
HD+−Ps2 74(3) 4800(200) 3.7(2) × 105

Ps−Ps 207.3(1.3) 0e 68400(400)
Ps−Ps2 410(3) 21000(300) 1.59(4) × 105

Ps2−Ps2 811(5) 83200(800) 1.000(12) × 107

aAvailable 0 K data provided for reference. bYan et al.52 cTang et al.47
dBishop and Pipin.50 eThe quadrupole moment of Ps is zero by the
symmetry of masses. fThe mismatch is due to orientational and
thermal effects that are missing from the reference.
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A few optimizations can make the practical calculation
significantly faster. First, rather than measuring P orQ on the fly,
an array of measurements should be stored into memory, e.g., Pk

= P(Rk). If the observable is tensorial, a contiguous memory
layout should be preferred for the imaginary-time dimension.
Second, unnecessary checkups and modification of indices
should be avoided. The following pseudocode achieves this:

where D is another array that only has M/2 indices. Namely,
only half the data needs to be recorded because of the symmetry.
Moreover, if we are computing an autocorrelation function, i.e.,
Q = P, the previous code simplifies to

The previous loops are also easy to parallelize. Third, using a
finite stride is advised between the measurements and
subsequent sample trajectories: e.g., only every 100th sample
is measured. However, a stride in imaginary time should not be
used, because it could resonate with the statistical properties of
the data. Finally, using a compressed binary data format, such as
the hierarchical data format (HDF), and storing the data in
average bins or blocks over a large number of measurements are
strongly recommended.
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(8) Kylan̈paä,̈ I.; Ras̈an̈en, E. Path integral Monte Carlo benchmarks
for two-dimensional quantum dots. Phys. Rev. B: Condens. Matter Mater.
Phys. 2017, 96, 205445.
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(11) Tubman, N. M.; Kylan̈paä,̈ I.; Hammes-Schiffer, S.; Ceperley, D.
M. Beyond the Born-Oppenheimer approximation with quantum
Monte Carlo methods. Phys. Rev. A: At., Mol., Opt. Phys. 2014, 90,
042507.
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(44) Hohm, U.; Trümper, U. Temperature dependence of the dipole
polarizability of xenon (1S0) due to dynamic non-resonant Stark effect
caused by black-body radiation. Chem. Phys. 1994, 189, 443−449.
(45) Bishop, D.M.; Pipin, J. Temperature-dependence of the dynamic
dipole polarizability of H2. Mol. Phys. 1991, 72, 961−964.
(46) Bishop, D. M. Molecular vibrational and rotational motion in
static and dynamic electric fields. Rev. Mod. Phys. 1990, 62, 343−374.
(47) Tang, L.-Y.; Yan, Z.-C.; Shi, T.-Y.; Babb, J. F. High-precision
nonadiabatic calculations of dynamic polarizabilities and hyper-
polarizabilities for low-lying vibrational-rotational states of hydrogen
molecular ions. Phys. Rev. A: At., Mol., Opt. Phys. 2014, 90, 012524.
(48) Bloembergen, N.; Shen, Y. R. Quantum-Theoretical Comparison
of Nonlinear Susceptibilities in Parametric Media, Lasers, and Raman
Lasers. Phys. Rev. 1964, 133, A37−A49.
(49) Bresme, F. Equilibrium and nonequilibrium molecular-dynamics
simulations of the central force model of water. J. Chem. Phys. 2001,
115, 7564−7574.
(50) Bishop, D. M.; Pipin, J. Dipole, quadrupole, octupole, and
dipoleoctupole polarizabilities at real and imaginary frequencies for H,
HE, and H2 and the dispersion-energy coefficients for interactions
between them. Int. J. Quantum Chem. 1993, 45, 349−361.
(51) Pekeris, C. L. Ground State of Two-Electron Atoms. Phys. Rev.
1958, 112, 1649−1658.
(52) Yan, Z.-C.; Babb, J. F.; Dalgarno, A.; Drake, G. W. F. Variational
calculations of dispersion coefficients for interactions among H, He,
and Li atoms. Phys. Rev. A: At., Mol., Opt. Phys. 1996, 54, 2824−2833.
(53) Pachucki, K.; Komasa, J. Schrdinger equation solved for the
hydrogen molecule with unprecedented accuracy. J. Chem. Phys. 2016,
144, 164306.
(54) Kolos, W.; Wolniewicz, L. Improved Theoretical Ground-State
Energy of the Hydrogen Molecule. J. Chem. Phys. 1968, 49, 404−410.
(55) Usukura, J.; Suzuki, Y. Resonances of positronium complexes.
Phys. Rev. A: At., Mol., Opt. Phys. 2002, 66, 010502.
(56) Kielich, S.Dielectric and Related Molecular Processes, Vol. 1; Royal
Society of Chemistry: Cambridge, U.K., 1972; pp 192−387,
DOI: 10.1039/9781847555878.
(57) Berne, B. J. Time-Dependent Properties of CondensedMedia. In
Physical Chemisry: An Advanced Treatise. Liquid State, Vol. VIIIB;
Henderson, D.Elsevier, 1971; pp 539−716, DOI: 10.1016/B978-0-12-
245658-9.50010-9.
(58) Stefanucci, G.; van Leeuwen, R. Nonequilibrium Many-Body
Theory of Quantum Systems: A Modern Introduction; Cambridge
University Press: Cambridge, U.K., 2013; DOI: 10.1017/
CBO9781139023979.
(59) Wagnier̀e, G. The evaluation of three-dimensional rotational
averages. J. Chem. Phys. 1982, 76, 473−480.
(60) Tao, J.; Rappe, A.M. Communication: Accurate higher-order van
der Waals coefficients between molecules from a model dynamic
multipole polarizability. J. Chem. Phys. 2016, 144, 031102.
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