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Abstract. Direct sampling of multi-dimensional systems with quantum Monte Carlo
methods allows exact account of many-body effects or particle correlations. The most
straightforward approach to solve the Schrödinger equation, Diffusion Monte Carlo,
has been used in several benchmark cases for other methods to pursue. Its robustness
is based on direct sampling of a positive probability density for diffusion in imaginary
time. It has been argued that the corresponding real time diffusion can not be realised,
because the corresponding oscillating complex valued distribution can not be used to
drive diffusion. Here, we demonstrate that this can be done by turning the distribution
piecewise positive and normalisable, and also, by using four types of walkers. This
study is a proof of concept demonstration using the well-known and transparent case:
one-dimensional harmonic oscillator. Furthermore, we show that our novel method
can be used to find not only the ground state but also excited states and even the time
evolution of a given wave function. Considering fermionic systems, this method may
turn out to be feasible for finding the wave function nodes for other approaches.

AMS subject classifications: 81-08
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1 Introduction

Quantum Monte Carlo (QMC) methods form a collection of robust approaches to study
quantum many-particle systems [1]. With QMC the central benefit is that one can deal
with multi-dimensional systems, where standard grid based methods become computa-
tionally too heavy. With Path Integral and Green’s function approaches the many-body
effects or correlations can be taken into account without introducing approximations and
evaluated within numerical accuracy, which is limited by the computational resources,
only. Furthermore, if starting from the first-principles, also the systematic errors are
avoidable. Thus, for the field of electronic structure calculations, with QMC one can
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benchmark the energetics and structure of atoms and molecules with desired accuracy. It
is even straightforward in cases where the wave function is everywhere positive or can
be considered as piecewise positive between given nodes.

Diffusion Monte Carlo (DMC) or Green’s function Monte Carlo is a typical represen-
tative of QMC. In several cases it has been demonstrated to be a simple but accurate
approach to find the ground state [1,2]. In particular, both bosonic [3] and fermionic [4,5]
systems have been successfully considered. A recent example is benchmarking the hy-
drogen molecule and its simple reaction conformations with increasing accuracy [6].

With DMC the Schrödinger equation in imaginary time turns to a diffusion equation,
whose ”imaginary time evolution” or iteration converges to the ground state. Transfor-
mation of the Schrödinger equation to the corresponding integral equation shows how
diffusion can be simulated with random walkers guided by the interactions of quantum
particles. The walker distribution, which is everywhere positive converges to the ground
state wave function. This is the simple idea of DMC simulation, where it is essential that
the product of the wave function and diffusion probability is everywhere positive. The
latter one is the kernel of the integral equation [6–9].

Due to the everywhere positive ”diffusion distribution” interpretation as the wave
function, simulation of excited states and indistinguishable fermions becomes problem-
atic with DMC [4,10]. Nodes of the wave function should be known, e.g. by symmetry, or
approximated with good enough accuracy to make it piecewise positive. Though there
are practical approximate ways around the problem, mostly with approximate nodes,
this remains as an impediment with DMC.

Based on the probability interpretation of the kernel and wave function, and diffusion
nature of the random walk, it has been argued that the simple and useful principles
of DMC, above, can not be used to solve the Schrödinger equation with real time path
integrals [11, 12]. In this study we show that this is not true and we present a practical
solution to this problem, which is related to the sc. ”numerical sign problem” of real-time
path integrals [12]. Furthermore, we demonstrate that our new real-time path integral
approach is capable of finding, not only the ground state, but also excited states, and
also, it can be used to simulate proper real time quantum dynamics – not to be mixed
with diffusion.

This study is a proof-of-concept demonstration of a novel ”real-time DMC”. There-
fore, we have chosen a transparent test case, the well-known one-dimensional harmonic
oscillator (ODHO), where the method and its performance are clearly seen. We also ben-
efit from the exact propagator of the harmonic oscillator while testing the real-time diffu-
sion.

2 Diffusion Monte Carlo and its real time counterpart

2.1 Positive probability density

The well-known imaginary time (τ= it) integral equation of the conventional Diffusion
Monte Carlo (DMC or τDMC) for the many-body wave function ψ is
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ψ(xb,τb)=
∫

a
G(xb,τb;xa,τa)ψ(xa,τa)dxa, (2.1)

where the kernel G is the Green’s function of the system, the position space representation
of the imaginary time evolution operator. The Eq. (2.1) is written in one-dimensional
space of x, here and in what follows, but extension to more dimensions is trivial. For a
time step τ=τb−τa, and using the Trotter expansion one gets

G≈ GdiffGB,

Gdiff=Cexp
[

−(xb−xa)
2/2τ

]

,

GB=exp

[

−
(

1

2
(V(xb)+V(xa))−ET

)

τ

]

,

(2.2)

where C=(2πτ)−3/2 and ET is the trial energy, iterated to the ground state total energy
at self-consistency, ψ(xb) = ψ(xa). The Green’s function and the stationary solution of
Eq. (2.1) becomes exact as τ→0.

Now, the kernel G is everywhere real and positive, and therefore, it can be considered
as a normalizable probability density in Monte Carlo evaluation of the ground state wave
function ψ(x) as the stationary walker density [2]. The power of τDMC arises from the
independence of Monte Carlo walkers in ”diffusion”, and also, the locality of Gdiff, which
increases the accuracy of GB.

The imaginary time integral equation (2.1) can be derived from the more fundamental
real time equation [7] of the same form

ψ(xb,tb)=
∫

a
K(xb,tb;xa,ta)ψ(xa,ta)dxa, (2.3)

where the kernel K is the path integral over the time step t= tb−ta, (ta < tb),

K(xb,tb;xa,ta)=
∫ xb

xa

exp(iS[xb,xa])Dx(t). (2.4)

Here S[xb,xa]= S[x](xb,xa)=
∫ tb

ta
Lxdt is the action along the path x(t) from a=(xa,ta) to

b = (xb,tb) and Lx is the corresponding Lagrangian [7]. Now, finding the Monte Carlo
solutions for ψ from Eqs. (2.1) and (2.3) greatly differ.

The τDMC diffusion like procedure can not be used directly to solve Eq. (2.3) for ψ,
because the kernel K, as a path integral, is a complex valued functional of interfering
paths coupling all of the walkers. Thus, K can not be interpreted as a probability [11, 12],
and furthermore, it is delocalised with complex exponential tails oscillating in whole
space, the more the shorter the time step t.

Here, we present a novel idea solving this problem and formulate a ”real-time diffu-
sion Monte Carlo” (tDMC or RTDMC) procedure, which retains the advantage of ”dif-
fusion of independent walkers”. Furthermore, the tDMC enables evaluation of excited
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states and even real time quantum dynamics, out of reach with the τDMC. We have these
advanced features in our direct real-time path integral (RTPI) approach [8, 9], already,

but there, all of the paths coupling the walkers {xai}Na
i=1 and {xbj}Nb

j=1 need to be consid-

ered. With increasing number of walkers it leads to quadratic growth (∝ N2, assuming
Na = Nb = N) of computational efforts with RTPI. With tDMC, however, the growth of
efforts is close to linear (∝ N), only.

First, we separate the integrand in Eq. (2.3) to terms, which can be considered as ”pos-
itive probabilities”, and second, we accomplish normalization by restricting the space of
integration. We separate similarly both the kernel K ∝ exp(iφ) [7] and the wave function
ψ(a) at the right hand side of (2.3) to four parts as

K(b,a)=Cexp(iφ)=C [cos(φ)+isin(φ)]=C
[

cos(φ)+icos(
π

2
−φ)

]

=C

[

cos2(
φ

2
)−sin2(

φ

2
)+i

(

cos2

( π
2 −φ

2

)

−sin2

( π
2 −φ

2

))]

=K+(b,a)−K−(b,a)+iK+i(b,a)−iK−i(b,a) (2.5)

and

ψ(a)=ψ+(a)−ψ−(a)+iψ+i(a)−iψ−i(a). (2.6)

This splits the integrand into 16 terms. Here C and φ are some functions of a and b,
that can be chosen so that C is real and positive. Rearrangement of these terms allows
splitting the left hand side of (2.3) with the same principle as

ψ+(b)=
∫

a
K+ψ+dxa+

∫

a
K−ψ−dxa+

∫

a
K+iψ−idxa+

∫

a
K−iψ+idxa,

ψ−(b)=
∫

a
K+ψ−dxa+

∫

a
K−ψ+dxa+

∫

a
K+iψ+idxa+

∫

a
K−iψ−idxa,

ψ+i(b)=
∫

a
K+ψ+idxa+

∫

a
K−ψ−idxa+

∫

a
K+iψ+dxa+

∫

a
K−iψ−dxa,

ψ−i(b)=
∫

a
K+ψ−idxa+

∫

a
K−ψ+idxa+

∫

a
K+iψ−dxa+

∫

a
K−iψ+dxa,

(2.7)

each of which is everywhere real and positive. Here, all of the Ksub and ψsub on the
right-hand side stand for Ksub(b,a) and ψsub(a), respectively, where a=(xa,ta), b=(xb,tb)
and sub = { +,−,+i,−i }. Thus, the complete wave function at the end of the time step
t= tb−ta can be written as

ψ(b)=ψ+(b)−ψ−(b)+iψ+i(b)−iψ−i(b). (2.8)

Thus, our approach is reminiscent of an old τDMC method of Arnow et al. [4], where
positive and negative walkers were used for the respective parts of the wave function.
The main differences are the following. Here, we have four types of walkers and each
walker generates all other types of walkers. Therefore, all parts of Eqs. (2.7) are correlated
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and unlike in τDMC [4] they do not separately converge to the ground state, but instead,
we are able to simulate time evolution of a complex time-dependent wave function, as
discussed below.

In Eqs. (2.7), we have a fully delocalised piecewise everywhere positive probability
density to sample, which first needs to be normalised. In case of a wave function localized
in a finite domain we know that the contributions to ψ(b) in Eq. (2.8) cancel outside the
domain and close to the domain boundaries inside. Then, we can normalise the partial
probabilities of Eq. (2.5) in a so chosen domain and run diffusion localised in the domain.
Next, let us discuss the kernel and related approximations.

2.2 Kernel

The kernel in closed form is known for a few special systems only [7, 14]. The harmonic
oscillator (V(x)= 1

2 mω2) is one of those with the kernel

K(xb,tb;xa,ta)=exp(−iθ)

(

mω

2πh̄|sin(ωt)|

)1/2

×exp

{

imω

2h̄sin(ωt)

[

(x2
b+x2

a)cos(ωt)−2xbxa

]

}

, (2.9)

where t= tb−ta and θ = π
4 (1+2trunc(ωt/π)). Here, ”trunc(x)” denotes the truncation

function, the largest integer less than or equal to x.

In general, for a given potential V(x) we need to approximate kernels and the most
usual approximation is sc. ”short time approximation” or Trotter kernel [11, 13]

K(xb,tb;xa,ta)≈
[

1

2πit

]N/2

exp

[

i

2t
(xb−xa)

2− it

2
(V(xa)+V(xb))

]

, (2.10)

which becomes exact as t→0, cf. Eq. (2.2).

Both of the kernels (2.9) or (2.10) can be written in the piecewise positive form by
using the recipe given in Eq. (2.5). For the Trotter kernel we define notations: average

Lagrangian L̄=
[

1
2t(xb−xa)2

]

−
[

t
2 (V(xa)+V(xb))

]

, C=
[

1
2πt

]1/2
and D= C

√
2

2 . Then, we
write

K(b,a)=C(−i)1/2exp(i(L̄))=Cexp
(

i
(

L̄−π

4

))

=
C
√

2

2

[

cos
(

L̄−π

4

)

+isin
(

L̄−π

4

)]

=D

[

cos
(

L̄−π

4

)

+icos
(3π

4
− L̄

)

]

=D

[

cos2
( L̄− π

4

2

)

−sin2
( L̄− π

4

2

)

+i

(

cos2
( 3π

4 − L̄

2

)

−sin2
( 3π

4 − L̄

2

)

)

]

≡D [K+(b,a)−K−(b,a)+iK+i(b,a)−iK−i(b,a)] . (2.11)
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In case of the harmonic oscillator it should be noted, that while the accuracy of short
time approximation increases with decreasing time step, the exact kernel allows any
length of time step. However, both of these kernels diverge for t= 0 and the exact one
also periodically for tn =nπ/ω.

2.3 Real-time diffusion

While the imaginary time diffusion is a very local phenomenon, the more the shorter the
time step τ, whereas, the real-time diffusion is fully delocalized in form of oscillatory
sin2 and cos2 functions, the wave length depending on the average Lagrangian in the
time step t. Thus, it is sufficient to consider and normalize these distributions in the
chosen domain, only, and correctly with respect to each other. Diffusion out of the box
can be ignored, because it is known that the different contributions in Eqs. (2.8) cancel at
long distances.

The four parts of the initial wave function ψ(a) in Eq. (2.6) are presented with cor-
responding four sets of walkers, whose total number is Na. Neither real contributions
ψ+(a) and ψ−(a) nor the imaginary contributions ψ+i(a) and ψ−i(a) should pairwise
overlap as the complex wave function should be single valued. This is not absolutely
necessary to carry on calculations, as we show later. Now, the real-time diffusion of these
walkers according to the Eq. (2.7) results in four strongly delocalised and pairwise over-
lapping contributions, real ψ+(b) and ψ−(b), and imaginary ψ+i(b) and ψ−i(b). Then, the
real and imaginary parts of the wave function are simply the two sums of their positive
and negative contributions. These are found by cancellation or pairwise annihilation of
nearby walkers until the nodal surfaces between the positive and negative amplitudes
appear.

There is a large cancellation of walkers also in the box, e.g., the wave function must
vanish close to the domain boundaries, and similar cancellation turns out to dominate
everywhere in the domain. In fact, it is only a small fraction of walkers, which eventu-
ally remain presenting the wave function. Due to the massive cancellation of diffusing
walkers all initial walkers need to be massively duplicated in each time step to maintain
the total number of walkers.

A one-timestep real time diffusion is demonstrated in Fig. 1. The initial state is ODHO
ground state gaussian real wave function, i.e., ψ(a)=ψ+(a). The real components ψ+(b)
and ψ−(b) after propagation with the exact kernel (2.9) over a short time step t are shown.
We see that most of the walkers will cancel out, leaving behind the initial real gaussian
shape, but slightly scaled down. Similarly, the ψ+i(b) and ψ−i(b) after cancellation result
in a small negative gaussian shape for the imaginary part, as expected, not shown in
Fig. 1. This corresponds to rotation of the wave function from the real axis downwards
with a small angle, which is interpreted as multiplication with the phase factor e−iEt/h̄.

Here we use a simple one-dimensional cancellation algorithm. We define a walker
touch parameter δ, and when positive and negative walkers appear closer than δ, they
annihilate each other. Finding an efficient cancellation algorithm turns out to be a key fac-
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Figure 1: Distribution of a) positive and b) negative walkers (ψ+(b) and ψ−(b)) after one time step t= 0.1

from gaussian real wave function ψ+(a) and N(xa)≈107 walkers. Histogram bin width is 0.08.

tor in the present method with large number of walkers and oscillatory nature of tDMC
propagators it may become a key issue in multidimensional spaces. Continuation with-
out walker annihilation leads to waste of efforts, as can be predicted from Fig. 1, and
finally, losing the remaining meaningful wave function into noise. This is one manifesta-
tion of the ”sign problem”, which still is an area of ongoing research [6, 10, 15].

3 Coherent propagation

First, we consider straightforward simulation of quantum dynamics by using the above
developed tDMC. We call this coherent propagation, because the phase factor of the wave
function is properly treated. Next, we consider incoherent propagation and demonstrate
its use for finding the stationary eigenstates of the system instead of running full quan-
tum dynamics.

3.1 Quantum dynamics from real time diffusion

Because this study is a ”proof of the concept tDMC”, we continue with the simple, well-
known and transparent ODHO as the test bench. Furthermore, for ODHO we have the
exact propagator available, and thus, the issues related with the real time diffusion and
approximate propagators can be investigated separately.

Hence, we run dynamics of a particle in the potential V(x)= 1
2 mω2x2 with ω=2. This

may be related to an electron in a ”harmonic quantum dot” or in an atom. Thus, it is
practical to use related atomic units, where m= h̄ = a0 = 1, where a0 is the Bohr radius
and the unit of time is (ma2

0)/h̄ ≈ 24 as. Now, ω = 2 corresponds to relatively strong
confinement.
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Figure 2: Distribution of walkers after the first time step, T=π/4, from the positive real ground state ψ+(a)
of ODHO, followed by cancellation. All four components of the wave function are presented: a) positive real

(N≈6.27×107), b) negative imaginary (N≈6.26×107), c) negative real (N≈2.0×103) and d) positive imaginary
(N≈ 0.9×103) walkers. Note the different scaling on the vertical axes of the latter two. Red solid line is the
properly normalized exact wave function and same normalization is used for all components. Notations are the
same as in Fig. 1.

For the stationary ground state dynamics (E= 1), in each time step we expect to see
the rotation of the phase factor exp(−iEt/h̄) = exp(−it), only, without any change in
the absolute value of the wave function. Thus, the dynamics is expected to be simple
oscillation of the real and imaginary parts of the ground state wave function in a phase
difference of π/2. The initial phase is chosen to be zero at T0 = 0, i.e., ψ(0) = ψ+(a)
as before. We start with N(a) = 107 and run the simulation with the exact kernel (2.9),
time steps t = π/4 and duplicating walkers in xa enough so that after the cancellation
N(b)≥N(0). Fig. 2 shows the distribution of remaining walkers after the first time step,
T=π/4.

As expected, we find the same copy of the starting gaussian as the positive real and
imaginary parts and small remnants of incomplete cancellation in both opposite sign
parts, as a numerical error. Here, with the walker touch parameter δ=0.01, the remaining
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Figure 3: Distribution of negative imaginary walkers at a) T=π/4, b) T=2π/4, c) T=3π/4 and d) T=4π/4
in the dynamics started in Fig. (2). Notations are the same as in Fig. 2.

opposite sign walkers are less than the proper walkers with a factor smaller than 10−4.
Thus, the cancellation is almost perfect.

In Fig. 3 we show the negative imaginary part of the wave function from further
simulation, at times T=π/4, 2π/4, 3π/4, and 4π/4. Clearly, the evolution is correct and
at T=π the wave function is purely real and negative with zero imaginary contribution.

3.2 Evaluation of observables and eigenenergies

Evaluation of transient expectation values of local operators, like multiplicative potential
energy faces the same problem as with the τDMC, the wave function is given by the
walker density, only. Application of operators on the wave function or even finding the
square of the wave function ψ∗ψ numerically is not straightforward. In our earlier studies
we have demonstrated, that for τDMC one can easily evaluate the complex valued wave
function of the system at each τDMC walker by using our direct real time path integral
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(RTPI) approach [8]. The RTPI time step is heavy to calculate, and therefore, could be
restricted only to a few τDMC iteration steps, where needed.

Now, the RTPI can be used together with tDMC similarly as with τDMC in cases,
where the wave function is purely real or imaginary. This becomes relevant and useful
with eigenstates and incoherent dynamics, in the next section.

With the eigenstates we should be able to monitor the phase factor of the wave func-
tion to find the corresponding eigenenergies. Now, we cannot evaluate the local energy
for each walker as can be done with RTPI [8]. However, we can evaluate the change in the
ratio of the number of real and imaginary walkers to approximate the average collective
change in the phase factor. Thus, for the eigenenergy we write

E=− θh̄

t
=−tan−1

(

ψIm

ψRe

)

h̄

t
≈ tan−1

(

N(x∓i)

N(x±)

)

h̄

t
. (3.1)

For this to be accurate the time step should be short enough that the phase angle θ is
small, but also, the ratio N(x∓i)/N(x±) should be close to one so that the noise effect is
minimised. Furthermore, one should keep track of the quadrants of the complex plane
and corresponding changes of sign, where relevant.

If the wave function is not an eigenstate but a superposition, for a short time step and
small angle we can approximate

− θh̄

t
=−tan−1

(

∑i cisin(θi)

∑i cicos(θi)

)

h̄

t
≈−tan−1

(

∑i ciθi

∑i ci

)

h̄

t
≈ ∑i ciEi

∑i ci
=E, (3.2)

where the sum goes over the eigenstates with contributions ci.

4 Incoherent propagation

Earlier, we have developed the RTPI for coherent quantum dynamics and another RTPI
version with incoherent dynamics for finding the eigenstates and energies of a system [8].
The incoherent dynamics is kind of quantum Zeno propagation, where the wave function
is kept real. In numerical simulation this can be accomplished by collapsing the complex
wave function to a real one after each short time step. In practise, the complex wave
function is projected onto the real values by dropping off the imaginary part [8].

4.1 Finding excited eigenstates

The τDMC simulation converges to the lowest eigenstate (ground state) by adjusting the
potential zero reference parameter ET in Eq. (2.2) to the lowest eigenvalue. The conver-
gence is usually unstable and needs continuous regulation with ET. Recently, we have
shown that the incoherent propagation of real time path integral dynamics RTPI drives
the system to an eigenstate, which is closest to the zero reference of the potential en-
ergy [8]. Furthermore, the convergence is stable and does not need careful adjustment of
potential zero reference.
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Figure 4: Positive (N=150×103) and negative walkers (N=50×103) of the superposition of 1st excited and

the ground state (N=100×103 each). Other notations are the same as in above figures.

Here too, we can insert the zero reference parameter ET into the Eq. (2.10) and use it
to choose the energy, for which we want to find the closest excited state. Also, we can
scan the parameter ET to find all eigenstates within a given range.

Fig. 4 shows a superposition of walkers of the real ground state and those of the
real first excited state. We see that the representation of the superposition is not unique,
but calls for cancellation of positive and negative walkers. However, we demonstrate
robustness of the incoherent tDMC by starting with this initial wave function and run
100 time steps of length t=0.1 with 106 walkers. The zero reference is set as ET =0.

We monitor the eigenenergy from Eq. (3.1) in Fig. 5. The exact value E=1 is expected.
It can be seen that the convergence has been achieved in about 60 time steps to about
E=1.1. Thus, there is some systematic error left, which we trace coming from the short
time step. With a too short time step false positive imaginary walkers appear, although
all correct imaginary contribution should be negative. This seems to relate also with the
size of the domain, 8 atomic units. Now, increasing the time step to t=0.8 after 100 steps
improves the energy estimate as clearly seen in the last ten time steps. Then, the energy
estimate from simulation is 0.9974±0.0030 (2 SEM).

Finally, we search for the first excited state by using the incoherent propagation and
starting from the same initial superposition state shown in Fig. 4. Now, the potential zero
reference is set as ET =2.5 and we expect to find the eigenenergy of 3.

By using a time step t=π/12 the first excited state is found as shown in Fig. 6 and the
eigenenergy becomes as 3.0199±0.0076 (2 SEM). Fig. 6 shows the distribution of walkers
after 100 timesteps to the convergence. As the figure shows, the node of the wave func-
tion is clear and sharp. By fitting to the histogram we get 0.0191, which is close to the
exact value of 0.
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Figure 5: Estimated energy that demonstrates convergence starting from the superposition of the 1st excited
state and ground state in incoherent tDMC ending to the ground state. The exact ground state eigenenergy is
one, E=1. N≈106, and t=0.1 for the first 100 time steps and then t=0.8.
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Figure 6: Distribution of positive (N≈ 0.57×106) and negative (N≈ 0.56×106) real walkers after the system
has converged to its 1st excited state. Red solid line is the properly normalized exact wave function.

This approach may be one of the practical ways to locate nodal surfaces for other
QMC methods like τDMC, and thus, give help in finding the practical solutions to the
fermion sign problem.
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5 Conclusions

We have demonstrated how the real-time path integral kernel K(xb,tb;xa,ta), Eq. (2.4), can
be used to evaluate the time evolution of a wave function with an entirely new way: driv-
ing delocalised ”diffusion” of Monte Carlo walkers. Therefore, we call our new approach
as real-time DMC or tDMC. There is a transparent analogy with the conventional imagi-
nary time DMC or τDMC, where a local kernel G(xb,τb;xa,τa), Eq. (2.2), drives ordinary
like diffusion of walkers in imaginary time. However, it should be noted that tDMC is
based on the real time path integral formalism, but τDMC is not!

It had been suspected that the real time counterpart of τDMC can not be realised, be-
cause the oscillating complex valued K delocalised in space is not capable of driving real
time diffusion similarly as the everywhere positive and normalizable G drives imaginary
time diffusion. It was known, of course, that the real time kernel can be used to evaluate
the time-dependent wave function by using the Eq. (2.3) directly, which couples all walk-
ers within a time step making the numerical calculations heavy. For that and some other
practical reasons we were the first to realise the Real Time Path Integral (RTPI) approach
for such light particles as electrons [8, 9].

Thus, our tDMC is a truly novel QMC method. It incorporates the essential fea-
tures of τDMC, and similarly, it can be used to find the system ground state energy and
wave function with accuracy depending on the computational capacity. In addition, with
tDMC one can find also the excited states and the wave function nodes. The latter may
turn out to be useful in practical solutions of the fermion sign problem, if combined with
other approaches like the conventional τDMC.

The tDMC can be run for incoherent dynamics or coherent dynamics, the same way as
the RTPI. The former is used to find the eigenstates, while the latter, for evaluation of the
time evolution of a wave function. Comparison of tDMC and RTPI in running quantum
dynamics is interesting. In RTPI the walker distribution is (or follows) the wave function,
i.e., it is essentially localised in the wave function. This may restrict the wave function
response to fast transient effects or tunneling to a region, where walkers do not exist.
The tDMC with the fully delocalised diffusion, instead, fills the whole considered space
with excess walkers in each time step before cancelling of walkers takes place. Thus, the
propagation is fully delocalised in the whole space in the spirit of path integrals, though
the actual wave function may remain relatively localised. Thus, the time evolution im-
mediately responds to any distant changes in the external potential and allows start of
tunneling into a region, where the wave function is essentially zero.

As we consider this first study as a ”proof of concept” for tDMC, we chose a trans-
parent and well-known one-dimensional harmonic oscillator as the test bench for the
demonstration. Now, the tDMC remains to be tested with many-particle systems, where
the challenge will be the walker cancellation procedure in multi-dimensional space. With
further developments, we expect the tDMC supplement the RTPI approaches [8, 9], the
QMC methods without the Fermion sign problem.
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