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and Hossein Gholizadehkalkhoran, for their contributions to this work. I thank my
pre-examiners, professor Martti Puska and Dr. Sara Bonella, for their constructive
feedback.

Most of all, I would like to thank my supervisor, professor Tapio Rantala, for
allowing me this possibility, for all the great and inspiring discussions during the
years and for having continual faith in this project.

None of this would have been possible without my parents who always let me
choose my own paths.
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ABSTRACT

Quantum mechanics represents our current best knowledge of how Nature works.
It is especially important for the electronic structure calculations, where classical
mechanics breaks down. Even though the theory is well known, only handful of
problems can be solved exactly, so approximations and numerical methods are re-
quired.

Feynman path integral approach offers an intuitively welcome description of
nonrelativistic quantum mechanics, rooted in space and time, where quantum many-
body effects are included transparently. The formalism based on multidimensional
integrals naturally calls for the powerful Monte Carlo techniques to be applied when
numerical calculations are performed. In this thesis we present a new approach how
real time path integral formalism can be applied to simulate dynamics and states of
quantum particles, even electrons.

We first give a brief introduction to the theory of path integrals and Monte Carlo
simulations. Much of this theory can be found in textbooks of quantum mechan-
ics but it is included here for completeness, so that this work could serve as a self-
contained introduction to anyone interested in path integral simulations. Second,
we discuss the imaginary time methods which have proven to be successful in sim-
ulations of statistical physics description of the quantum many-particle systems. Fi-
nally, we delve into the challenges of the path integrals in real time domain and
present the novel methods from the four original papers with demonstrations.

The challenges associated with the real time path integral methods are discussed
and we present approaches for solving some of these, such as the wave function
guided sampling and "widening" of walkers to improve the propagator. We also in-
troduce a novel method for finding stationary eigenstates of quantum systems, called
"incoherent propagation". This approach can be used to find the excited states, un-
like the conventional Quantum Monte Carlo methods. Presented techniques are
then applied to the Hooke’s atom, a system of strong correlation, that is challeng-

v



ing for conventional approaches. Simulations of the ground state and lowest excited
states of Hooke’s atom give excellent results for energetics. We also demonstrate
simulation of coherent quantum dynamics at the presence of an external transient
electric field. We also introduce how conventional diffusion Monte Carlo (DMC)
method can be combined with incoherent propagation.

Not having a positive sampling distribution is a problem that plagues real time
path integral calculations. To alleviate this problem, we introduce a novel proba-
bilistic interpretation of the real time propagator and an approach called "real time
diffusion Monte Carlo method". This method is demonstrated in simulation of the
time evolution of one dimensional harmonic oscillator and in finding eigenstates of
the system using it in conjunction with incoherent propagation.
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TIIVISTELMÄ

Kvanttimekaniikka edustaa tämänhetkistä parasta tietoa siitä, kuinka luonto toimii.
Se on erityisen tärkeää elektronirakennelaskennassa, jossa klassinen mekaniikka ei
enää toimi. Vaikka teoria on hyvin tunnettu, ainoastaan pieni joukko ongelmia
voidaan ratkaista eksaktisti, minkä vuoksi joudutaan turvautumaan approksimaa-
tioihin ja numeerisiin menetelmiin.

Feymanin polkuintegraalimuotoilu tarjoaa intuitiivisen lähestymistavan epärela-
tivistiseen kvanttimekaniikkaan. Sen pohjana ovat paikka ja aika, ja siihen mo-
nen kappaleen kvantti-ilmiöt sisältyvät läpinäkyvästi. Kun kyseessä on formalismi,
joka perustuu moniulotteisiin integraaleihin, tehokkaat Monte Carlo tekniikat tar-
joavat luonnollisen keinon numeeriseen laskentaan. Tässä väitöskirjassa esitetään
uusi menetelmä siihen, kuinka polkuintegraali formalismia voidaan käyttää kvant-
tihiukkasten dynamiikan ja tilojen simulointiin, jopa elektroneille.

Ensiksi annetaan lyhyt johdanto polkuintegraaleihin ja Monte Carlo -simulointei-
hin. Suuri osa tästä teoriasta löytyy kvanttimekaniikan oppikirjoista, mutta se on
sisällytetty tähän, jotta tämä työ voisi toimia itsenäisenä alustuksena kenelle tahansa,
joka on kiinnostunut polkuintegraalisimuloinneista. Seuraavaksi tarkastellaan imagi-
nääriajan menetelmiä, jotka ovat osoittautuneet menestyksellisiksi tehtäessä statis-
tisen fysiikan simulaatioita monen kappaleen kvanttisysteemille. Sitten paneudu-
taan reaaliajan polkuintegraalien haasteisiin ja esitellään uudet menetelmät neljästä
alkuperaisestä julkaisusta ja demonstroidaan niiden käyttöä.

Seuraavaksi tarkastellaan reaaliajan polkuintegraalimenetelmiin liittyviä ongelmia
ja esitetään joitakin keinoja näiden ratkaisemiseksi, sellaisia kuten aaltofunktion oh-
jaama otanta ja "levennetty walker" propagaattorin parantamiseksi. "Epäkoherentti
propagaatio" esitellään uudenlaisena menetelmänä stationääristen ominaistilojen et-
simiseksi. Tämän avulla voidaan etsiä myös viritystiloja, toisin kuin tavanomaisil-
la kvantti-Monte Carlo -menetelmillä. Esiteltyjä tekniikoita sovelletaan Hooken
atomiin, vahvan korrelaation systeemin, joka on haastava perinteisille lähestymis-
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tavoille. Perustilan ja alimpien viritystilojen simuloinnit antavat erinomaiset tu-
lokset tilojen energioille. Myös koherenttia dynamiikkaa simuloidaan ajasta riip-
puvassa sähkökentässä. Sitten esitellään kuinka perinteinen diffuusio-Monte Carlo
-menetelmä ja epäkoherentti propagaatio voidaan yhdistää.

Reaaliajan polkuintegraalilaskuja vaivaa positiivisen jakautumafunktion puuttu-
minen. Tämän ongelman lieventämiseksi esitellään uudenlainen reaaliajan propa-
gaattorin todennäköisyystulkinta ja menetelmä, jota kutsutaan “reaaliajan diffuusio-
Monte Carlo -menetelmäksi”. Tätä menetelmää demonstroidaan simuloimalla yksi-
ulotteisen harmonisen oskillaattorin aikaevoluutiolla ja etsitään viritystiloja käyt-
täen epäkoherenttia propagaatiota.
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1 INTRODUCTION

People have always been curious about surrounding Nature. We want to know why
things happen the way they do. Early attempts to explain the phenomena in nature
were solely based on philosophical discussions, but gradually they evolved towards
the scientific method we know today. The scientific method is the process where
we start from making observations, next we formulate a hypothesis that explains
these observations, and then, that can be used to predict the outcome of relevant
natural processes. Finally, we test the hypothesis by making observations on these
predicted processes, thus closing the circle. There are more refined definitions of
scientific method with more steps, but following the same general principle.

1.1 Quantum Mechanics

Following the scientific method has deepened our understanding of the nature and
given rise to the technologically advanced society we live in. The "crown jewel" of
this understanding, at the moment, is called quantum mechanics, the playground of
this thesis [1, 2, 3, 4]. We can say this, because quantum mechanics makes predic-
tions about certain physical phenomena and quantities that can be measured at very
high precision. For example, the electron anomalous magnetic moment can be mea-
sured and compared with theory and the agreement is found to be within one part
in trillion (10−12) [5, 6]. This is comparable to the case where classical physics could
predict, and we could measure, the distance in a javelin throw to the size of an atom.

Rigorous mathematical formulation of quantum mechanics is generally credited
to John von Neumann [7]. We can compare this formulation with classical mechan-
ics. For example, let us assume a system where one particle with mass m is moving
in a potential field U . In classical mechanics the particle starts from some initial po-
sition x with some initial momentum p, i.e., the initial state of the system is a point
in a phase space (x,p). From the potential field we can extract a conservative force

1



F = −∇U and use Newton’s second law F = ṗ and the fact that p = mẋ to deter-
mine how the momentum and position change from the initial time ta to the final
time tb . Even though the concepts of potential and force might be a bit mysterious
it is not hard to visualize how this formulation describes, for example, a falling body
in Earth’s gravitational field.

In the conventional quantum mechanical description of the same system the ini-
tial state is |ψ(ta)〉, which is a vector in an infinite-dimensional complex vector space
called Hilbert space. When we operate on this state with a time-evolution operator
Û (tb , ta), we get the final state | ψ(tb )〉. For each physically observable quantity
we can assign a Hermitian operator Ô and the eigenvalues of that operator corre-
spond to actual quantities we can measure. There is only little or no doubt that this
works as was emphasized before, but we have lost the intuition inherent in a classical
mechanics. However, there is another, equivalent approach to quantum mechanics
that avoids the use of operators and retains the particle picture, called path integral
formalism [8, 9].

1.2 Scope and Aims

In this study we show how this formalism and Monte Carlo techniques can be used
in real time simulations of quantum particles, such as electrons. Unlike in the more
conventional approaches such as Hartree–Fock [10], Density Functional Theory
(DFT) [11, 12] and basically all the methods that use finite basis sets [13], the Quan-
tum Monte Carlo (QMC) methods and path integral formalism includes correlations
between particles transparently and exactly within the numerical accuracy. The con-
ventional imaginary time approaches diffusion Monte Carlo (DMC) [14] and path
integral Monte Carlo (PIMC) [15] are efficient methods of calculating equilibrium
properties of quantum systems. They both become more laborious and inefficient
when applied on a fermion system or when excited states are considered.

The aim of our studies is to develop new real time path integral (RTPI) methods
that can be used even for electrons. Our novel "incoherent propagation" does not
have the restrictions of PIMC and DMC and can be used to calculate both fermion
systems and excited states. We show how the "incoherent propagation" in real time
and conventional imaginary time methods yield comparable accuracy with the same
number of walkers, though the former is computationally more demanding. With
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our real time diffusion Monte Carlo method, we demonstrate how the complex
propagator can be used as a probability, similarly to the conventional DMC method.

Thus, we aim at paving the way for new methods in electronic structure calcula-
tions, although these approaches are not without their own challenges discussed in
this thesis.
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2 QUANTUM THEORY OF PATH INTEGRALS

This chapter gives the background theory of path integrals starting from the more
commonly known Schrödinger formalism. The following derivation follows that in
Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Mar-
kets [16].

2.1 Time evolution operator

The basis independent non-relativistic Schrödinger equation can be written as an
operator equation

Ĥ (t ) |ψ(t )〉= iħh∂t |ψ(t )〉. (2.1)

For time-independent Hamiltonians Ĥ (t ) = Ĥ (ta) the solution is

|ψ(tb )〉= exp
�

− i
ħh

Ĥ (ta)(tb − ta)
�

|ψ(ta)〉. (2.2)

The operator

Û (tb , ta) = exp
�

− i
ħh

Ĥ (ta)(tb − ta)
�

(2.3)

is called the time evolution operator.

We are interested in causal time evolution, so, from now on, we shall always
assume tb > ta .

For more general case, where the Hamiltonian Ĥ (t ) is time dependent, we divide
the time interval tb− ta into N small pieces of thickness ε= (tb− ta)/N = tn− tn−1.
If N is large enough we can approximate that the Hamiltonian is piecewise constant,
i.e., Ĥ (t )≈ Ĥ (t + ε) and write
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|ψ(tb )〉 ≈ exp(− i
ħh

Ĥ (tb )(tb − tN−1)... exp(− i
ħh

Ĥ (tn)(tn − tn−1))...

× exp(− i
ħh

Ĥ (t1)(t1− ta)) |ψ(ta)〉. (2.4)

where n = 1,2, ...N , ta ≡ t0 and tb ≡ tN . This approximation will converge to the
exact one when N →∞, so we can write

Û (tb , ta) = lim
N→∞

T̂t

n N
∏

n=1
exp(− i
ħh

Ĥ (tn)ε)
o

(2.5)

where T̂t is the chronological time ordering operator which rearranges the product
according to the "two ls rule": later times go to the left.

The time evolution amplitude is defined as the representation of time evolution
operator in localized basis states

K(xb , tb ;xa , ta)≡ 〈xb | Û (tb , ta) | xa〉 (2.6)

This is also called the propagator, the kernel or the Green’s function.

2.2 Path integral approach

2.2.1 Propagator

For simplicity we assume that the space is one-dimensional and discuss the systems
with more dimensions later. We also assume that the continuum limit N →∞(ε→
0) is taken as above. From Eqs. (2.3), (2.5) and (2.6) it follows that

K(xb , tb ; xa , ta) = 〈xb | Û (tb , tN−1)Û (tN , tN−2)...Û (tn , tn−1)...Û (t1, ta) | xa〉. (2.7)

Inserting the identity operator in the form of completeness relation [16, 17]

∫ ∞

−∞
| xn〉〈xn | dxn = 1, n = 1, ...,N − 1 (2.8)
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between each Û in Eq. (2.7) and using Eq. (2.3) the amplitude becomes

K(xb , tb ; xa , ta) = T̂t

n

∫ ∞

−∞
...
∫ ∞

−∞

N
∏

n=1

h

〈xn | exp(− i
ħh

Ĥ (tn)ε) | xn−1〉
i

dx1...dxN−1

o

(2.9)
where ta ≡ t0 and tb ≡ tN

Assuming that the Hamiltonian has the standard form, being the sum of the ki-
netic and potential energies

Ĥ (t ) = T ( p̂, t )+V (x̂, t ), (2.10)

the exponential operator can be factorized using the Baker–Campbell–Hausdorff
formula

exp(− i
ħh
(T̂ + V̂ )ε) = exp(− i

ħh
T̂ ε)exp(− i

ħh
V̂ ε)

× exp
n iε2

ħh2

� i
2
[V̂ , T̂ ]− ε

ħh
(
1
6
[V̂ , [V̂ , T̂ ]]− 1

3
[[V̂ , T̂ ]], T̂ ])+ ...

�

o

(2.11)

where [Â, B̂] is the commutator of Â and B̂ . This can be written as

exp(− i
ħh
(T̂ + V̂ )ε) = exp(− i

ħh
T̂ ε)exp(− i

ħh
V̂ ε)+O(

ε2

ħh2 ) (2.12)

where at the limit ε→ 0 the terms proportional to ε2 do not contribute, when the
operators are bound from below [16].

Keeping in mind that we take the limit N → ∞ and ε → 0 and inserting the
completeness relation we can write

〈xn | exp(− i
ħh

Ĥ (tn)ε) | xn−1〉=
∫ ∞

−∞
〈xn | exp(− i

ħh
V̂ ε) | x ′n〉〈x

′
n | exp(− i

ħh
T̂ ε) | xn−1〉dx ′n (2.13)

Since we assume V̂ (t ) =V (x̂, t ) and x̂ has a simple multiplicative form in position
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space 〈x | x̂ | x ′〉= δ(x − x ′)x ′ [13]

〈xn | exp(− i
ħh

Ĥ (tn)ε) | xn−1〉= exp(− i
ħh

V (xn , tn)ε)〈xn | exp(− i
ħh

T̂ ε) | xn−1〉 (2.14)

Similarly T̂ (t ) = T ( p̂, t ) and p̂ has a simple multiplicative form in momentum
space 〈p | p̂ | p ′〉= 2πħhδ(p − p ′)p ′ [13, 16].

Since

∫ ∞

−∞

1
2πħh
| p〉〈p | d p = 1 (2.15)

and

〈x | p〉= exp(
i p x
ħh
), (2.16)

we get

〈xn | exp(− i
ħh

Ĥ (tn)ε) | xn−1〉

= exp
�

− i
ħh

V (xn , tn)ε
�

∫ ∞

−∞

∫ ∞

−∞

1
(2πħh)2

〈xn | pn〉〈pn | exp(− i
ħh

T̂ ε) | p ′n〉〈p
′
n | xn−1〉d pnd p ′n

= exp
�

− i
ħh

V (xn , tn)ε
�

×
∫ ∞

−∞

∫ ∞

−∞

1
2πħh
〈xn | pn〉δ(pn − p ′n)exp

�

− i
ħh

T (p ′n , tn)ε
�

〈p ′n | xn−1〉d pnd p ′n

= exp
�

− i
ħh

V (xn , tn)ε
�

∫ ∞

−∞

1
2πħh

exp
� i pn

ħh
(xn − xn−1)−

i
ħh

T (pn , tn)ε
�

d pn

=
∫ ∞

−∞

1
2πħh

exp
� i pn

ħh
(xn − xn−1)−

iε
ħh
�

T (pn , tn)+V (xn , tn)
�

�

d pn .

Inserting this into Eq. (2.9) we get

K(xb , tb ; xa , ta) =
∫ ∞

−∞
...
∫ ∞

−∞

1
2πħh

exp(
i
ħh

SN )dx1...dxN−1d p1...d pN , (2.17)

where SN is

8



SN =
N
∑

n=1
[pn(xn − xn−1)− εH (pn , xn , tn)] (2.18)

=
N
∑

n=1
[pn
(xn − xn−1)

ε
−H (pn , xn , tn)]ε (2.19)

In the continuum limit N →∞ and ε→ 0 this tends towards the integral

S[p, x] =
∫ tb

ta

[p(t )ẋ(t )−H (p(t ), x(t ), t )]dt , (2.20)

which is the classical action [18].

Note that the time ordering operator T̂t is dropped since we do not have any
other operators left, but work with complex numbers, which do commute.

This form is a bit more generic than usually needed and we can simplify it by
assuming that we can write T (p, t ) = p2/2m where m is the mass of the particle.
Now Eq. (2.18) becomes

SN =
N
∑

n=1
[pn(xn − xn−1)− ε

p2
n

2m
− εV (xn , tn)], (2.21)

By using the integral formula [19]

∫ ∞

−∞
exp(−ay2+ b y)dy =

È

π

a
exp(

b 2

4a
) (2.22)

the momentum integrals in Eq. (2.17) can be calculated

∫ ∞

−∞

1
2πħh

exp(
i
ħh
(pn(xn − xn−1)− ε

p2
n

2m
))d pn =
È

m
2πħhiε

exp
� i
ħh

m
2

(xn − xn−1)
2

ε

�

(2.23)
and the Kernel becomes

K(xb , tb ; xa , ta) =
È

m
2πħhiε

N ∫ ∞

−∞
...
∫ ∞

−∞
exp(

i
ħh

SN )dx1...dxN−1, (2.24)

9



where SN is now

SN = ε
N
∑

n=1
[

m
2
(

xn − xn−1

ε
)2−V (xn , tn)]. (2.25)

In the continuum limit this takes the form

S[x] =
∫ tb

ta

[
m
2

ẋ2−V (x, t )]dt ≡
∫ tb

ta

L(x, ẋ)dt (2.26)

where L(x, ẋ) is the Lagrangian of the system.

We have now arrived at the path integral formula for the propagator that we shall
be using in most of this work

K(xb , tb ; xa , ta) =
È

m
2πħhiε

N ∫ ∞

−∞
...
∫ ∞

−∞
exp
� i
ħh

S[x]
�

dx1...dxN−1. (2.27)

This formula has a very intuitive interpretation. The prefactor before the product
is just a normalization constant, whose origin can be traced back to the momentum
integrals. This may seem like a strange normalization constant especially in the limit
N →∞ and ε→ 0, but when we actually calculate the integrals (for those few cases
we actually are able to) and substitute ε = (tb − ta)/N , the N dependence vanishes
and the limiting procedure is trivial [16, 19].

If we consider the integrals as infinite sums over all position coordinates then
the first integral becomes a sum of the integrand where x1 goes from −∞ to∞,
the second integral then becomes a product of sums where x1 goes from −∞ to∞
and x2 goes from −∞ to∞, and so on, until all the integrals are done and we have
a product of N − 1 infinite sums. In other words the sum of all the possible zigzag
paths, which exist from a fixed xa ≡ x0 to a fixed xb ≡ xN . See Fig. 2.1. The integrand
tells us that for each of these paths we sum the exponential term whose argument is
proportional to the classical action for that path.

Formally, we write the path integral formula as

K(xb , tb ; xa , ta) =
∫ xb

xa

exp(
i
ħh

S[x(t )])Dx(t ). (2.28)

The scriptD tells us that we need to sum over all x(t ) from xa to xb and taking into

10



Position
t 0 = t a

t 1

t 2

t 3

t 4
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t 6

t 7
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t 9

t 10  = t b

T
im
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x2

x3
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x6
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xb

Figure 2.1 One of the zigzag paths a particle can move from xa to xb in time interval tb − ta . The total
amplitude is gained by summing the phase factors of all the possible paths in the limit, where
time axis is sliced into infinitely many and infinitely thin slices.

account the normalization constant.

To summarize, starting from the abstract operator equation Eq. (2.1) we find the
time evolution amplitude from xa to xb in time ∆t = tb − ta by taking into ac-
count all the paths between those positions and summing exponential terms, whose
arguments are proportional to the classical action for that path.

Note that "all the paths" include also paths that are classically forbidden, e.g.,
paths that move through potential barriers higher than particle’s energy and paths
where the particle moves faster than light. One way of limiting the space of possible
paths is by "measurement". For example, if we construct a two slit experiment for
electron, then normally we will calculate all the paths through both slits and arrive at
the expected interference pattern. However if we have some apparatus that detects,
which slit the electron goes through, then only those paths that pass through that
slit will contribute and the interference pattern disappears. Also, like in the two slit
experiment we do not include the paths through the screen, except from where the
slits are located. This is because the screen acts as infinite potential and the prop-
agator of Eq. (2.28) vanishes for all paths that cross it. Mathematically this can be
seen from the Riemann-Lebesgue lemma [20]which states that the integral of highly
oscillatory function approach zero

lim
z→∞

∫

f (x)exp(−iz x)dx = 0. (2.29)

We have now regained the classical-like picture, where particle propagates from

11



a to b , but instead of following a single path, it follows all the possible paths! Even
if it is tempting to think of these exponentials as probabilities, they are not. Instead
of probability we have a phase factor assigned to each possible path and the total
probability amplitude is gained by summing all these phase factors.

The above derivation of path integrals was done to show that it is equivalent to
the more common formalism starting from the postulated Schrödinger’s equation
Eq. (2.1). We can also take the reverse view and postulate path integrals as the starting
point and derive the whole quantum mechanics, as it is presented in Feynman’s book
Quantum Mechanics and Path Integrals [8].

2.2.2 Interpretation of propagator

The wave function

ψ(x, t )≡ 〈x |ψ〉 (2.30)

evolves in time according to Eq. (2.2)

|ψb 〉= Û (tb , ta) |ψa〉 (2.31)

⇒

〈xb |ψb 〉= 〈xb | Û (tb , ta) |ψa〉 (2.32)

=
∫ ∞

−∞
〈xb | Û (tb , ta) | xa〉〈xa |ψa〉dxa (2.33)

⇒

ψ(xb , tb ) =
∫ ∞

−∞
K(xb , tb ; xa , ta)ψ(xa , ta)dxa . (2.34)

If ψ(x ′a , ta) = δ(xa − x ′a), then

ψ(xb , tb ) =
∫ ∞

−∞
K(xb , tb ; x ′a , ta)δ(xa − x ′a)dx ′a (2.35)

=K(xb , tb ; xa , ta) (2.36)
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and so

|ψ(xb , tb ) |
2=|K(xb , tb ; xa , ta) |

2 . (2.37)

Following the probability interpretation of the wave function [17]we can assert,
that when computing the absolute square of the amplitude, we get the classical prob-
ability for a particle to go from a fixed xa to xb in time tb − ta . In section 6.5 we
will develop a similar interpretation for the contributing parts of the complex valued
propagator.

2.2.3 Eigenfunction basis

Above, we used spatially localized basis states xn to derive the propagator, but similar
derivation can be done choosing other basis states, such as momentum states pn to
find the time evolution amplitude in that space [8, 16, 19].

Another interesting representation of the propagator that we will use later is the
special case, where the Hamiltonian is time independent. Then, it is convenient to
choose its orthonormal eigenstates φn as the basis, {φn},

φn(x, t ) = exp(− i
ħh

En t )φn(x), (2.38)

and then

ψ(x, t ) =
∞
∑

n=1
cn exp(− i

ħh
En t )φn(x). (2.39)

The coefficients cn are easy to calculate by multiplying from the left byφ∗m(x)exp( i
ħh Em t ),

integrating over all space and using the orthonormality of the basis functions

ψ(xb , tb ) =
∫ ∞

−∞

∞
∑

n=1
φ∗n(xa)exp(

i
ħh

En ta)ψ(xa , ta)exp(− i
ħh

En tb )φn(xb )dxa . (2.40)
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By comparing this with Eq. (2.34) we see that the propagator in this basis is

K(xb , tb ; xa , ta) =
∞
∑

n=1
φn(xb )φ

∗
n(xa)exp(− i

ħh
En(tb − ta)). (2.41)

In this work we will mostly use the coordinate space representation.

2.2.4 Multivariable systems in coordinate space

We have been considering one-dimensional one-particle system but the generaliza-
tion to multivariable systems is easy. Note that the extra variables can be both spatial
dimensions and extra particles, the formalism is still the same. By replacing x(t )with
x(t ) where the symbol x(t ) now represents all d coordinates where d is the dimen-
sionality of our system the former derivation can be redone. Only difference is that
we get d times as many momentum integrals, and so, the Eq. (2.27) becomes

K(xb , tb ;xa , ta) =
È

m
2πħhiε

N d ∫ ∞

−∞
...
∫ ∞

−∞
exp
� i
ħh

S[x]
�

dx1...dxN−1. (2.42)

and the Eq. (2.28) can be written simply as

K(xb , tb ;xa , ta) =
∫ xb

xa

exp(
i
ħh

S[x(t )])Dx(t ). (2.43)

The interpretation remains the same. We need to sum over all the paths one
can go through this d dimensional space from xa to xb . For particles with different
masses the normalization constant will be different but can still be written formally
as Eq. (2.43).

For the rest of this work, unless otherwise noted, non-bold xn stands for all coor-
dinates of particles in one or more spatial dimensions. In case with multiple variables
the products should be understood as inner products.
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3 MONTE CARLO METHOD

This chapter gives the background theory of Monte Carlo integration and explains
why it is needed.

3.1 Curse of dimensionality

In numerical simulations in space and time we need to span a grid that covers the
whole allowed space and is dense enough so that the grid is sufficient for an accurate
representation of the actual function. As the dimensionality of the system increases,
conventional methods that use regular grids become untenable.

As an example we can consider calculation of the electronic structure of a Zinc
atom by solving Schrödinger equation in 3-dimensional grid (spin and quantum ef-
fects of the nucleus are ignored). The wave function for the system of 30 electrons
is then ψ(x1, y1, z1, ..., x30, y30, z30). Even if we use moderately sparse grid in spatial
dimensions, like 20 grid points per dimension we still end up with 2090 total grid
points! This is a huge number. If we assume that we can store the information of
each grid point in a single atom we would then need 2090 atoms for the total memory.
Comparing this with the number of atoms in the observable universe≈ 1080, which
can be estimated from the cosmological parameters [34], we see that modelling even
this simple system of one atom in a relative small spatial grid would need storage
capacity of at least billion times greater than the whole observable universe.

This sc. curse of dimensionality has limited the success of calculations of many-
body wave functions and provoked statements such as: In general the many-electron
wavefunction ψ(r1, ..., rN ) for a system of N electrons is not a legitimate scientific con-
cept, when N ≥N0, where N0 ≈ 103 [35].
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3.2 Monte Carlo integration

In path integral formalism we need to evaluate often multidimensional integrals such
as Eq. (2.28) and Eq. (2.34). As was discussed above, using any regular grids, when
the dimensionality grows, becomes unfeasible. Thus, the natural way to proceed is
by using Monte Carlo integration. Monte Carlo integration is based on the law of
large numbers which allows us to write

I ≡
∫

Ω
f (x)dx = lim

M→∞

V
M

M
∑

i=1

f (xi ), (3.1)

where Ω is the domain of integration with volume V =
∫

Ω
d x and xi are random

points within the domain.

This integral can be approximated by

I ≈ IM =
V
M

M
∑

i=1

f (xi ). (3.2)

Central limit theorem states that the sum of large number of independent ran-
dom variables is normally distributed, provided they have finite expectations and
variances even though the variables themselves are not normally distributed. This
allows us to estimate the statistical error of IM , and assuming that variables f (xi ) are
uncorrelated, we can write

Var(IM ) = 〈I
2
M 〉− 〈IM 〉

2 (3.3)

=
V 2

M 2

h

〈
�

M
∑

i=1

f (xi )
�2〉− 〈
�

M
∑

i=1

f (xi )
�

〉2
i

(3.4)

=
V 2

M 2
Var
�

M
∑

i=1

f (xi )
�

(3.5)

=
V 2

M
Var
�

f (xi )
�

(3.6)

where 〈 〉 means the expectation value. Now the statistical error of the integral can

16



Table 3.1 Proportionality of uncertainty of the integral for Monte Carlo estimates and some quadrature
rules [36].

Monte Carlo M−1/2

Trapezoidal rule M−2/d

Simpson’s rule M−4/d

k-point Gauss rule M−(2k−1)/d

be estimated by the standard deviation σ =
p

V a r

σIM
=V

σ f
p

M
. (3.7)

It is interesting to note that the error does not depend on the dimensionality of
the system, though it depends on the volume of the domain.

If we compare this with some other numerical integration methods that use mul-
tidimensional quadrature rules we see that those methods are much more efficient
when the dimensionality d of the system is low, but as the Monte Carlo is inde-
pendent of dimensionality there is always some d for which Monte Carlo converges
faster than any fixed quadrature method, as shown in the table 3.1 [36, 37, 38].

It may seem strange that random distribution of points becomes superior to a
regular grid when the dimensionality increases. We see that regular grid is more
homogeneous in one dimension but the assumption that the same holds, when the
dimensionality increases in wrong. Intuitively this can be understood by consider-
ing a d dimensional regular grid with M points in each dimension and projecting
it onto one random axis. On that axis, there are only M spikes of d points on the
location of the original grid points and nothing between them. If we consider the
same projection using the same parameters but Monte Carlo grid we will end up
with random distribution of M d points along that one axis. In this way random dis-
tribution becomes more homogeneous when the dimensionality increases [36, 38].
This effect is illustrated in Fig. 3.1.
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Figure 3.1 Comparison of a regular 3 dimensional grid with 8000 grid points and a Monte Carlo grid of
the same size. In this 2D projection, most of the points on the regular grid are on top of each
other making the grid look sparse, while Monte Carlo points fill the space "smoothly".

3.3 Importance sampling

In reality the crude Monte Carlo integral is not very efficient and one way to improve
the convergence is the importance sampling method [14, 36, 37, 38]. Mathematically
this corresponds to changing variable f (x)dx in Eq. (3.1) to f (x)

g (x) g (x)dx ≡ f (x)
g (x)dG(x)

where g (x) is a probability density function and therefore it must be non-negative
everywhere and normalized. G(x) is the associated cumulative distribution func-
tion.

With this Monte Carlo estimate for the integral becomes

IM =
V ′

M

M
∑

i=1

f (Xi )
g (Xi )

, (3.8)

where the random variables Xi are now sampled according to the distribution g (x)
and V ′ =
∫

Ω
dG(x). In practice, we need either some way of producing g (x) dis-

tributed random numbers or we need to be able to calculate the inverse of G(x) an-
alytically, because G−1(unif(0,1)) =Xi, where unif(0,1) is the uniform distribution
on the interval [0,1].

Choosing g (X ) so that it is close to f (X ) (i.e., f (X )/g (X )≈ constant) minimizes
the fluctuations in the integrand and hence the variation in the Monte Carlo estimate
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of the integral becomes

Var(IM ) =
V ′2

M 2

h

〈
�

M
∑

i=1

f (Xi )
g (Xi )
�2〉− 〈
�

M
∑

i=1

f (Xi )
g (Xi )
�

〉2
i

. (3.9)

If we are able to choose g (X ) = f (X ) then both the sums in the above equation
are just M 2 and the variance will be zero.

Another advantage of writing the Monte Carlo estimate like this is that more
points are concentrated on the region where f (X ) is large and little computation is
used on points that give little or no contribution to the integral.

Writing the wave function as

ψ(x, t ) = |ψ(x, t )|exp
�

iφ(x, t )
�

(3.10)

and choosing the sample points from distribution |ψ(x, t )| we can use importance
sampling method to evaluate Eq. (2.34)

ψ(xb , tb ) =
∫ ∞

−∞
K(xb , tb ; xa , ta)ψ(xa , ta)dxa (3.11)

≈ V ′

M

M
∑

a=1

K(xb , tb ;Xa , ta)
|ψ(Xa , ta) |

|ψ(Xa , ta) | exp
�

iφ(Xa , t )
�

(3.12)

=
V ′

M

M
∑

a=1
K(xb , tb ;Xa , ta)exp

�

iφ(Xa , t )
�

(3.13)

≡ψN (xb , tb ). (3.14)

3.4 Random walk, Markov chain and Metropolis Monte

Carlo

The question how to produce g (x) distributed random numbers was brought up,
above. In practice, unless g (x) is some standard function like normal distribution,
we do not have an easy way of doing that, as the inverse cumulative distribution
functions do not usually have closed-form expressions and they might be difficult to
solve numerically [39]. We could always normalize g (x) and use it as an acceptance
probability for uniformly distributed x ′, but this method is obviously very ineffi-
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cient, if g (x) is small over large part of x space. This can be improved by choos-
ing non-uniform distribution h(x), for which random number generator exists, that
is everywhere greater than, but is close to g (x) and then use g (x)

h(x) as the acceptance
probability. In general, we cannot find such a function and this method also becomes
inefficient.

Another approach to sampling any probability density function is sc. random
walk method. In this method we do not form statistically uncorrelated points xi ,
but instead, we define an object called a walker that moves through the space by
a combination of deterministic transition probabilities and random displacements.
The sequence of correlated steps is called a Markov chain, if the transition probabili-
ties depend only on the current state of the system, not on how or when it got there
[14]. Markov chain is called ergodic, if it is not periodic and every configuration can
be reached from every other configuration with a finite number of steps [38].

To clarify the difference between Markov chain and truly random chain of events
we consider the joint probability of N independent events occurring in succession

P (x1, x2, ..., xN ) = P (x1)P (x2)...P (xN ) (3.15)

where P (xi ) is the probability for an event xi to occur. For Markov chain this same
probability is instead

P (x1, x2, ..., xN ) = P (x1)T (x1→ x2)T (x2→ x3)...T (xN−1→ xN ) (3.16)

where T (x → x ′) is the transition probability, i.e. the probability that the event x ′

follows x in the sequence. They are properly normalized, so that the probability of
something to happen is 1:

∑

x ′
T (x→ x ′) = 1. (3.17)

With enough time, ergodic Markov chain can produce the desired invariant distri-
bution[38]. We now need to choose the transition probabilities so that the random
walk yields the desired distribution.

One approach to accomplish this is the Metropolis Monte Carlo method [40].
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If g (x, t ) is defined as the probability for the configuration x at time t, then

g (x, t + 1) =
∑

x ′
g (x ′, t )T (x ′→ x). (3.18)

Note that t is not a proper time in the physical sense, but the running index of
Markov step. We are aiming at finding stationary distribution g (x, t ) so that

g (x, t + 1) = g (x, t ). (3.19)

Using Eq. (3.18) and multiplying the right hand side by 1 in the form of Eq. (3.17)
this becomes

∑

x ′
g (x ′, t )T (x ′→ x) =

∑

x ′
g (x, t )T (x→ x ′). (3.20)

The general solution to this equation is difficult to find [38], but one apparent
solution is:

g (x ′, t )T (x ′→ x) = g (x, t )T (x→ x ′) (3.21)

for all pairs of configurations x and x ′. This solution is called "principle of detailed
balance" and it says that the total rate of transitions from x ′ to x is the same as the
total rate of transitions from x to x ′.

As the equation must hold for all t ’s we can omit them and write the transition
probability as the product of an a priori sampling probability p(x → x ′) and an
acceptance probability a(x→ x ′):

T (x→ x ′) = p(x→ x ′)a(x→ x ′). (3.22)

Substituting this into Eq. (3.21) and requiring that the sampling probability is
symmetric ( p(x→ x ′) = p(x ′→ x)) we get

a(x→ x ′)
a(x ′→ x)

=
g (x ′)
g (x)

. (3.23)

This fraction does not determine the transition probability uniquely and we are
allowed certain freedom in choosing it. The Metropolis choice is to take
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If g(x′)< g(x) : a(x→ x′) =
g (x ′)
g (x)

(3.24)

If g(x′)≥ g(x) : a(x→ x′) = 1. (3.25)

We can now construct a simple algorithm that will produce any desired distribu-
tion g (x) . We start from any random configuration x and then make a trial move
according to the sampling probability p(x → x ′) to produce new configuration x ′.
We then calculate g (x ′)/g (x). If this is less than 1 the move is accepted with this
probability and if it is equal to or greater than 1 the move is always accepted. If the
move is accepted the configuration x ′ replaces x and if it is rejected the system stays
in configuration x. If given enough time this algorithm will find equilibrium and
then x will be distributed according to the g (x).

Ergodicity will ensure that the time average will be the same as ensemble average
so usually in practice it is faster to sample an ensemble of walkers over shorter time
than follow only one walker over longer time. In both cases the simulation should
be run long enough for the system to find equilibrium, after which the distribution
can be used in importance sampling techniques.

The points in Metropolis Monte Carlo simulations are correlated and the Eq.
(3.7) needs to be modified to account for this. This can be done by introducing a
measure of autocorrelation called correlation time κ [15] and the modified equation
becomes

σIN
=V σ f

È

κ

M
. (3.26)

The advantage of Monte Carlo scaling still remains assuming that correlation
time does not increase faster than polynomially with the number of dimensions.
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4 STATISTICAL PHYSICS

This chapter gives a short introduction to quantum statistical physics and how it is
connected to path integral formalism.

4.1 Expectation value

As is evident from our discussion of the wave function of a particle and its inter-
pretation as a probability amplitude we can not generally know where the particle is
exactly located. The absolute square of the wave function integrated over an infinites-
imal volume tells us the probability that the particle is located inside this volume.
Now, measurements of the position x of the particle in several identical systems will
give different values and we can only talk about the mean or expectation (expected)
value of x. This will be given by the probability P (x, t ) that the particle is found on
x, times the value of x and summed (integrated as x is continuous variable) over all
possible values of x.

For more general case where we are interested not only in the position but some
function of the position, for a system described by a wave function ψ(x, t ) the ex-
pectation value of a function f (x) is [13, 17]

〈 f (x)〉=

∫∞
−∞ψ

∗(x, t ) f (x)ψ(x, t )dx
∫∞
−∞ψ

∗(x, t )ψ(x, t )dx
. (4.1)

Since we are working in the coordinate space this will suffice for us, but it should
be noted that this form cannot be used to calculate expectation values for observables
that can not be expressed as a function of x, only, such as spin.

If the wave function is properly normalized the denominator is one, but this is
not the case usually, when carrying out Monte Carlo simulations as the volume V
in Eq. 3.2 might be hard to calculate, and as we will see, it is usually not needed.
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Again, using the importance sampling method with distribution function |ψ(x, t ) |
and using Eq. (3.11) we can write the Monte Carlo estimate for the expectation value
as

〈 f (x)〉 ≈ 〈 fM 〉=
∑M

j=1 f (X j ) |ψM (X j , t ) |
∑M

j=1 |ψM (X j , t ) |
. (4.2)

One advantage of this form is that we do not need to worry about the norm of
the wave function since any constant prefactor will cancel out.

4.2 Quantum statistical physics

The following discussion follows that in the book Quantum Mechanics and Path In-
tegrals [8].

In statistical physics the probability Pn that the system in thermal equilibrium in
temperature T is in a state with energy En is proportional to the Boltzmann factor
exp(−βEn) where β is 1

kT and k is Boltzmann’s constant [41]

Pn =
1
Z

exp(−βEn), (4.3)

where Z in the normalizing factor is the partition function

Z =
∑

n
exp(−βEn). (4.4)

All the thermodynamic properties of a system can be computed [41] if the partition
function is known. In a natural classical system Hamilton function H (p, x) repre-
sents the energy of the system [18] and since x and p are continuous variables the
sum in Eq. (4.4) is replaced by integrals [16]

Z =
∫

1
2πħh

exp
�

−βH (p, x)
�

d pdx. (4.5)

For a d dimensional system the phase space integral is
∏d

n=1

∫ d pn d xn
2πħh .

The interpretation is that the probability of the volume of the phase phase being
occupied is proportional to the Bolzmann factor. It is also interesting to note how
the reduced Planck’s constant ħh appears in a purely classical equation. Historically,
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the partition function in this form was determined only up to an unidentified con-
stant factor with units of inverted action that determined the size of the phase space
element [8].

Use of the eigenstatesφn(x) of the Hamiltonian gives us a simple way to calculate
the expectation value of f (x) for a system in thermal equilibrium. The probability
for the system to be in a particular state of energy En is given by Eq. (4.3) and the
probability that a particular x is observed for givenφn is given by the absolute square
of the wave function and so the probability of observing x is

P (x) =
1
Z

∑

n
φ∗n(x)φn(x)exp(−βEn) (4.6)

and so the expectation value is

〈 f (x)〉= 1
Z

∑

n

∫ ∞

−∞
φ∗n(x) f (x)φn(x)exp(−βEn)dx (4.7)

where the eigenstates φn(x) are properly normalized.

The statistical density matrix at temperature T is defined as

ρ(x ′, x) =
∑

n
φn(x

′)φ∗n(x)exp(−βEn). (4.8)

Because integral of P (x) over all x is normalized to 1 we see from Eq. (4.6) that

Z =
∫

ρ(x, x)dx ≡Tr{ρ}. (4.9)

We can now write the expectation value as

〈 f (x)〉= 1
Z

∫

f (x)ρ(x, x)dx. (4.10)

If we are interested in expectation values of f (x, p), then we need also the off di-
agonal elements of the density matrix [16], but the conventional thermodynamic
variables can be evaluated directly from Z ≡Tr{ρ}.

We can write Eq. (4.8) slightly differently

ρ(xb , ub ; xa , ua) =
∑

n
φn(xb )φ

∗
n(xa)exp
�

− 1
ħh

En(ub − ua)
�

(4.11)

where xb = x ′, xa = x, ub = ħhβ and ua = 0. If we compare this to the real-time
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propagator of Eq. (2.41) we see that they are formally similar. The requirement that
the Hamiltonian is time independent is automatically implied, when our system is
in thermal equilibrium. We have already shown how to calculate the propagator as
a path integral (see Eq. (2.28) and its derivation) and so we can write

ρ(xb , xa , ħhβ) =
∫ xb

xa

exp
n

− 1
ħh

∫ ħhβ

0

�m
2

ẋ2(u)+V
�

x(u)
��

du
o

Dx(u). (4.12)

By the same analogy as before we can give statistical description of a quantum
mechanical system by summing over all possible paths that the particle can "move"
from xa to xb in "time" ħhβ. For the partition function we need to consider closed
paths only, that begin and end at the same position in space.

It is interesting to note that our description is fully quantum mechanical but we
no longer have the imaginary unit in the equation. This allows much easier numer-
ical calculations, as now, the importance sampling technique is readily usable. We
also have much clearer picture how each path contributes to the integral as they are
weighted by the negative exponential as opposed to the real time where each path
has equal weight.

4.3 Symmetry considerations

The symmetry of the multi particle wave function is ultimately linked to the fact
that particles in nature are identical as can be seen by considering the two particle
wave function ψ(x1, x2). If the particles are identical this means that we do not have
any way of identifying which particle is which. This means that the probability of
finding particle 1 at some position s1 and particle 2 at some position s2 must be the
same as probability of finding particle 1 in position s2 and particle 2 in position s1,
which in mathematical terms means that the absolute square of the wave function
must be unchanged under the operation of interchanging its arguments.

|ψ(x1, x2) |
2 = |ψ(x2, x1) |

2 . (4.13)
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From this it follows that

ψ(x1, x2) =±ψ(x2, x1). (4.14)

Nature has cleverly taken use of both possible signs and particles with symmetric
solution are called bosons

ψ(x1, x2) = +ψ(x2, x1) (4.15)

and those with antisymmetric solution are called fermions

ψ(x1, x2) =−ψ(x2, x1). (4.16)

Thus, for a system of identical particles the Eq. (4.12) is not actually complete.
The reason is that even though other solutions to Schrödinger’s equation exist, only
symmetric (Bosons) and antisymmetric (Fermions) ones appear in nature [8], and
so, the sum in Eq. (4.4) should only include energies of the appropriate solutions.

Let us consider a bosonic system of N identical particles. Any function f (x1, x2)
can be made symmetric by replacing it by a combination f (x1, x2)+ f (x2, x1) and so
the energy eigenfunction

φ′(xi ) =
∑

P
φ(P xi ), (4.17)

is symmetrical. Here P xi means permutation of pair of xi :s. Suppose that Ek is an
energy eigenvalue for which Schödinger equation does not have a symmetric solu-
tion, and so,
∑

P φk (P x) must vanish. This implies that the operation defined by
Eq. (4.17) selects only symmetric solutions. Since there are N ! ways of permuting
N patricles, we can write

∑

P
φn(P x) =

⎧

⎨

⎩

N !φn(x), if φn is symmetric.

0, otherwise.
(4.18)

This means that ifφn(x) in Eq. (4.11) is replaced with this sum it will then select
only the symmetric solutions multiplied by N ! and the way to write the symmetric
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form of Eq. (4.12) is

ρsym(xb , xa , ħhβ) =
1

N !

∑

P

∫ P xb

xa

exp
n

− 1
ħh

∫ ħhβ

0

�m
2

ẋ2(u)+V
�

x(u)
��

du
o

Dx(u).

(4.19)

For fermions the form is similar except that we need to include antisymmetric
wave function and extra factor of ±1 (positive for even permutations and negative
for odd permutations) [8].

Inclusion of these changes will yield the correct quantum statistics where fermions
are described by Fermi–Dirac distribution and bosons by Bose–Einstein distribution
[41].

One might wonder, if we need to take into account similar symmetry consid-
erations when using real time propagator of Eq. (2.28). There, this symmetry is
automatically included in the path integral calculations as we calculate all the paths
(including those were the particles swap positions) and by the symmetry of the orig-
inal wave function (see Eq. (2.31)).

However, in practical simulations this is only true when our walker distribution
conforms to the actual symmetry. Instead of making sure that we have a walker
representing the wave function for each permutation of particles we can also imple-
ment these permutations directly into the kernel and reduce the number of needed
walkers by N ! where N is the number of identical particles.

4.4 Fermion sign problem

As was discussed above, the advantage of Monte Carlo integration is that the error
does not grow exponentially with the number of dimensions and the integral can be
evaluated to any desired accuracy in polynomial time [42].

Usually we are interested in calculating expectation values of certain physical
quantities. If the quantity in question has a simple multiplicative form in position
basis then using Eq. (4.10) this can be calculated as

〈O(x)〉=
∫

O(x)ρ(x, x)dx
∫

ρ(x, x)dx
(4.20)
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and using Monte Carlo estimate of Eq. (3.2) as

〈O(x)〉=
∑

i O(xi )ρ(xi )
∑

i ρ(xi )
. (4.21)

If all weights ρ(xi ) are positive the standard Monte Carlo methods can be used to
calculate the expectation value. In fermionic systems the weights can be positive or
negative as discussed in the section 4.3 and the approach needs to be modified. The
easiest solution is to take the sign s(xi ) as a part of the sum and use the absolute value
of ρ(xi ) as the weight [42]

〈O(x)〉=
∑

i O(xi )s(xi ) | ρ(xi ) | /
∑

i | ρ(xi ) |
∑

i s(xi ) | ρ(xi ) | /
∑

i | ρ(xi ) |
≡
〈O s〉
〈s〉
≡
〈O s〉
Z/Z ′

(4.22)

where Z and Z ′ are the partition functions of the fermionic and bosonic systems,
respectively. This allows Monte Carlo calculations but the error increases exponen-
tially with the number of particles N and the inverse temperatureβ. This is because
the partition functions are exponentials of the corresponding free energies, so their
ratio is exponential of the difference in free energy densities∆ f [42, 56],

Z
Z ′
= exp(−βN∆ f ). (4.23)

The relative error becomes

δs

〈s〉
=

p

(〈s2〉− 〈s〉2)/M
〈s〉

=

p

1−〈s〉2
p

M 〈s〉
∼

exp(βN∆ f )
p

M
. (4.24)

This grows exponentially with N and β and so the advantage of Monte Carlo is
lost. This is the infamous "fermion sign problem" one comes across, when running
Monte Carlo simulations. There are many schemes [27, 43, 44, 45, 56, 61] to tackle
this problem but the general solution has not been found. There are also arguments
[42] that it cannot be solved, as general solutions would yield the solution for all
computational NP problems and hence would mean NP = P, which is generally
not believed to be the case. NP (Nondeterministic Polynomial) stands for a class
of problems, for which the correctness of the answer can be checked in polynomial
time but for which there exists no general algorithm that can compute the answer
in polynomial time. P (Polynomial) means problems for which polynomial time
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algorithms are known.
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5 IMAGINARY TIME METHODS

This chapter gives a brief introduction to the conventional state-of-the-art Quantum
Monte Carlo (QMC) methods. QMC methods form a collection of robust, imagi-
nary time approaches to study quantum many-particle systems [38]. With QMC the
central benefit is that one can deal with multi-dimensional systems, where standard
grid based methods become computationally too heavy. Imaginary time path inte-
gral and Green’s function approaches take the many-body effects and correlations
into account without introducing approximations and evaluate them within numer-
ical accuracy, which is limited by the computational resources, only. Furthermore,
if starting from the first-principles, also the systematic errors are avoidable. Thus,
for the field of electronic structure calculations, with QMC one can benchmark the
energetics and structure of atoms and molecules with desired accuracy. It is even
straightforward in cases where the wave function is everywhere positive or can be
considered as piecewise positive between given or calculated nodes.

5.1 Path integral Monte Carlo

In Path Integral Monte Carlo (PIMC) approach the Metropolis Monte Carlo method
is used to sample the density matrix in Eq. (4.12) or Eq. (4.19), though the latter is not
as straightforward for fermions [27]. For bosons this has proven to be very efficient
method of calculating quantum statistical properties of finite, non-zero temperature
systems [15, 46, 47].

In practical simulations the short time approximation is usually used, which is
called the primitive approximation in this context. It can be derived by using the
fact that amplitudes for events occurring in succession are multiplicative [8]. The
"time" ħhβ is divided into M equal parts and the density matrix can then then be
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written as

ρ(x ′, x, ħhβ) =
∫

ρ(x ′, x1, ħhτ)ρ(x1, x2, ħhτ)...ρ(xM−1, x, ħhτ)dx1dx2...dM−1, (5.1)

where τ = β/M . M is often called the Trotter number and it should be noted that
the equation is exact for any M .

In case, the particles are assumed to be distinguishable Eq. (4.8) is used to write
Eq. (5.1) as

ρ(xi−1, xi , ħhτ) =
∑

n
φn(xi−1)exp(−τĤ )φ∗n(xi ) (5.2)

=
∑

n
φn(xi−1)exp(−τT̂ −τV̂ )φ∗n(xi ) (5.3)

≈
∑

n
φn(xi−1)exp(−τT̂ )exp(−τV̂ )φ∗n(xi ). (5.4)

In the last line the commutator between T̂ and V̂ is ignored (see Eq. 2.11), and
thus, this is exact at the limit τ→ 0 i.e., M →∞. Because potential energy is diago-
nal in position space the last equation can be written as

ρ(xi−1, xi , ħhτ) =
∑

n
φn(xi−1)exp(−τT̂ ) φ∗n(xi )exp(−τV (xi )) (5.5)

≡ ρ0(xi−1, xi , ħhτ)exp(−τV (xi )), (5.6)

where ρ0 is the free particle density matrix. It can be calculated analytically [15] by
inserting free particle eigenfunctions (plane waves) and eigenenergies into Eq. 5.5.
Then, assuming we can approximate the sum by an integral it can be calculated the
same way the momentum integrals of Eq. (2.17) were done in chapter 1. The free
particle density matrix then takes the form

ρ0(x
′, x) = (4πλτ)−dN/2 exp

�

−
(x ′− x)2

4λτ

�

(5.7)

where λ = ħh2/2m, d is the dimensionality of the system and N is the number of
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particles with mass m. Eq. (5.1) can now be written as

ρ(x ′, x, ħhβ) =
∫

(4πλ)−dN M/2 exp(−
M
∑

i=1

�

−
(xi−1− xi )

2

4λτ
+τV (xi )
�

dx1...dxM−1.

(5.8)

There is a useful classical analogy for this equation. It is the configuration in-
tegral for a chain of beads that are connected with springs i.e., harmonic potential.
Because of this classical isomorphism, many properties of a quantum system can be
understood purely in terms of classical statistical mechanics. For thermodynamical
properties we only need the trace of this matrix (x = x ′) and so the chain becomes
closed to a ring.

5.2 Diffusion Monte Carlo

Diffusion Monte Carlo (DMC) method is another typical representative of QMC,
where imaginary time evolution is used to find the ground state of the system at
zero temperature. It has been demonstrated in several cases to be a simple, yet accu-
rate approach [14, 38] and both bosonic [15, 54] and fermionic [55, 56, 60] systems
have been successfully considered. A recent example is benchmarking the hydrogen
molecule and its simple reaction conformations with ever increasing accuracy [57,
58, 59].

The time-dependent Schrödinger wave equation for the many-body wave func-
tion ψ(x, t ) is

iħh
∂ ψ(x, t )
∂ t

= (H − ET )ψ(x, t ), (5.9)

where H is the hamiltonian, x stands for all coordinates of particles in one or more
spatial dimensions and ET is an arbitrary reference energy or shift of zero level.
Now, by replacing the real time t by imaginary time τ = i

ħh t , this becomes

−
∂ ψ(x,τ)
∂ τ

= (H − ET )ψ(x,τ), (5.10)

which is of the form of a diffusion equation. Its solutions can be expressed in terms
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of eigenfunctions φn(x) of the hamiltonian as

ψ(x,τ) =
∞
∑

n=0
Cnφn(x)exp[−(En − ET )τ]. (5.11)

As τ increases the eigenfunction with the lowest eigenvalue starts to dominate
the sum. In other words, imaginary time propagation with large enough τ produces
the ground state of the system.

Using Eq. (2.34) we can write the solution as

ψ(xb ,τb ) =
∫

a
G(xb ,τb ; xa ,τa)ψ(xa ,τa)dxa , (5.12)

where G(xb ,τb ; xa ,τa) is the propagator, the position space representation of the
time evolution operator exp[−(H −ET )(τb −τa)]. Since DMC is usually presented
without resorting to path integrals and instead using Green’s function formalism
[14] the propagator is called Green’s function of the system in this context.

As the exact analytical form of the Green’s function is rarely known it needs to
be approximated. Use of the so called short time approximation [14] (see also Eqs.
(2.12) and (6.5)) to separate the kinetic and potential energy contributions, T and V ,
gives

exp[−(H−ET )∆τ] = exp[−(T +V −ET )∆τ]≈ exp[−T∆τ]exp[−(V −ET )∆τ].
(5.13)

Since T and V do not commute, in general, this approximation is exact only at the
limit∆τ→ 0 but accurate for small∆τ for potentials bound from below [14].

At this limit the Green’s function can be separated into two parts, kinetic and
potential (or diffusion and branching),

G(xb ,τb ; x,τa)≈Gdiff(xb ,τb ; x,τa)GB (xb ,τb ; x,τa). (5.14)

As this Green’s function satisfies the imaginary time Schrödinger equation [14]
we can write
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−
∂ GdiffGB

∂ τ
= (H − ET )GdiffGB (5.15)

=− ħh
2

2m
∇2GdiffGB − (ET −V )GdiffGB (5.16)

(5.17)

and differentiating the left hand side yields

∂ Gdiff

∂ τ
GB +Gdiff

∂ GB

∂ τ
=
ħh2

2m
∇2GdiffGB +(ET −V )GdiffGB . (5.18)

From this we get two equations

∂ Gdiff

∂ τ
=
ħh2

2m
∇2Gdiff (5.19)

and

∂ GB

∂ τ
= (ET −V )GB . (5.20)

Solutions to these equations are well known [14, 38], a Gaussian spreading in∆τ
and an exponential function:

Gdiff(xb , xa ;∆τ) = (4πD∆τ)−dN/2 exp[−(xb − xa)
2/4D∆τ] (5.21)

and
GB (xb , xa ;∆τ) = exp[−(1

2
[V (xa)+V (xb )]− ET )∆τ], (5.22)

where the diffusion constant is D = ħh2/2m (= 1/2 in atomic units for the electron),
d is the dimensionality and N is the number of particles with mass m. Note that the
diffusion part of Eq. (5.21) and the free particle density matrix of PIMC Eq. (5.7)
are the same.

With these equations one can simulate random-walk-with-branching procedure
to find the imaginary time evolution. Carrying out the simulation iteratively with
short enough time step∆τ, large enough population of random walkers and adjust-
ing the "trial energy" ET to keep the simulation stationary will finally converge to
the ground state wave function distribution of walkers and trial energy to the corre-
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sponding energy eigenvalue.
Diffusion Monte Carlo method is generally used with trial wave functions [14,

26], which makes DMC a significantly more powerful tool than without, in which
case it usually deals with the ground states. Trial wave functions enable studies of
larger system sizes, helps finding the lowest energy states of given symmetries and
use of sc. mixed estimators for evaluation of physical quantities. Also, use of wave
function nodes, if available, allows simulation of excited states [27, 28].
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6 REAL TIME METHODS

Finally, the novel real time path integral (RTPI) methods of this thesis will be given
in this chapter. We will first introduce improvements to the propagator from both
physical and numerical viewpoint. Second, we will present a novel technique that we
call the "incoherent propagation". This method allows us to use real time propaga-
tion to calculate the eigenstates of the system. Unlike the imaginary time methods,
this approach can also be used on excited states straightforwardly. A Monte Carlo
method, where the calculated real part of the wave function is used to guide the evo-
lution of the walkers, is introduced for the simulations of incoherent propagation.
Coherent propagation i.e., actual dynamics is also demonstrated. The real time dif-
fusion Monte Carlo method is presented. This technique transforms the complex
propagator into four real valued propagators, which can be used, similarly to the
conventional Diffusion Monte Carlo method, as probabilities for walker evolution.
This will remove the need of calculating propagators between all walkers making
the calculations computationally substantially lighter. Both incoherent and coher-
ent propagations are simulated with this method.

6.1 Propagator and its approximations

At first look the equations for imaginary time evolution Eqs. (4.12), (5.12) and real
time evolution Eq. (2.34) look very similar but the imaginary unit in the exponent
makes an essential difference. While the imaginary time evolution is local like dif-
fusion the real time one is not. This makes most of the useful features discussed in
the previous section unavailable for real time simulations. In principle, we can use
importance sampling but we do not generally have an efficient way of producing the
desired distribution and we end up summing highly oscillatory terms that makes
calculations inefficient.

Explicit forms of the propagator are known for simple cases, only, such as the
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particle with mass m in the one dimensional constant linear potential V (x) =− f x
[8, 21],

K(xb , xa ;∆t ) =
h m

2πiħh∆t

i1/2
exp
�

i
ħh
(

m
2∆t
(xb − xa)

2− ∆t
2
(V (xa)+V (xb ))−

∆t 3 f 2

24m

�

, (6.1)

which reduces to the free particle propagator with f = 0 or to the propagator of
particle in a box if confined by infinite potentials.

For the one dimensional forced harmonic oscillator

V (x, t ) =
mω2

2
x2− f (t )x (6.2)

the exact explicit propagator takes the form [8, 22]

K(xb , xa ;∆t ) = exp(−iθ)
�

mω
2πħh | sin(ω∆t ) |

�1/2

exp
�

i
ħh

Scl

�

, (6.3)

where Scl is the classical action and θ = π
4 (1+ 2trunc(ωt/π)). Here, "trunc(x)"

denotes the truncation function, the largest integer less than or equal to x. For f ≡ 0
the classical action is

Scl =
mω

2sin(ω∆t )
�

(x2
b + x2

a )cos(ω∆t )− 2xb xa
�

. (6.4)

In general, the exact Kernel is rarely known and approximations are needed.
A usual approximation is sc. "symmetrized short time approximation" or "sym-
metrized Trotter kernel" as it is also called [1, 19, 23, 24]

K(xb , xa ;∆t )≈
h m

2πiħh∆t

id/2
exp
�

i
ħh

� m
2∆t
(xb − xa)

2− ∆t
2
(V (xa)+V (xb ))

�
�

. (6.5)

Here d is the dimensionality of the system. As was discussed before, if part of the
dimensionality consists of multiple particles with different masses the above equa-
tion must be modified accordingly. This equation follows directly from operator
factorization Eq. (2.12), and so, it becomes exact as ∆t → 0. Some physical intu-
ition can be gained by comparing this with Eqs. (2.27) and (2.28) and noting that this
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describes a particle or particles moving along a straight line with constant speed and
in constant potential.

In Paper I the performance of Trotter kernel is tested and the fundamental prob-
lem associated with it in real time simulations is discussed. While the approximation
is accurate only when∆t is small, this causes the integrand to become highly oscilla-
tory which increases the numerical error in the Monte Carlo estimate. So, unlike in
imaginary time, where decreasing time step systematically increases the accuracy of
the result, in real time the best numerical result is achieved at some∆toptimal, where
the Trotter approximation is good enough and the numerical error from Monte
Carlo integration is manageable.

One approach to improve this propagator is sc. semi-classical or WKB approxi-
mation [8, 16, 19], where the particle moves along the classical paths only. This ap-
proximation is exact for linear and quadratic potentials [8] and it has been claimed
that the only propagators, for which we can find exact analytical form, are of this
type [19]. For the semi-classical propagator all the classical trajectories connecting
xa and xb in time ∆t must be found. This is not trivial for most systems, such as
for the Coulomb problem [29, 30]. Another semi-classical method is the sc. cellular
dynamics [31], where the propagator is computed by dividing the phase space into
small Gaussian cells where within each of the classical dynamics can be linearized
and the resulting Gaussian integrals performed.

A different approach is to keep higher-order terms in Eq. (2.12) to reduce the error
from non-zero time-step [25]. Other schemes include construction of effective non-
oscillatory propagators [23] and calculating those numerically on a grid [24].

In Paper II we introduce a couple of simple improvements for the kinetic and
potential part of the propagator. Looking at the form of Eq. (6.5) we see that the po-
tential part is just the average of potentials in starting point and end point. Keeping
the straight line path and constant speed we can replace this two point average with
the actual average along that path

Vavg =
1

| xb − xa |

∫ xb

xa

V (x)d x. (6.6)
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In one dimensional space for two particles this yields for the harmonic potential

V H
avg =

ω2

6

�

x3
1b − x3

1a

x1b − x1a
+

x3
2b − x3

2a

x2b − x2a

�

(6.7)

and for the Coulomb potential

V C
avg =

ln(rb/ra)
rb − ra

, (6.8)

where x1 and x2 are the particle coordinates, and ra = x1a − x2a and rb = x1b − x2b

are the initial and final distances between the particles.

In numerical simulations the highly oscillatory nature of the propagator raises
serious problems. This sign problem will be discussed more thoroughly later, but
we will introduce here a method of smoothing the kinetic part of the propagator.

The kinetic part of the propagator is the free particle propagator, see Eq. (6.1) and
related comments, and it tells us how delta functions evolve in time, see Eq. (2.35).
When working in coordinate space the wave function can be thought of as a linear
combination of Dirac delta functions

ψ(x) =
∫ ∞

−∞
ψ(x ′)δ(x ′− x)dx ′. (6.9)

In numerical simulations we have a finite number of grid points, so the representa-
tion of the wave function is always an approximation and using a finite number of
δ-functions only, leads to numerical errors.

The initial wave functionψ(xa , ta) presented pointwise in a grid of walkers can be
"smoothened" to a "gaussianwise" presentation in the same grid by using Gaussian
basis function with variance ε2ħh

2m [2], where εmust be small enough that the overlap
of the Gaussians is not too large. The kinetic part in the propagator is now replaced
by the well known time-evolution of Gaussian wavepacket [17, 32]

h m
2πiħh∆t

id/2
exp
�

i
ħh

m
2∆t
(xb − xa)

2
�

→
�

m
2πħh(i∆t + ε2)

�d/2

exp
�

i
ħh

m
2(∆t − iε2)

(xb − xa)
2
�

, (6.10)
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which converges back to the pointwise presentation as ε→ 0. It is interesting to note
that mathematically this smoothening is equivalent with replacing∆t with∆t− iε2

and this complex time corresponds to the physical system, where the initial state of
the particle is not a pure state but a probabilistic mixture of them [33].

We could do the same modification for the potential part of the propagator, but as
this would only play a role, when the potential energy becomes very large (V (x)∼
∆x2/∆t 2) it is usually not needed. In the case of singular potential it could provide
similar numerical stability.

Also, it should be noted that path integral algorithms allow easy parallel comput-
ing since we can compute each xb separately and even do the sum over all xa’s as a
sum of partial sums (or vice versa).

6.2 Numerical sign problem

When running Monte Carlo simulations in real time, at first, it might seem that
the fermion sign problem does not manifest in a similar way as it does in imaginary
time. We can calculate the wave function using Eq. (3.11) and then use Eq. (4.2)
to calculate the expectation value of the desired observable. This is because in real
time the phase factor can be separated from the wave function, see Eq. (3.11), and
as the wave function is multiplied by its complex conjugate when calculating the
expectation value, see Eq. (4.1), the phase factors will cancel out.

The problem with real time is that in Eq. (3.11) the Kernel is usually a highly os-
cillatory function as the time step∆t gets smaller. This can can be seen by the form
of short time propagator of Eq. (6.5) and is illustrated in Fig. 6.1. This causes the
variance and the error of Monte Carlo estimate to increase, until the error becomes
as large as the value of the integral and the whole Monte Carlo estimate becomes
meaningless. This problem is related to the ratio of the size of the positive and nega-
tive areas of the integrand, so that the closer they are in size, the worse the problem.
This is emphasized when the dimensionality increases and even an integral of a func-
tion that is only mildly oscillatory in one dimension becomes exponentially harder
to evaluate accurately with Monte Carlo technique [48]. That is why the improve-
ments in the kernel, such as making it less oscillatory and more exact are so crucial
in real time path integral calculations.

Intuitively it can be seen how both the fermion and numerical sign problem are
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Figure 6.1 Real part of the free particle kernel for one dimensional electron in atomic units with xa = 0,
∆t = 1 (left) and ∆t = 0.1 (right). Kernel is the probability amplitude for the electron to
arrive at various distances x from the origin after a time∆t . Shorter wavelengths correspond
to a higher classical momentum according to the de Broglie relation λ= h/p

manifestations of same phenomena. We are trying to calculate something that is
very small by subtracting two large numbers, when the error in those numbers is
proportional to the size of that number. This means that the error could be larger
than the result we are trying to calculate.

So, in real time, instead of a fermion specific sign problem we have a sign problem
that affects all systems, whether they are bosonic, eigenstates, dynamical, etc.

6.3 Incoherent propagation

In real time evolution, propagator and wave functions are complex valued functions
with modulus and argument, latter of which we call phase in this context. The phase
factor is the description of all the interference effects for the coherent propagation.

In Paper I we present the method of incoherent propagation, where we use real
time propagation to find eigenstates of the system. Unlike the imaginary time DMC
this method can be used also to find excited states and since it deals with static dis-
tributions we can use Metropolis Monte Carlo to find them.

The real-time solution of the wave Eq. (5.9) has the form

ψ(x, t ) =
∞
∑

n=0
Cnφn(x)exp[− i

ħh
(En − ET )t ], (6.11)
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analogously with the imaginary time solution of Eq. (5.11). By using the small angle
approximation for short enough∆t the time evolution can be written [1] as

ψ(x,∆t )≈
∞
∑

n=0
Cnφn(x){1− [(En − ET )

∆t
ħh
]2/2− i[(En − ET )

∆t
ħh
]}. (6.12)

Now dropping off the imaginary part and keeping the real part of ψ = ψR + iψI ,
only, the single step time evolution leads to projection onto the real axis

ψR(x,∆t ) =
∞
∑

n=0
Cnφn(x){1− [(En − ET )

∆t
ħh
]2/2}. (6.13)

Repetition of wave function projection onto its real part removes the coherent phase
factor in every time step. Therefore, we call this iteration of Eqs. (2.34) and (6.13) as
incoherent propagation or quantum Zeno propagation [49].

Now, it is easy to see that this incoherent propagation (iRTPI) converges to one
of the real eigenstates of the system. The dominant term in the sum in (6.13) is the
one, where | En − ET | is least. Therefore, the iterative incoherent propagation of
ψR(x, t ) will converge to the real eigenstate φk with eigenenergy Ek closest to ET ,
unless the initial ψR(x, t ) is orthogonal to φk (Ck = 0). However, even in such case
we can expect the numerical inaccuracies to generate a small seed of any eigenstate
(Ck ̸= 0), and eventually, to lead to the expected convergence. In case of degeneracy
it is to be expected that this procedure will find some superposition of the degenerate
states.

This effect is demonstrated in Fig. 6.2, where the incoherent propagation simu-
lation of a one dimensional harmonic oscillator starting from superposition of the
1st and 2nd excited states, first finds the first excited state but eventually falls to the
ground state.

All the simulations in this thesis are done using atomic units, where m = ħh =
a0 = 1, where a0 is the Bohr radius and the unit of time is (ma2

0)/ħh ≈ 24 as.

By writing the first terms of the Taylor series of Eq. (5.11)

ψ(x,τ) =
∞
∑

n=0
Cnφn(x){1− (En − ET )

∆t
ħh
+
[(En − ET )

∆t
ħh ]

2

2
}. (6.14)

and comparing it to the (6.13) we see that the imaginary time propagation can con-
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Figure 6.2 Incoherent time evolution of the superposition states to the ground state. Dashed line sim-
ulation starts from the superposition of the ground and 3rd excited state, whereas the dash
dotted line starts from the superposition of the 1st and 2nd excited states. The calculated po-
tential energy V , in atomic units, for each time step is shown. Solid lines show the potential
energies of the ground and 1st excited states.

verge to the ground state of the system, only, while with the incoherent propagation
ET can be chosen arbitrarily to find any non-degenerate eigenstate φk . This is the
benefit of iRTPI, when compared to DMC.

In a graphical interpretation of Eq. (6.13) the real wave function in a time step
∆t rotates in complex plane clockwise an angle (En−ET )∆t/ħh, and then, becomes
projected back to the real axis, walker by walker. The larger (En−ET )∆t , the less of
φn(x) contributes to the projection. The hypothetical problem arising from the 2π
periodicity of the angle can be eliminated by changing, or in particular, decreasing
the time step.

In Paper I we demonstrate the use of incoherent propagation and calculate ground
states and some excited states of our test cases. As our target wave function is real,
we use the Metropolis Monte Carlo method where the calculated wave function is
used to guide the evolution of the walkers. In this way we have the wave function
represented by the walker distribution, and also, by the values calculated for each
walker. The advantage of this is, that it gives us a straightforward way to evaluate
expectation values directly as can be seen from Eq. (4.2). We can also evaluate the
total energy from the phase of the wave function before dropping the imaginary
part, because we are finding the eigenstate for which it will be constant i.e., the same
for all walkers.
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Table 6.1 Incoherent propagation in MC grid of the ODHO ground state with Trotter kernel. M is the
number of walkers, ∆t the time step, ∆V the deviations of expectation values of the po-
tential energy from its exact value 0.025000 and σ the standard deviation of V from long
simulations. All quantities are in atomic units.

M ∆t ∆V /10−6 σ/10−6

104 0.3 160 540

104 1 60 530

104 3 40 470

3× 104 1 30 320

Using the short time approximation we find the potential energy with good ac-
curacy. The table 6.1 will show the data for the one dimensional harmonic oscillator
(ODHO).

6.4 Hooke’s atom

Consider two electrons with Coulomb repulsion in a harmonic potential well. This
system is called Hooke’s atom. In atomic units m = ħh = a0 = 1, the Hamiltonian of
the system is

H (x1, x2) =−
1
2
∇2

1−
1
2
∇2

2+
1
2
ω2x2

1 +
1
2
ω2x2

2 +
1

|x1− x2|
, (6.15)

where x1 and x2 are the three coordinates of two electrons. The relative and center-
of-mass (CM) motion of the electrons can now be separated by defining new three-
dimensional variables

r = x1− x2 and R=
x1+ x2

2
(6.16)

Then, the Hamiltonian decouples as

H (r, R) =− 1
2µ
∇2

r +
1
2
µω2 r 2+

1
|r |
− 1

2M
∇2

R+
1
2

Mω2R2 ≡Hr +HR, (6.17)
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where µ= 1
2 and M = 2 are the reduced and the total mass of the electrons. The six

dimensional wave function and total energy separates as ψ6(r, R) =φ3(r )Φ3(R) and
E = Er + ER, respectively.

The CM motion is simple harmonic oscillation, which, of course, can further
be separated into three one-dimensional components. The relative motion of the
two electrons is harmonic oscillation with the Coulomb repulsion as a perturbation.
This equation can be separated into radial and angular components similarly to the
dynamics of the hydrogen atom.

With substitution φ1(r ) = u(r )/r where r is now one dimensional the radial
equation of ground state takes the form

[− 1
2µ

d2

dr 2
+

1
2
µω2 r 2+

1
r
] u(r ) = Er u(r ). (6.18)

To find the exact solution we must solve a three step recurrence equation [50], whose
solutions are restricted to some specific values of confinement parameters, only.

Oseguera and Llano [51] have proven that the singularity of the attractive one-
dimensional Coulomb potential acts as an impenetrable barrier and the space be-
comes divided into two independent regions. This is called the space splitting ef-
fect. Therefore, the solutions for positive and negative parts of relative coordinates
are completely independent. Due to the space spitting effect of the one dimensional
Coulomb potential, the wave function of the two particles should vanish where their
relative coordinate becomes zero.

As a consequence of this, the relative dynamics in one dimension is that of the
radial part in three dimensions for the angular momentum quantum number ℓ= 0,
Eq. (6.18), [50]. With the definitions of r and R in Eq. (6.16), in one dimension

ψ(r, R) = u(r )Φ(R), (6.19)

where now u(r ) is the relative motion wave function in one dimension Eq. (6.18). It
is related to the three-dimensional relative motion wave function with zero angular
momentum via rφ(r ) = u(r ). In the one dimensional space the CM dynamics is
simply that of one of the three R-components in Eq. (6.17).

In Papers II and III the incoherent propagation with the wave function guided
walkers is applied to Hooke’s atom and the strong correlation between electrons
is examined. Again the method yields good accuracy for energetics, for both the
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Table 6.2 Accuracy and distribution of ground state energetics of 1D Hooke’s atom (ω = 0.5) from inco-
herent RTPI simulations of the ground state. M is the number of walkers (k = 103), ∆t the
time step, ∆E deviation of expectation values from the exact value 1.5000, ∆V deviation
of the expectation value from the exact value 1.0856..., σ standard deviation in 20 blocks of
data with 50 iterations in block and ε2 the "gaussian width of walkers" discussed in section
7.1. All quantities are in atomic units.

M ∆t ∆E σE ∆V σV ε2

100k 0.3 −0.0152 0.0008 0.0109 0.0017 0.005

100k 0.1 0.0032 0.0014 0.0039 0.0021 0.005

100k 0.03 0.0601 0.0135 0.0054 0.0014 0.005

30k 0.3 −0.0185 0.0016 0.0161 0.0042 0.005

30k 0.1 0.0046 0.0058 0.0172 0.0111 0.005

30k 0.03 0.1544 0.0333 0.0221 0.0247 0.005

10k 0.3 −0.0220 0.0030 0.0126 0.0062 0.005

10k 0.1 0.0077 0.0123 0.0296 0.0505 0.005

10k 0.03 0.4324 0.0653 0.0154 0.0045 0.005

ground and excited states. We also show how perturbation theory (PT) provides
an accurate approach in the strong confinement regime. Tables 6.2 and 6.3 show
the results of simulations with ω = 0.5 and comparison with the exact value and
value from pertubation theory, where available. ω is the angular frequency of the
oscillator and for the chosen value exact results for the ground state can be found
[50]

Using the Virial theorem for one dimensional harmonic oscillator, we have [52]

< TC M >=<VH ,C M >= (n+
1
2
)
ħhω
2

(6.20)

TC M is the kinetic energy of center of mass motion and VH ,C M =
1
2 Mω2R2 is the

CM harmonic potential. Here, for n = 1 and ω = 0.5 this gives 3/8= 0.375. Table
6.3 shows the RTPI, PT and analytical exact values (where available) for kinetic and
potential energies of Hooke’s atom. As one can see the results are in very good
agreement with the exact solution.

The energetics of the second excited state is shown in the Table 6.4.

There is a systematic error arising from the short time approximation which is
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Table 6.3 The first excited state (ω = 0.5) and its expectation values. The first excited state is the
combination of the first excited state of CM motion and ground state of relative motion. The
expectation values of Tr

* and TC M
∗ are calculated directly from normalized wave functions.

Potential energy† =Vc +VH ,r +VH ,C M and its components are calculated as RTPI output

and total energy‡ is calculated (independent from potential and kinetic energies) directly from
the phase of the wave function. The number of walkers M is 300k and∆t = 0.1.

Exact value RTPI 1s t order PT 2nd order PT 3t h order PT

Vc 0.4474 0.4530(4) † 0.4354 0.4443 0.4466

VH ,r 0.5131 0.5117(1) † 0.5161 0.5218 0.5181

Tr 0.2894 0.2870(9) * 0.3028 0.2847 0.2861

VH ,C M 0.375 0.3722(1) † 0.375 0.375 0.375

TC M 0.375 0.3765(15) * 0.375 0.375 0.375

Potential energy 1.3355 1.3369(3) * 1.3265 1.3412 1.3397

Total energy 2 1.9969(6) ‡ 2.0043 2.0010 2.0009

Table 6.4 The second excited state (ω = 0.5) and its energetics as in the Table 6.3. The second
excited state is a combination of the CM ground state and the first excited state of relative
motion. Analytical exact values for this state are not available. Notations are the same as in
Table 6.3

Exact value RTPI 1s t order PT 2nd order PT 3t h order PT

Vc - 0.4234(9)† 0.4233 0.4074 0.4119

VH ,r - 0.9811(9)† 0.9530 1.0074 1.0043

Tr - 0.786(4) * 0.8159 0.7771 0.7753

VH ,C M 0.125 0.1620(3) † 0.125 0.125 0.125

TC M 0.125 0.0986(7) * 0.125 0.125 0.125

Potential Energy - 1.5665(6) * 1.5013 1.5399 1.5413

Total Energy - 2.4331(2)‡ 2.4423 2.4420 2.4417

largest near the singularity of the potential of Eq. 6.18) i.e., where the two electrons
come close to each other. Other errors come from the sparsity of the grid where the
absolute value of the wave function is small and from the error of using Monte Carlo
to calculate the highly oscillatory integral of Eq. (3.11). The effect of these errors
on energy calculations is lessened by the fact that they all are most prominent in
the areas where the absolute value of the wave function is small, and so, contribute
relatively little to the value of the expectation value of Eq. (4.2).

This can be seen from the following snapshots of Monte Carlo simulation that
show the error in phase for each walker, Figs. 6.3 - 6.5.
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Figure 6.3 Snapshot of the complex wave function
phase evolution in one time step. Color
coding: red for∆ϕ > 0.3 and green for
∆ϕ <−0.3. These values correspond
to 20% of the known expectation value
of energy. M = 30000, ∆t = 0.1 and
ε2 = 0.005.
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Figure 6.4 Complex wave function phase evolution
of the real ground state after one time
step in a plane of coordinates of elec-
trons (x1, x2) in atomic units. Trial en-
ergy ET = 2 is the exact value for the
total energy, so the wave function is ro-
tated back to the real axis (∆ϕ = 0 ex-
pected). The colors show which walkers
are more than 20% off from the known
expectation value of energy. Color cod-
ing: red for ∆ϕ > 0.3 and green for
∆ϕ < −0.3, size of blue and other
walkers is smaller and larger, respec-
tively. M = 30000, ∆t = 0.1 and ε2 =
0.005. The CM and relative coordinate
axes are also shown.

6.4.1 Coherent RTPI simulation of quantum dynamics

To test the time evolution of Hooke’s atom, a short time pulse of spatially linear elec-
tric field (linear in space and Gaussian in time) has been considered as a perturbation.
We chose the external potential as

U (x, t ) =
U0p
πα

x exp(−
(t − t0)

2

α
), (6.21)

where U0 = 1,α= 0.1 and t0 = 1, in atomic units.
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Figure 6.5 Snapshot of the calculated wave function in
the relative motion coordinates with M =
30000, ∆t = 0.1 and ε2 = 0.005. The
units, the walkers and the color coding are
the same as in the Fig. 6.4.

As can be seen from the potential energies in figure 6.6 the walker size ε affects
the results much more than in incoherent propagation. Too large ε cuts out higher
energy eigenstates and results in incorrect energies (blue line) and too small ε in-
creases the incidental numerical error from the kinetic energy part of propagator
(green line). That is expected as it cuts out higher energy eigenstates, which are not
present in the simulation of lower eigenstates but contribute to the real time evolu-
tion. For the real-time dynamics εmust be chosen smaller than that for the optimal
incoherent propagation [1, 2].

There is a delay in the system response to such an ultrafast transient process. It is
due to the inertia of electrons. After the external pulse the total energy is conserved
and the electrons remain in harmonic oscillation.

Figure (6.7) shows the different contributions to the potential energy. As ex-
pected, the Coulomb interaction remains unchanged during the time evolution, and
the effects of the external electric field just appear in a short time interval.

6.4.2 RTPI extension to DMC

Now, we consider the conventional DMC and how RTPI can be used in conjunction
with it. Since Hooke’s atom does not involve attractive singular Coulomb potentials,
but only+ 1

r , the Trotter break-up is valid and the branching term in Eq. (5.22) does
not diverge. Therefore, the simple DMC can be expected to give accurate results with
sufficiently small imaginary time time step and large enough number of walkers.

The data in Table 6.5 shows that the total energy converges to its exact value as
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Figure 6.6 Potential energy in atomic units from one MC simulation ∆t = 0.1 and M = 100000 with
different walker size ε in atomic units. Blue short dot line ε2 = 0.05, red dot line ε2 = 0.005
and green dash line ε2 = 0.0005. The black solid line represents the exact solution.

the imaginary time step τ→ 0. By comparing the RTPI data in Table 6.2 we see that
with optimal parameters and the same number of walkers M , RTPI gives similar
accuracy as simple DMC, if only the number of Monte Carlo steps matters.

However, RTPI is computationally much more demanding. This stems from the
fact, that for each MC step in DMC algorithm, only M moves of walkers guided by
the potential function is needed, but with the present incoherent RTPI we need to
calculate M ×M real time propagations to evaluate the guiding distribution before
moving the walkers.

The expectation value of an observable, such as potential energy V , is

〈V 〉=
〈ψ |V |ψ〉
〈ψ |ψ〉

. (6.22)

For direct sampling of the matrix elements, another representation of the wave func-
tion, ket or bra vector, is needed.

The simple DMC algorithm samples the nodeless ground state distribution, which
makes it cumbersome and inefficient to evaluate expectation values for observables
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Figure 6.7 Contributions to the potential energy in atomic units from Coulombic (black solid line), har-
monic (red dot line) and external potential (blue dash line) effects from one MC simulation
with M = 100000 and ε2 = 0.005.

other than the total energy, even as simple as the potential energy. This is due to the
availability of the wave function in form of walker distribution, only. Thus, in eval-
uation of the expectation value matrix elements the walker distribution implicitly
contributes as one wave function, but the other one is not available.

For this purpose the incoherent RTPI on DMC walkers can be used. Similarly,
expectation values of any local multiplicative operators become directly available.
Also, another total energy estimate is obtained from the wave function phase evolu-
tion in real time.

Furthermore, the incoherent RTPI can be used to evaluate, not only the ground
state, but also the excited states with the positive and negative amplitudes, and thus, it
provides means for locating the nodal surfaces. We can combine the two approaches
for evaluation of excited states, or in general, states with nodes in the spirit of released
nodes idea [53]; RTPI would be used in finding the nodes and evaluating another
wave function, as well as another total energy, while DMC is used to sample the
walkers for RTPI.

In Table 6.6 we show the data evaluated with the combined approach, for the
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Table 6.5 Accuracy and distribution of energetics in DMC simulations of the stationary ground state.
Number of walkers is M = 30k, τ is the imaginary time step,∆E deviation of the expectation
value from its exact value 1.5000 and σ is the standard deviation of 20 blocks of data. Each
block consists of 50 iterations. A new energy estimate was calculated after each block.

τ ∆E σ

1 −0.0526 0.0008

0.3 −0.0197 0.0016

0.1 −0.0096 0.0034

0.03 −0.0063 0.0049

0.01 −0.0041 0.0085

0.001 0.0137 0.0235

Table 6.6 Energetics of the one-dimensional Hooke’s atom in ground state, calculated with incoherent
RTPI combined with DMC. The walker distribution M = 30k is sampled by DMC with (τ =
0.01) and RTPI step length is∆t = 0.1. Evaluated expectation values and DMC total energy
are given with their standard deviations. Notations are the same as in the previous Tables.
DMC is calculated from 20 blocks of data with 50 iterations per block. RTPI step is run once
for every other block.

∆E σE ∆V σV ε2

RTPI 0.0033 0.0060 0.0022 0.0039 0.005

DMC −0.0041 0.0085

ground state of one-dimensional Hooke’s atom. The underlying DMC has been run
with τ = 0.01, see Table 6.5 and RTPI on top of that with∆t = 0.1 with the optimal
choice of other parameters, see above. RTPI step has been run once for every other
block of 50 DMC steps.

We find that DMC sampling of walkers from the distribution derived from the
potential function leads to smoother spatial distribution than that of guided by the
wave function amplitude from RTPI. This can be seen by comparing the distribu-
tions in Figs. 6.4 and 6.8, and also, the amplitudes in Figs. 6.5 and 6.9. This also
yields better energetics which can be seen by comparing the values from Tables. 6.2
and 6.6. In the latter one there are less stray walkers at very low density region. The
reason for this is in the different nature of the guiding distribution: for DMC it is
stable well-defined potential, while for the Metropolis algorithm in RTPI it is the
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Figure 6.8 DMC simulation snapshot of walker distribution in a plane of coordinates of electrons (x1, x2)
and separated coordinates (r, R), in atomic units. Parameters τ = 0.001 and M = 30000
were used.
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Figure 6.9 Snapshot histogram of walker distribution in DMC simulation with τ = 0.001 and M = 30000.
Green line is the analytical solution fitted to the data. u is the number of walkers in each bin
and r is given in atomic units.

calculated amplitude presented in the Monte Carlo grid.

If more stability is needed and larger number of walkers becomes too expensive,
it may be necessary to use cumulative distribution of the amplitude from several pre-
vious RTPI steps. According to our preliminary testing, the same type of problem
may arise in locating the nodal surfaces accurately enough. Use of the cumulative
distributions calls for numerical algorithms for efficient interpolation and updating
the collected data.
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6.5 Real time diffusion Monte Carlo

The DMC diffusion like procedure can be used directly to solve the integral in Eq.
(5.12) but not that in Eq. (2.34) for ψ, because the kernel K , as a path integral, is a
complex valued functional of interfering paths coupling all of the walkers. Thus, K
can not be interpreted as a probability [23, 24, 61], and furthermore, it is delocalised
with complex exponential tails oscillating in whole space, the more the shorter the
time step∆t .

In Paper IV we introduce real time diffusion Monte Carlo method (RTDMC)
with which we regain the probability interpretation of the propagator, and thus, we
are able to use walker distributions to represent the whole complex wave function.

6.5.1 Separation of kernel

In RTDMC [4]method we separate the integrand in Eq. (2.34) into terms, which can
be considered as "positive probabilities", and second, normalization is accomplished
by restricting the space of integration. Similarly both the kernel K ∝ exp(iφ) [8]
and the wave function ψ(a) at the right hand side of Eq. (2.34) are separated into
four parts as

K(b ,a) =C exp(iφ) =C [cos(φ)+ i sin(φ)] =C
h

cos(φ)+ i cos(
π

2
−φ)
i

=C

�

cos2(
φ

2
)− sin2(

φ

2
)+ i

�

cos2

� π
2 −φ

2

�

− sin2

� π
2 −φ

2

���

=K+(b ,a)−K−(b ,a)+ iK+i(b ,a)− iK−i(b ,a)

(6.23)

and
ψ(a) =ψ+(a)−ψ−(a)+ iψ+i(a)− iψ−i(a). (6.24)

This splits the integrand into 16 terms. Here C and φ are some functions of a and
b , that can be chosen so that C is real and positive. Rearrangement of these terms
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allows splitting the left hand side of (2.34) with the same principle as

ψ+(b ) =
∫

a
K+ψ+d xa +
∫

a
K−ψ−d xa +
∫

a
K+iψ−id xa +
∫

a
K−iψ+id xa

ψ−(b ) =
∫

a
K+ψ−d xa +
∫

a
K−ψ+d xa +
∫

a
K+iψ+id xa +
∫

a
K−iψ−id xa

ψ+i(b ) =
∫

a
K+ψ+id xa +
∫

a
K−ψ−id xa +
∫

a
K+iψ+d xa +
∫

a
K−iψ−d xa

ψ−i(b ) =
∫

a
K+ψ−id xa +
∫

a
K−ψ+id xa +
∫

a
K+iψ−d xa +
∫

a
K−iψ+d xa ,

(6.25)

each of which is everywhere real and positive. Here, all of the Ksub and ψsub on
the right-hand side stand for Ksub(b ,a) and ψsub(a), respectively, where a = (xa , ta),
b = (xb , tb ) and sub= {+,−,+i ,−i }. Thus, the complete wave function at the end
of the time step t = tb − ta can be written as

ψ(b ) =ψ+(b )−ψ−(b )+ iψ+i(b )− iψ−i(b ). (6.26)

The approach is reminiscent of an old DMC method of Arnow et.al. [55], where
positive and negative walkers were used for the respective parts of the wave function.
The main differences are the following. Here, we have four types of walkers and
each walker generates all other types of walkers. Therefore, all parts of Eqs. (6.25)
are coupled and unlike in DMC [55] they do not separately converge to the ground
state, but instead, they can be used to simulate time evolution of the full complex
time-dependent wave function.

In Eqs. (6.25), we have a fully delocalized piecewise everywhere positive probabil-
ity density to sample, which first needs to be normalised. In case of a wave function
localized in a finite domain it is known that the contributions to ψ(b ) in Eq. (6.26)
cancel outside the domain and close to the domain boundaries inside. Thus, the par-
tial probabilities of Eq. (6.23) can be normalized in a so chosen domain and diffusion
localised in the domain, only, is considered. Inside the domain the evolution is not
restricted and for example tunneling effects will be described accurately and without
delay.

The four parts of the initial wave function ψ(a) in Eq. (6.24) are presented with
corresponding four sets of walkers. Neither real contributions ψ+(a) and ψ−(a)
nor the imaginary contributions ψ+i (a) and ψ−i (a) should pairwise overlap as the
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Figure 6.10 Distribution of a) positive and b) negative walkers (ψ+(b ) and ψ−(b )) after one time step
t = 0.1 from gaussian real wave function ψ+(a) and M (xa) ≈ 107 walkers. Histogram
bin width is 0.08. The complex components are not shown.

complex wave function should be single valued. Now, the real-time diffusion of
these walkers according to the Eq. (6.25) results in four strongly delocalised and pair-
wise overlapping contributions, real ψ+(b ) and ψ−(b ), and imaginary ψ+i (b ) and
ψ−i (b ). Then, the real and imaginary parts of the wave function are simply evaluated
as the two sums of their positive and negative contributions. This means cancella-
tion or pairwise annihilation of nearby walkers until the nodal surfaces between the
positive and negative amplitudes appear. For the one dimensional case we define the
walker touch parameter σ that determines the maximum distance at which pair of
walkers with different signs will annihilate.

There is a large cancellation of walkers also in the box, e.g., the wave function
must vanish close to the domain boundaries, and similar strong cancellation turns
out to dominate everywhere in the domain. In fact, it is only a small fraction of the
generated walkers, which eventually remain presenting the wave function. Due to
the massive cancellation of diffusing walkers all initial walkers need to be massively
duplicated for each time step to maintain the total number of walkers.

A one-timestep real time diffusion is demonstrated in Fig. 6.10 and the numerical
sign problem can be seen there, although it is only mild in this one dimensional case.
The initial state is ODHO ground state gaussian real wave function, i.e., ψ(a) ≡
ψ+(a). The real components ψ+(b ) and ψ−(b ) after propagation with the exact
kernel (6.4) over a short time step t are shown. We see that most of the walkers will
cancel out, leaving behind the initial real gaussian shape, but slightly scaled down.
Similarly, theψ+i (b ) andψ−i (b ) after cancellation result in a small negative gaussian
shape for the imaginary part, as expected, not shown in Fig. 6.10. This corresponds
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Figure 6.11 Distribution of walkers after the first time step, ∆t = π/4, from the positive real ground
state ψ+(a) of ODHO, followed by cancellation. All four components of the wave function
are presented: a) positive real (M ≈ 6.27×107), b) negative imaginary (M ≈ 6.26×107),
c) negative real (M ≈ 2.0×103) and d) positive imaginary (M ≈ 0.9×103) walkers. Note
the different scaling of the vertical axes of the latter two. Red solid line is the properly nor-
malized exact wave function and same normalization is used for all components. Notations
are the same as in Fig. 6.10.

to rotation of the wave function from the real axis clockwise with a small angle,
which is interpreted as multiplication with the phase factor e−i E t/ħh .

6.5.2 Quantum dynamics

Even though all parts of the wave function in Eq. 6.24 are positive and real, the
propagation is fully coherent and produces exact time evolution within numerical
accuracy.

Dynamics of a particle in the potential V (x) = 1
2 mω2x2 withω = 2 is shown in

Figs. 6.11 and 6.12. Now,ω = 2 corresponds to relatively strong confinement.

For the stationary ground state dynamics (E = 1), in each time step we expect to
see the rotation of the phase factor exp(−i E∆t/ħh) = exp(−i∆t ), only, without any
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change in the absolute value of the wave function. Thus, the dynamics is expected to
be simple oscillation of the real and imaginary parts of the ground state wave func-
tion in a phase difference of π/2. The initial phase is chosen to be zero at t0 = 0, i.e.,
ψ(0) = ψ+(a) as before. We start with M (a) = 107 and run the simulation with the
exact kernel (6.3), time steps∆t =π/4 and duplicating walkers in xa enough so that
after the cancellation M (b ) ≥ M (0). Fig. 6.11 shows the distribution of remaining
walkers after the first time step, t = π/4. Time step can be chosen relatively large,
since we are working with the exact kernel.

As expected, we find the same copy of the starting gaussian as the positive real
and imaginary parts and small remnants of incomplete cancellation in both opposite
sign parts, as a numerical error. Here, with the walker touch parameter δ = 0.01,
the remaining opposite sign walkers are less than the proper walkers with a factor
smaller than 10−4. Thus, the cancellation is almost perfect.

In Fig. 6.12 we show the negative imaginary part of the wave function from fur-
ther simulation, at times t = π/4, 2π/4, 3π/4, and 4π/4. Clearly, the evolution is
correct and at t = π the wave function is purely real and negative with zero imagi-
nary contribution.

6.5.3 Observables and eigenenergies

Evaluation of transient expectation values of local operators, like multiplicative po-
tential energy faces the same problem with RTDMC as it does with the conventional
DMC, the wave function is given by the walker density, only. Application of oper-
ators on the wave function or even finding the square of the wave function ψ∗ψ nu-
merically is not straightforward. In sec. 6.4.2 we have demonstrated, that for DMC
one can easily evaluate the complex valued wave function of the system at each DMC
walker by using our direct real time path integral (RTPI) approach [1]. The RTPI
time step is heavy to calculate, and therefore, could be restricted only to a few DMC
iteration steps, where needed.

Now, the RTPI can be used together with RTDMC, similarly as with DMC,
where the wave function is purely real or imaginary. This becomes relevant and
useful with eigenstates and incoherent dynamics, as discussed in the next section.

With the eigenstates we should be able to monitor the phase factor of the wave
function to find the corresponding eigenenergies. Now, we cannot evaluate the local
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Figure 6.12 Distribution of negative imaginary walkers at a) t = π/4, b) t = 2π/4, c) t = 3π/4 and
d) t = 4π/4 in the dynamics started in Fig. (6.11). Notations are the same as in Fig. 6.11.

energy for each walker as can be done with RTPI [1]. However, we can evaluate the
change in the ratio of the number of real and imaginary walkers to approximate the
average collective change in the phase factor. Thus, for the eigenenergy we write [4]

E =−θħh
∆t
=− tan−1
�

ψIm

ψRe

�

ħh
∆t
≈ tan−1
�

M (x∓i )
M (x±)

�

ħh
∆t

. (6.27)

For this to be accurate the time step should be short enough that the phase angle
θ is small, but also, the ratio M (x∓i )/M (x±) should be close to one so that the noise
effect is minimised. Furthermore, one should keep track of the quadrants of the
complex plane and corresponding changes of sign, where relevant.

If the wave function is not that of an eigenstate but a superposition, for a short
time step and small angle we can approximate

−θħh
∆t
=− tan−1
�∑

i ci sin(θi )
∑

i ci cos(θi )

�

ħh
∆t
≈− tan−1
�∑

i ciθi
∑

i ci

�

ħh
∆t
≈
∑

i ci Ei
∑

i ci
= E

(6.28)
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where the sum goes over the eigenstates with contributions ci .

6.5.4 Excited eigenstates

The imaginary time DMC simulation converges to the lowest eigenstate (ground
state) by adjusting the potential zero reference parameter ET in Eq. (5.22) to the
lowest eigenvalue. The convergence is usually unstable and needs continuous regu-
lation with ET . In section 6.3, we have shown that the incoherent propagation of real
time path integral dynamics RTPI drives the system to an eigenstate, which is closest
to the zero reference of the potential energy [1]. Furthermore, the convergence is
stable and does not need careful adjustment of potential zero reference.

Here too, we can insert the zero reference parameter ET into the Eq. (6.5) and
use it to choose the energy, for which we want to find the closest excited state. Also,
we can scan the parameter ET to find all eigenstates within a given range.

Fig. 6.13 shows a superposition of walkers of the ODHO real ground state and
those of the real first excited state. We see that representation of the superposition is
not unique, as there are overlapping negative and positive parts of the wave function.
Here we demonstrate, that the cancellation of the walkers with different sign is not
mandatory for the correct propagation, but if this is not done, after couple of time
steps the relevant information will be lost in the "noise" of positive and negative
walkers.

Fig. 6.14 shows the energetics of RTDMC simulation starting with this initial
wave function and run 100 time steps of length ∆t = 0.1 with M = 106 walkers.
The zero reference is set as ET = 0. The exact value E = 1.0000 is expected. It can be
seen that the convergence has been achieved in about 60 time steps to about E = 1.1.
Thus, there is some systematic error left, which we trace coming from the short time
step. With a too short time step false positive imaginary walkers appear, although
all correct imaginary contribution should be negative. This seems to relate also with
the size of the domain, 8 atomic units. Now, increasing the time step to ∆t = 0.8
after 100 steps improves the energy estimate as clearly seen in the last ten time steps.
Then, the energy estimate from simulation is 0.9974± 0.0030 (2 SEM).

The first excited state can be found by using the incoherent propagation and start-
ing from the same initial superposition state shown in Fig. 6.13. Now, the potential
zero reference is set as ET = 2.5 and we expect to find the eigenenergy of 3.
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Figure 6.13 Positive (M = 150× 103) and negative walkers (M = 50× 103) of the superposition of
ODHO 1st excited and the ground state (M = 100× 103 each). Other notations are the
same as in above figures.
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Figure 6.14 Estimated energy that demonstrates convergence starting from the superposition of the
ODHO 1st excited state and ground state in incoherent RTDMC ending to the ground state.
The exact ground state eigenenergy is one, E = 1.0000. M ≈ 106, and∆t = 0.1 for the
first 100 time steps and then∆t = 0.8.
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Figure 6.15 Distribution of positive (M ≈ 0.57×106) and negative (M ≈ 0.56×106) real walkers after
the system has converged to its 1st excited state. Red solid line is the properly normalized
exact wave function.

By using a time step ∆t = π/12 the first excited state is found as shown in
Fig. 6.15 and the eigenenergy becomes as 3.0199± 0.0076 (2 SEM). Fig. 6.15 shows
the distribution of walkers after 100 timesteps to the convergence. As the figure
shows, the node of the wave function is clear and sharp. By fitting to the histogram
we get 0.0191, which is close to the exact value of 0.0000.

This approach may be one of the practical ways to locate nodal surfaces for other
QMC methods like DMC, and thus, give help in finding the practical solutions to
the fermion sign problem.
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7 CONCLUSIONS

We have shown how our novel RTPI methods can be used for electronic structure
calculations. Real time calculations are computationally laborious, as are most meth-
ods that use space and time as basis, but they include correlations between particles
exactly, within numerical accuracy and they are easy to parallelize. Monte Carlo in-
tegration can be used to alleviate the sc. "curse of dimensionality". Irregular Monte
Carlo grid is also free from artificial diffraction patterns of paths that may arise when
using regular grids.

Use of the Trotter kernel, which is practical in imaginary time simulations, suf-
fers from numerical errors from evaluation of highly oscillatory complex integral in
real time simulations. Increasing the length of the time step will reduce this, but it
increases the systematic error from the short time approximation used in derivation
of this kernel. By increasing the number of walkers, shorter time steps can be eval-
uated accurately. In simulations of the actual dynamics of the system, these errors
may accumulate, and if this is the case, only events over relatively short times can
be simulated accurately. Improving the propagator from a physical point of view
allows use of larger time steps and smoothening techniques decrease the numerical
instability. If the exact kernel is known or can be calculated numerically, time steps
of any lengths can be performed and the aforesaid issues do not appear.

Incoherent propagation method is a novel approach using real time propagator
for searching the stationary states. It can be used to find the excited states, unlike
the conventional diffusion Monte Carlo, which is restricted to the ground state. An-
other advantage is that it provides one with the wave function explicitly, and thus,
evaluation of local multiplicative expectation values becomes straightforward.

It is also shown here, that this can be used in combination with conventional
diffusion Monte Carlo, where the latter is used to move the walkers and the former
to provide the value of the wave function on these walkers. Another novel technique,
how combining the two methods could prove advantageous, is to use incoherent
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propagation to find the nodal surfaces related to the excited states, that can then be
used in conventional Diffusion Monte Carlo simulations.

If using calculated wave function to guide the evolution of the walkers, the errors
from each time step may accumulate. This effect can be reduced if we find some way
of driving the walkers that is independent of the accrued errors.

With the novel real-time diffusion Monte Carlo method we show how the com-
plex valued kernel can be separated into real, positive and normalizable components,
that can be interpreted as probabilities to drive the walkers. It incorporates the es-
sential features of the conventional imaginary time diffusion Monte Carlo method.
In addition, we can also find the excited states and the wave function nodes with
incoherent propagation, and simulate proper dynamics of the system with coherent
propagation.

In future, the methods presented here are to be applied to higher dimensional
systems where the increase of configuration space presents its own challenges. Also,
even though repulsive Coulomb potential was studied with Hooke’s atom, attractive
case needs more considerations. There particles tend to cluster and so paths where
the potential energy and its gradient are large will become more relevant and the
Trotter approximation becomes less accurate.
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Abstract. Applicability of Feynman path integral approach to numerical simulations
of quantum dynamics of an electron in real time domain is examined. Coherent quan-
tum dynamics is demonstrated with one dimensional test cases (quantum dot models)
and performance of the Trotter kernel as compared with the exact kernels is tested.
Also, a novel approach for finding the ground state and other stationary sates is pre-
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1 Introduction

Feynman path integral (PI) approach offers an intuitively welcome description of non-
relativistic quantum mechanics [1, 2], where classical mechanics emerges transparently
from disappearing wave nature of particles along with vanishing Planck constant. In PI
approach the presentation of the quantum dynamics with a propagator also in station-
ary quantum states is transparent, in contrast with the conventional approaches, where
time evolution is seen in the phase factor, only. However, working out analytical or com-
putational solutions to practical problems becomes more demanding with PI [3, 4], and
obviously, this is one of the main reasons for path integrals not being a popular choice
for considering quantum dynamics, not to mention the stationary quantum states.
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For the above reasons the dynamical phenomena in nonrelativistic quantum mechan-
ics are conventionally considered by searching or simulating solutions to the time de-
pendent Schrödinger equation. This is almost trivial for a single particle, but becomes
laborious and needs a number of approximations with growing complexity in a many-
body system. In contrast, with PI the many-body interactions are included transparently
and exactly within numerical accuracy. Often, the PI approach is implemented with a
stochastic sampling of paths or by analytical formulations like the Kleinert’s variational
perturbation theory [5].

Out of other approaches than the present, it is worth mentioning the path integral
Monte Carlo (PIMC), which has proven to be successful in simulations of periodic imag-
inary time propagation of many-particle systems, which leads to the finite temperature
equilibrium statistical physics description of the many-particle system in terms of mixed
state density matrix [6, 7]. By treating all particles with the same PIMC approach it
is possible to evaluate the finite temperature electronic structure with exact account of
many-body effects and beyond Born–Oppenheimer approximation as demonstrated, al-
ready [8,9]. PIMC is also robust enough to be used in various applications in nanoscience
[10, 11].

Beyond the analytical solutions to stationary states or quantum dynamics, which are
very few [3, 4, 12, 13], numerical simulation of coherent real time propagation faces sub-
stantial challenges related to the interference of paths: how to choose or sample the rel-
evant paths in a balanced way, i.e. weighting the ones with most contribution through
constructive interference and avoiding waste of efforts to those with negligible contribu-
tion due to destructive interference. In practice, time evolution of the complex many-
body wave function in a space with high number of dimensions leads to even higher
dimensional path integrals, which obviously can be sampled efficiently with the Monte
Carlo technique, only. There, the interference related slow convergence has been called
as ”numerical sign problem” [12, 13] or phase (sign) problem. Sophisticated ”stationary
phase weighting” methods have been developed to overcome this without Monte Carlo
technique [14, 15].

There are still no preferable solutions to these problems, although many approaches
and approximations for certain types of systems have been found [16,17]. Basically these
methods rely on effective propagators [18] with desired properties. They are relatively
well behaving and use the advantageous features of the PI formalism, e.g., reduction of
the total system into two parts: the lower dimensional system of interest and the effect
of an environment modeled with an influence functional [1]. Often, the effect of the
environment can be approximated classically, leaving only a lower dimensional system
to be inspected quantum mechanically. Such methods have been shown to be successful
in evaluation of the time evolution of a quantum-classical many-body systems [19] for
heavier particles than electrons.

Since there is no perfect method for solving dynamical full quantum many-body
problems in practice, it is useful to look at different methods, how they can be used,
what are their strengths and weaknesses and what is needed in implementation of those
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methods.
In this paper, we deal with real time quantum dynamics with both coherent and inco-

herent propagation. Next, we present the basic theory, exact kernels and the approximate
Trotter kernel, and in Section 3, the numerical approach to evaluation of propagation
and expectation values. In Section 4 we define one dimensional electron-in-quantum-dot
models chosen for testing. In Section 5 we analyze results for coherent quantum dynam-
ics and in Section 6 we finally present a novel approach to search for stationary quantum
states and the ground state, in particular. The last section presents our conclusions.

2 Path integral and propagators

Consider non-relativistic particle propagation in one, two or three dimensional space Ω
from xa to xb in time interval from ta to tb along all possible paths x(t). The path integral
over all paths defines the propagator

K(b,a)=
∫ b

a
exp

[
i

h̄
Sx[b,a]

]
Dx(t), (2.1)

where Sx[b,a]=
∫ b

a Lxdt is the action of the path x(t) from a=(xa,ta) to b=(xb,tb) and Lx

is the corresponding Lagrangian [1, 2]. Time evolution of the probability amplitude, i.e.,
the wave function ψ(x,t) in space Ω can now be written as

ψ(xb,tb)=
∫

Ω
K(xb,tb;xa,ta)ψ(xa,ta)dxa, (2.2)

where ta<tb. From this relation the time dependent Schrödinger equation can be derived
[1], or alternatively, the time dependent wave function ψ(x,t) can be directly evaluated
from the initial state ψ(xa,ta), in case the kernel K(x,t;xa,ta) is known.

However, general explicit forms of the propagator are known for simple cases, only,
such as the particle with mass m in the one dimensional constant linear potential V(x)=
− f x,

K(xb,xa;t)=
[ m

2πih̄t

]1/2
exp

[
i

h̄
(

m

2t
(xb−xa)

2− t

2
(V(xa)+V(xb))−

t3 f 2

24m

]
, (2.3)

which reduces to the free particle propagator with f=0 [1] or to the propagator of particle
in a box with surrounding infinite potential.

For the one dimensional forced harmonic oscillator

V(x,t)=
mω2

2
x2− f (t)x (2.4)

the exact explicit propagator takes the form [1]

K(xb,xa;t)=

[
mω

2πih̄sin(ωt)

]1/2

exp

[
i

h̄
Scl

]
, (2.5)
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where Scl is the classical action. For f ≡0 this is

Scl=
mω

2sin(ωt)

[
(x2

b+x2
a)cos(ωt)−2xbxa

]
. (2.6)

For numerical approaches robust approximations are needed. It is advantageous that
also in nontrivial forms of potential the propagation is straightforward to evaluate and
with increasing numerical accuracy the propagator approaches the exact limit. With this
in mind we discretize the time t= tb−ta to a number of short steps ∆t. This is straightfor-
ward, because

K(b,a)=
∫

Ω
K(b,c)K(c,a)dxc, (2.7)

for ta<tc<tb. This follows from additivity of action S[b,a]=S[b,c]+S[c,a] for any path [1].
Now, with a small ∆t the quantum paths can be expected to give the main contribu-

tion close to the classical path, for which ∆x= xb−xa is also small. This follows from the
canceling kinetic energy T contributions due to the destructive interference of paths in
long path propagation. This presumes, of course, smooth enough potential V, for which
also the commutator [T,V] is small.

Furthermore, for numerical approaches it is essential that the chosen discretization
also converges to the exact formalism at the limit ∆t → 0, and the faster the better for
practical purposes. Also, it is preferable that computational efforts are not wasted for
computation of almost canceling contributions more than needed for the chosen target
accuracy.

Now, Eq. (2.3) gives numerically useful approximation, which can be further simpli-
fied by neglecting the last term, cubic in ∆t, for short enough time steps. Thus, we arrive
at the symmetrized Trotter kernel [12, 13]

K(xb,xa;∆t)≈
[ m

2πih̄∆t

]D/2
exp

[
i

h̄
(

m

2∆t
(xb−xa)

2−∆t

2
(V(xa)+V(xb))

]
, (2.8)

where D is the dimensionality of space.
This propagator can also be found from the hamiltonian formulation [4]. For a time

independent hamiltonian H=T+V, where T and V are the kinetic and potential energies,
the propagator can be written as [4]

K(xb,xa;∆t)=
〈

xb|exp
[
− i

h̄
H∆t

]
|xa

〉
=
〈

xb|exp
[
− i

h̄
(T+V)∆t

]
|xa

〉
, (2.9)

where ∆t= tb−ta. Now, by using the Zassenhaus formula [4, 22]

exp
[
− i

h̄
(T+V)∆t

]
=exp

[
− i∆t

h̄
T

]
exp

[
− i∆t

h̄
V

]

×exp

{(
i∆t

h̄

)2 [T,V]

2

}
O
{

1+

(
i∆t

h̄

)3}
(2.10)
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and by neglecting factors which approach one in the second order or higher in ∆t, as ∆t→
0, and using the path integral formulation, we arrive at the approximation (2.8). Thus,
this approximation is accurate almost to the second order in ∆t for a smooth potential
with [T,V]→ 0 as ∆x → 0 or ∆t → 0. In fact, this is what the kernel in Eq. (2.3) also
suggests.

Clearly, in numerical approaches it is the kinetic energy part, which brings in the
challenges as ∆t→ 0, but as pointed out above, already, the resulting large momentum
– short wave length oscillations of the propagator interfere destructively and should be
damped out without wasting computational efforts. The potential energy part behaves
the opposite way with respect to the time step, and becomes laborious only in case of
large potential gradient at possible singularities in the potential function.

We consider and test the Trotter kernel Eq. (2.8) against the exact kernels Eqs. (2.3)
and (2.5) in numerical simulations of one-dimensional harmonic oscillator (ODHO) and
quantum well (QW), both in stationary eigenstates and wave packet propagation.

3 Numerical evaluation of propagation and expectation values

Numerical evaluation of the integral Eq. (2.2) is the core problem, here. For that, we

span grids ga = {xai}Na
i=1 and gb = {xb j}Nb

j=1 for wave functions at a and b. It is practical

to define the grid density profiles or distribution functions ga(x) and gb(x), as (possibly
normalized) inverse average grid spacing. With small enough time step ∆t we can as-
sume the same restricted space Ω for both ψa and ψb, and for simple cases, also the same
grid g=ga=gb with the same size N=Na =Nb.

The simplest equally spaced regular grid, i.e., with g constant, between end points
may generate fake constructive diffraction patterns. This is the diffraction grating effect,
which can be removed out by increasing the grid size N. Usually, a better choice is some
other regular distribution of g, like gaussian or some other, related to the probability
density or (the absolute value of) the wave function, itself.

Of course, Monte Carlo grids with given distributions g serve well, if smooth and
sizable enough. There are methods for the analysis of ”smoothness” of the distribution,
such as Kolmogorov-Smirnov test [21]. In fact, with the increasing number of dimensions
Monte Carlo grids may remain as the only practical choice. Further smoothing and av-
eraging out accumulative errors is attained with a continuous random change of the MC
grids, within the predefined density profiles. For restricted range of dynamics, it may be
practical to use identical distributions, i.e., ga(x)= gb(x), but ga 6=gb.

Ongoing random evolution of {xi}Ni
i=1 also means sampling of continuous space, in-

stead of a discrete grid. This evolution can be adapted to follow the time evolution of
the wave function or some related distributions like the absolute value or the probability
distribution of the wave function, i.e., g(x,t)∝ |ψ(x,t)|n , n=1 or 2, for example.

The distribution function g(x) appears as an inbuilt weight factor in the integration of
Eq. (2.2). In the one-dimensional space it is straightforward to write g(x)=dG(x)/dx, in
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terms of the cumulative distribution function G. Thus, Eq. (2.2) becomes in form ψ(b)=∫ 1
0

K(b,a)ψ(a) g−1
a (a)dGa. For propagation over the time interval ∆t= tb−ta with ta =0,

numerical calculation can be carried out as

ψ(xj,∆t)=
∫ 1

0
K(xj,∆t;xi,0)

ψ(xi,0)

ga(xi)
dGa(xi)

≈
Na

∑
i=1

K(xj,xi;∆t)ψ(xi,0)

ga(xi)
. (3.1)

Hence, it seems obvious that ψ(a) should decay faster than ga in order to avoid nu-
merical instabilities. For real ψ(a) or for its absolute value this can be easily established,
whereas for the two parts of complex ψ(a) this can be expected to be more tricky. The
phase factor of calculated ψ(b) relates to the ”local total energy”, and therefore, it serves
as a good indicator of numerical stability. Therefore, it seems possible to find phase factor
based algorithms for stabilization of propagation and for removing numerical errors.

In principle, the distribution ga(x) needs not to be known analytically, if ga(xi) can
be evaluated from the wave function, for example. Furthermore, negative sign can be
assigned to ga(x) at some range of x, if relevant for some reason.

Monte Carlo evaluation of expectation values of local operators, like the multiplica-
tive potential V(x), at time ta, can be done with

〈V〉=
∫ 1

0

ψ⋆(xi,t)V(xi)ψ(xi,t)

g(xi)
dG(xi)≈

N

∑
i=1

V(xi)|ψ(xi,t)|2
g(xi)

, (3.2)

where the operator can be time dependent, too.
Similarly, we calculate the total energy from

〈E〉≈
N

∑
i=1

EL(xi)|ψ(xi,t)|2
g(xi)

, (3.3)

where the local energy is evaluated from the increase in wave function phase −∆φ(x)
within a time step ∆t as EL(x)=−∆φ(x)h̄/∆t. Then, the kinetic energy 〈T〉 can be evalu-
ated from 〈E〉= 〈T〉+〈V〉.

4 One-dimensional harmonic oscillator and quantum well

We first consider the one-dimensional harmonic oscillator (ODHO), i.e., a particle in the
potential of Eq. (2.4) with f (t)≡0. Thus, we have the time-independent potential

V(x)=
1

2
mω2x2. (4.1)

We choose the parameters describing an electron in an atom size ”quantum dot” to maxi-
mize the quantum effects and challenge for simulation of dynamics. We use atomic units,



I. Ruokosenmäki and T. T. Rantala / Commun. Comput. Phys., 18 (2015), pp. 91-103 97

where h̄=4πε0 = e=m= a0 =1, the last three being the charge, mass and Bohr radius of
the electron. This leads to the atomic unit energy of Hartree, Ha = h̄2/(ma2

0)≈27.211384
eV, which also defines the unit of the potential in Eq. (4.1). The atomic time unit becomes
as t0=(ma2

0)/h̄≈24.18884×10−18 s ≈24 as.
Now, by substituting m=1 and ω=0.1 (= h̄ω), we have the corresponding eigenen-

ergies Eν with equal contributions from kinetic and potential energies and eigenstates
ψν(x)=(2ν ν!/σ0)−1/2π−1/4Hν(x/σ0)exp(−x2/2σ2

0 ), where Hν are Hermite polynomials

and σ0=
√

h̄/mω≈3.16. For the ground state we have ψ0(x)=π−1/4σ−1/2
0 exp(−x2/2σ2

0 )
and E0=0.050. Thus, E1=0.150.

The one-dimensional quantum well (QW) or ”particle in a box”

V(x)=

{
0 for|x|< L/2,

∞ otherwise,
and (4.2)

with L = 20 is also used as a test case, where relevant. Here, we have the free particle
eigenstates with energies Eν =

1
2 k2, where k=2π/λ and νλ/2= L. Thus, E1 =

1
2(π/L)2≈

0.01234 and E2=2(π/L)2≈0.04935.

5 Coherent dynamics

5.1 Stationary states

First, we searched for numerical parameters, which keep the eigenstates stationary with
an acceptable accuracy. The three lowest eigenstates of ODHO (h̄ω=0.1), Eq. (4.1), turn
out to remain stable in a simulation with an even spaced grid of size N = 103 in the
domain −12<x<12 with the time step ∆t=1. The potential energy expectation value (3.2)

fluctuates around the time average 〈V0〉=0.02503 with a standard deviation σ≈3×10−5,

and correspondingly, the total energy (3.3) becomes as 〈E0〉= 0.05002 with σ≈ 4×10−9.
Thus, a small grid related error remains.

We find that the time step should be small enough (∆tmax ≈ 4) to justify the Trotter
approximation, Eq. (2.8), for ODHO. Shortening the time step calls for more accurate grid
due to increasing kinetic energy, i.e., oscillatory nature of the exponential in Eq. (2.8). The
potential energy contribution to phase oscillations is roughly two orders of magnitude
less. In general, we found the maximum time step and even grid size proportion to be
related roughly as ∆tmax×N≥103 for the Trotter kernel, Eq. (2.8).

The exact kernel Eqs. (2.5)–(2.6) of ODHO, however, allows unlimited time step and
the accuracy depends on the grid, only. Even so, the time steps of a multiple of half
oscillation period can not be used, because sin(ωt) in the denominator causes divergence
of both (2.5) and (2.6). With other time steps 1≤∆t≤500 and N=103 the potential energy

keeps correct in 5 digits. The total energy 〈E0〉 becomes evaluated with same accuracy.
For the QW with constant potential the Trotter kernel is nearly exact [4]. However,

numerical accuracy suffers from inaccurate description of discontinuities of the potential
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function Eq. (4.2) at |x| = L/2. Thus, the accuracy is limited by the grid spacing ∆x.
Obviously for this reason, we found the time propagation to be somewhat unpredictable.

For this case, we found that the Monte Carlo grid with a constant distribution function
solves the problem. Time evolution of the grid, with g(x)= constant, samples the space
continuously. We found the grid size N = 103 sufficient for a stable simulation of the

ground state in a QW L = 20 with the total energy 〈E0〉 accurate in a few digits, for a
few steps, already. Obviously, other non divergent but adapted distributions g(x) will
perform even better.

5.2 Wave packet propagation

Next, we consider real time evolution of gaussian wave packet oscillation in the harmonic
potential (ODHO), above. As a test case we use the Glauber state, also called coherent or
quasi-classical state, because of classical like oscillation retaining the wave packet shape
rigid. In fact, the width of the Glauber state gaussian is that of the ground state, in the

present case ψ(x) = π−1/4σ−1/2
0 exp(−x2/2σ2

0 ). The oscillation frequency is, of course,
ω=0.1 and period T=2π/ω≈62.83, for any oscillation amplitude A.

With the Trotter kernel and grid size N=104 the time step dependence is small. With
A=

√
20 and starting from rest, the total energy is that of the first excited state, see Fig. 1.

Both ∆t=2π/60 and ∆t=2π/200, and wave packet propagation of one period leads to
potential energy error of −0.0027, only. With the exact kernel, Eqs. (2.5)–(2.6), arbitrarily
long time steps can be taken, except those, for which sin(ω∆t)≈0, as pointed out above.

!"
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&$'" &$!" &'" !" '" $!" $'"

x 

Figure 1: The ODHO potential and the starting Glauber state (full curves). Dashed curves show the two other
extreme phases of oscillation. Horizontal lines indicate the ground and the first excited state energies.
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6 Incoherent dynamics

6.1 Stationary state search

With the path-integral approach, simulation of stationary eigenstates is no more trivial
than that of explicitly time dependent wave functions. In both cases full propagation in
the whole space needs to be similarly considered within each time interval. This points
to the inherent nonlocality of the wave function and quantum phenomena, in general.

An arbitrary pure quantum state can be expanded as a superposition of stationary
eigenstates as Ψ = ∑k ckψk and its time evolution in ∆t is ∆Ψ = ∑k exp(−iEk∆t)ckψk =

∑k[cos(Ek∆t)−isin(Ek∆t)]ckψk. By using the small angle approximation for short enough
∆t, this can be written as ∆Ψ≈∑k[1−(Ek∆t)2/2−i(Ek∆t)]ckψk.

Consider now stepwise decoherence of the wave function in each time step, that is
driven by removal of the small imaginary part. Such incoherent time evolution,

∆Ψ(∆t)=∑
k

[1−(Ek∆t)2/2)]ckψk, (6.1)

converges to quantum Zeno propagation at the limit ∆t → 0, if the eigenstate is real.
However, with a finite but short enough ∆t it increases the contribution of the eigenstate
with smallest absolute eigenvalue with respect to the chosen reference energy, if Ek∆t≪1
for all k. At the end, this state dominates and contributions from the other states die out.

This is what we call incoherent propagation, here, and demonstrate the respective
time evolution in ODHO with the Trotter propagator in evenly spaced grid, see Fig. 2.
Incoherent evolution depends on the initial state as shown. In case where the ground
state ψ0 contribution is initially considerable, c0 6=0, the convergence is fast. However, in

!!

"!

"#"$!

"#"%!

"#"&!

"#"'!

"#(!

"! $""! %""! &""! '""! ("""! ($""!

V 

)*+,!-.,/-!

Figure 2: Incoherent evolution of the superposition states to the ground state. Dashed line starts from the
superposition of the ground and 3rd excited state, whereas the dash dotted line starts from the superposition
of the 1st and 2nd excited states. Solid lines show the potential energies of the ground and 1st excited states.
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case where initially c0 = 0, lowest of the states contributing to the initial wave function
is found. The ground state is found only after a small seed of ψ0 has been sown from
numerical errors in propagation.

By shifting the zero reference of ODHO close to the first excited state eigenvalue, in
Fig. 2, we find the incoherent propagation locking to the first excited state, similarly to
finding the ground state, above.

6.2 Ground state evaluation

Finally, we consider accurate evaluation of the ground state, or another stationary state,
after first finding it by the ”stationary state search” described in the previous section.
With the incoherent propagation in ODHO by using the Trotter propagator we found
accuracy of about five digits for the ground state energetics, independent of the grid size
(N=103 to 3×104) and accidentally with the time step ∆t≈0.3. Obviously, there remains
a systematic error due to the grid and propagator.

Therefore, we again employ the Monte Carlo grid to sample the continuous space.
We also simplify the propagation, Eq. (3.1), to increase accuracy in the spirit of diffusion
Monte Carlo (DMC) approach, where it is the distribution of walkers, which is the target
ground state wave function. This allows comparison of our approach to DMC, which is
known as a robust and accurate method for finding and evaluation of properties of the
ground state.

Close enough the ground state we set g(x)=ψ(x)≈ψ0(x), and consequently, approx-
imate Eqs. (2.2) and (3.1) for numerical Monte Carlo evaluation as

ψ(xj,∆t)=
∫

K(xj,∆t;xi,0)g(xi)dxi

=
∫ 1

0
K(xj,∆t;xi,0)dG(xi)≈

Na

∑
i=1

K(xj,xi;∆t), (6.2)

and therefore, {xi}Na
i=1 are random numbers from distribution g(x) with the cumulative

distribution function G(x), as discussed above. Thus, in practice we run incoherent prop-
agation

ψ(xb,∆t)=
∫

K(xb,∆t;xa,0)ψ(xa,0)dxa, (6.3)

without an explicit starting amplitude ψ(xa,0), but hidden in the walker distribution,
and assuming good convergence of the distribution to the ground state wave function.
To sample continuous space, Metropolis Monte Carlo (MMC) can be used to carry out
evolution of the walker distribution g(x), and if needed, stability can be increased by

using the ”time average” g(x) from a longer simulation and partly overlapping grids

ga={xai}Na

i=1 and gb ={xj}Nb

j=1, with Na =Nb =N.

It is worth noting that in a simulation, as described above, we have the ground state
wave function at each step both in the walker distribution g(x)=ψ(a) and evaluated from
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Table 1: Incoherent propagation in MC grid of the ODHO ground state with Trotter kernel. N is the grid size,
∆t the time step, ∆V the deviations of expectation values of the potential energy from its exact value 0.025000
and σ the standard deviation from long simulations.

N ∆t ∆V/10−6 σ/10−6

104 0.3 160 540

104 1 60 530

104 3 40 470

3×104 1 30 320

propagation as ψ(b). Though the latter is guiding the evolution of the former through
MMC, g(x) can be kept stable by settings of the MMC parameters, whereas the stability
of the evaluated amplitude ψ(b) depends primarily on the propagation parameters: grid
size and time step length. As a test case we present evaluation of the potential energy
from Eq. (3.2), which depends on both distributions.

To maximize variance (standard deviation) in this test, we use fully random and non
overlapping grids ga and gb from exact gaussian distribution to assess the statistical per-
formance of the Trotter kernel for evaluation of the ground state energetics of ODHO.
The obtained data from incoherent propagation is shown in Table 1 and Fig. 3.

!"#$%

!"#&%

!"#'%

"%

"#'%

"#&%

"#$%

"#(% )%*"+,%

∆t = *% ∆t = ,%∆t = "#,%

Figure 3: Incoherent propagation in MC grid of the ODHO ground state with Trotter kernel. Deviations of
expectation values of the potential energy from its exact value 0.025 (dots) and standard deviations (bars)

shown (in au ×10−6) from long simulations, with time steps 0.3, 1 and 3, and grid sizes 104 (black fullsquare)

and 3×104 (blue fullcircle). The 2×SEM error bars are smaller than the square/circle size.

We find that accuracy of the achieved ground state energetics (∆V) and distribution
depends on the grid size and the time step. Note, that the ”error bars” (σ) do not describe
accuracy. Grid size dependence is as expected: larger grid increases accuracy. Time step
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dependence, however, is weak and longer step leads to higher accuracy. Overall, this is
what one can expect from the Trotter kernel.

The vertical bars in Fig. 3 describe simulation length independent standard deviation
σ arising from Monte Carlo sampling. It can be used to estimate the statistical accuracy
(precision) of evaluated expectation values in form of standard error of mean, SEM =
σ/

√
NMC, where NMC is the number of uncorrelated Monte Carlo steps. Usually, 2×SEM

limits ( 95% ) are assumed as a statistical error estimate. Thus, the longer the simulations,
the smaller the 2×SEM error bars become. The precision of the squares and the dot in
Fig. 3 is good enough to demonstrate the systematic error from Trotter approximation
and size of test grid sizes.

Finally, by using the Trotter kernel, we carried out a search of an electron in the
ground state of the two-dimensional quantum dot, 2DHO, with N=3×104 and ∆t=0.3.
For the expectation value of ∆V and σ (in units 10−6, cf. Table 1) we obtained −2000 and
600, respectively.

7 Conclusions

We have demonstrated the path integral approach to the time domain coherent quantum
dynamics with numerical simulations of simple one dimensional test cases, relevant as
quantum dot models. Generally, we find the PI approach more laborious as compared to
the conventional evaluation of the solution from the time dependent Schrödinger equa-
tion, as expected [1, 2].

With PI approach a regular periodic grid may give rise to diffraction patterns on the
evaluated amplitude, while Monte Carlo grids are free from such artifact. Also as usual,
with Monte Carlo technique for path sampling, the PI approach becomes more attractive
in case of complex geometry or increasing number of spatial dimensions.

The cases where the exact kernel is known are special. There, the time step length is
not limited, even in practice, which offers a huge advantage over the conventional sim-
ulation of single particle quantum dynamics. On the other hand, the straightforward
incorporation of many-body correlations presumes short time steps. Therefore, the Trot-
ter kernel, which becomes exact at the zero step length limit, becomes accurate enough
with practical time step lengths. However, shorter time steps require more dense grids,
as discussed above.

With the incoherent real time dynamics we have demonstrated a novel approach for
searching the stationary states and the ground state, in particular. Monte Carlo sam-
pling of the continuous space turns out to increase accuracy as compared to the use of a
regular discrete grid. The Monte Carlo version has further advantages, similar to the con-
ventional ”high accuracy” diffusion Monte Carlo method. Here, we have carried out the
first tests of the convergence and accuracy of the new method, which seems promising
with its novel features.
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a b s t r a c t

We present a new approach based on real time domain Feynman path integrals (RTPI) for electronic
structure calculations and quantum dynamics, which includes correlations between particles exactly
but within the numerical accuracy. We demonstrate that incoherent propagation by keeping the wave
function real is a novel method for finding and simulation of the ground state, similar to Diffusion Monte
Carlo (DMC) method, but introducing new useful tools lacking in DMC. We use 1D Hooke’s atom, a two-
electron systemwith very strong correlation, as our test case, whichwe solvewith incoherent RTPI (iRTPI)
and compare against DMC. This system provides an excellent test case due to exact solutions for some
confinements and because in 1D the Coulomb singularity is stronger than in two or three dimensional
space. The use of Monte Carlo grid is shown to be efficient for which we determine useful numerical
parameters. Furthermore, we discuss another novel approach achieved by combining the strengths of
iRTPI and DMC. We also show usefulness of the perturbation theory for analytical approximates in case
of strong confinements.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Feynman path integral (PI) approach offers an intuitive de-
scription of quantum mechanics [1,2], where classical mechanics
emerges transparently from disappearing wave nature of particles
along with vanishing Planck constant. Therefore, it is robust in nu-
merical calculations in cases close to classical ones, like molecular
quantum dynamics in real time [3], but becomes more challenging
and laborious for states of electrons, where the wave nature plays
larger role. Furthermore, the PI presentation of stationary states
also involves full time-dependent quantum dynamics, in contrast
with the conventional solution of the time-dependent Schrödinger
equation, where time evolution appears as simple change of the
wave function phase, only.

We have already demonstrated that numerical solutions to
stationary states and quantum dynamics of single electrons in
one dimensional potentials can be reliably found, both in regular
and Monte Carlo grids, by using real time path integral (RTPI)
propagation [4].Wehave also assessed the usefulness and accuracy
of the Trotter kernel as compared to the exact kernels and

∗ Corresponding author.
E-mail addresses: ilkka.ruokosenmaki@tut.fi (I. Ruokosenmäki),

hossein.gholizadehkalkhoran@tut.fi (H. Gholizade), ilkka.kylanpaa@tut.fi
(I. Kylänpää), Tapio.Rantala@tut.fi (T.T. Rantala).

pointed out the advantages of the Monte Carlo grid in avoiding
spurious interference effects. For search and evaluation of the
single particle eigenstates we found a novel approach based on the
incoherent propagation [4], i.e., collapsing the wave function to its
real component after each short time step. This is the starting point
of the present study.

RTPI approach can be expected to show most of its proficiency
in simulation of many-electron systems, where correlation phe-
nomena turn out to be in major role — the same way and partly
for same reasons as it has been found to be with the more conven-
tional path integral Monte Carlo (PIMC), simulation of the imagi-
nary time propagation [5–8]. It may be pertinent to point out, that
while PIMC simulation yields the finite temperature equilibrium
description of the system of quantum particles, RTPI simulation
finds the zero-Kelvin real time quantum dynamics. Furthermore,
RTPI can also be used to find and simulate the eigenstates, as indi-
cated above. Thus, for finding and simulation of the ground state,
RTPI can be compared to the diffusion Monte Carlo (DMC) simula-
tion [9]. Thus, combination of these two can be expected to offer
novel features, which turns out to be the case.

To assess the performance of incoherent RTPI as comparedwith
DMC we choose the Hooke’s atom in one dimension as the test
bench, presenting a case of an extremely strong correlation.

Three dimensional Hooke’s atom is a helium-like system of
two electrons with Coulomb repulsion, where electron–nucleus
attraction is replaced by a confining parabolic or harmonic

http://dx.doi.org/10.1016/j.cpc.2016.09.012
0010-4655/© 2016 Elsevier B.V. All rights reserved.
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potential. It is one of the few non-trivial systems with exact
solutions for certain strengths of confinement (harmonic force
constant) [10], and therefore, it is a good test case for our new
approach. As shown below, separation of the three dimensional
problem in relative coordinates yields two problems, one of which
is the one dimensional Hooke’s atom once the angular momentum
degrees of freedom are taken out. In one dimension, the Coulomb
repulsion is strong enough to split the space to two independent
domains defined by exchange of the electrons [11–14].

In this paper we will demonstrate the novel incoherent RTPI
in finding the ground state of one dimensional Hooke’s atom by
using a Monte Carlo grid. We also analyze performance of the
simulation by comparison with DMC simulation, and furthermore,
discuss another new idea to combine the strengths of incoherent
RTPI and DMC. Accuracy of the numerical approaches is analyzed
by using analytical solutions and those from perturbation theory
(PT), where relevant.

2. Ground state

Finding or simulation of the ground state is perhaps the
most general problem to work out in dealing with quantum
systems. Here, we present our novel approach to this based on
the incoherent real time propagation [4] using the path integral
formalism. First however, we briefly present the well known
diffusion Monte Carlo (DMC) method [9] using imaginary time
propagation, to be used as a reference. These both are numerical
methods and the former one in its robust form also using Monte
Carlo technique. For the specified test case, one dimensional
Hooke’s atom, we also compare with the analytical solutions,
where available, and approximate solutions otherwise.

To keep notations simple, we use the atomic units, whereme =

e = h̄ = 4πϵ0 = 1 throughout the paper, unless otherwise stated.

2.1. Imaginary time propagation: DMC

The time-dependent Schrödinger wave equation for the many-
body wave function ψ(x, t) is

i
∂ψ(x, t)
∂t

= (H − ET )ψ(x, t), (1)

whereH is the hamiltonian, x stands for all coordinates of particles
in one or more spatial dimensions and ET is an arbitrary reference
energy or shift of zero level. Now, by replacing the real time t by
imaginary time τ = it , this becomes

−
∂ψ(x, τ )
∂τ

= (H − ET )ψ(x, τ ), (2)

which is of the form of a diffusion equation. Its solutions can be
expressed in terms of eigenfunctions φn(x) of the hamiltonian as

ψ(x, τ ) =

∞
n=0

Cnφn(x) exp[−(En − ET )τ ]. (3)

As Monte Carlo methods are useful for evaluation of integrals,
the differential equation is transformed into an integral equation.
This is done by using Green’s function formalism [9] and we seek
the solution of the form

ψ(xb, τb) =


a
G(xb, τb; xa, τa)ψ(xa, τa)dxa, (4)

where G(xb, τb; xa, τa) is the Green’s function of the system,
the position space representation of the time evolution operator
exp[−(H − ET )(τb − τa)].

The exact analytical form of the Green’s function is rarely
known, and therefore, it needs to be approximated. Use of the so

called short time approximation [9] to separate the kinetic and
potential energy contributions, T and V , gives
exp[−(H − ET )∆τ ] = exp[−(T + V − ET )∆τ ]

≈ exp[−T∆τ ] exp[−(V − ET )∆τ ]. (5)
Since T and V do not commute, in general, this approximation is
exact only in the limit ∆τ → 0 but accurate for small ∆τ for
potentials bound from below [9].

The Green’s function can be separated into two parts, kinetic
and potential (or diffusion and branching),
G(xb, τb; x, τa) ≈ Gdiff(xb, τb; x, τa)GB(xb, τb; x, τa). (6)
As this Green’s function satisfies the imaginary time Schrödinger
equation, it gives one equation for both parts of the Green’s
equation with kinetic part satisfying diffusion equation and
potential part satisfying rate equation. Solutions to these equations
are well known, a Gaussian spreading in ∆τ and an exponential
function:

Gdiff(xb, xa;∆τ) = (4πD∆τ)−N/2 exp[−(xb − xa)2/4D∆τ ] (7)
and

GB(xb, xa;∆τ) = exp

−


1
2
[V (xa)+ V (xb)] − ET


∆τ


, (8)

where the diffusion constant isD = h̄2 /2me (=1/2 in atomic units
for the electron).

With these equations one can simulate random-walk-with-
branching procedure to find the imaginary time evolution.
Carrying out the simulation iteratively with short enough time
step∆τ , large enough population of randomwalkers and adjusting
the ‘‘trial energy’’ ET to keep the simulation stationary will finally
converge to the ground state wave function distribution of walkers
and trial energy as the corresponding energy eigenvalue.

We should note, that DiffusionMonte Carlomethod is generally
used with trial wave functions [9,15], which makes DMC a
significantly more powerful tool than without, in which case it
deals with the ground states, only. Trial wave functions enable
studies of larger system sizes, finding the lowest energy states of
given symmetries and use of sc. mixed estimators for evaluation of
physical quantities. Also, use of wave function nodes, if available,
allows simulation of excited states [16,17].

Here, we use the simple DMC without trial wave functions to
compare the features of DMC and our iRTPI approach, and more
importantly, to be able to consider combination of these twoMonte
Carlo methods as another novel approach.

2.2. Real time propagation: RTPI

For the real time dynamics of a quantum many-body system
ψ(x, t)we define the Feynman path integral as

K(xb, tb; xa, ta) =

 xb

xa
exp(iS[xb, xa])Dx(t), (9)

where S[xb, xa] =
 tb
ta

Lxdt is the action of the path x(t) from (xa, ta)
to (xb, tb) and Lx is the corresponding Lagrangian [1,2]. This is the
kernel (or real time Green’s function) of the propagation.

Now, the time evolution of the wave function ψ(x, t) (or
probability amplitude), can be written as

ψ(xb, tb) =


a
K(xb, tb; xa, ta)ψ(xa, ta)dxa, (10)

where ta < tb. A more complete discussion about numerical time-
dependent coherent PI solution for the full quantum dynamics is
given elsewhere [4].

Now, we see the analogy of Eqs. (4) and (10), and the two
propagators G and K . The latter of these is complex, bringing in
the phase and interference of paths, an additional complication to
numerical approaches, called ‘‘numerical sign problem’’ [18].
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2.3. Incoherent RTPI

Here, we present the principle of incoherent real time
propagation based on the numerical evaluation of ψ(x, t) in
discretized time grid, stepwise with∆t .

The real-time solution of the wave equation (1) has the form

ψ(x, t) =

∞
n=0

Cnφn(x) exp[−i(En − ET )t], (11)

analogously with the imaginary time solution, Eq. (3). By using
the small angle approximation for short enough ∆t this can be
written [4] as

ψ(x,∆t) ≈

∞
n=0

Cnφn(x){1 − [(En − ET )∆t]2/2 − i[(En − ET )∆t]}.

(12)

Now dropping off the imaginary part and keeping the real part of
ψ , only, the single step time evolution leads to projection

ψR(x,∆t) =

∞
n=0

Cnφn(x){1 − [(En − ET )∆t]2/2}. (13)

Repetition of wave function projection onto its real part removes
the coherent phase factor in every time step. Therefore, we call this
iteration of Eqs. (10) and (13) as incoherent propagation.

Now it is easy to see that this incoherent propagation (iRTPI)
converges to one of the real eigenstates of the system. The
dominant term in the sum in (13) is the one, where ∥En − ET∥ is
least. Therefore, the iterative propagation ofψR(x, t)will converge
to the real eigenstate φk with eigenenergy Ek closest to ET , unless
the initial ψR(x, t) is orthogonal to it (Ck = 0). However, even in
such case we can expect the numerical inaccuracies to generate a
small seed of any eigenstate (Ck ≠ 0), and eventually, to lead to the
expected convergence.

In comparison of Eqs. (3) and (13) we see that the imaginary
time propagation can converge to the ground state of the system,
only, while with the incoherent propagation ET can be chosen
arbitrarily to find any non-degenerate eigenstate φk. This seems to
be the most essential difference between iRTPI and DMC.

In a graphical interpretation of Eq. (13) the real wave function
rotates in complex plane clockwise an angle (En − ET )∆t/h̄, and
then, becomes projected back to the real axis, walker by walker.
The larger (En − ET )∆t , the less of φn(x) remains in the projection.
The hypothetical problem arising from the 2π periodicity of the
angle can be eliminated by changing or decreasing the time step.

2.4. Kernel and its approximations

In general, the exact Kernel is rarely known and approximations
are needed. A usual approximation is sc. ‘‘short time approxima-
tion’’ [19,3,4]

K(xb, xa;∆t) ≈


1

2π i∆t

N/2

exp


i
2∆t

(xb − xa)2

−
i∆t
2
(V (xa)+ V (xb))


, (14)

which becomes exact as ∆t → 0. This is also called as Trotter
kernel.

The product of Green’s functions in Eqs. (7) and (8) is formally
very similar to the propagator in Eq. (14), the exponential in
the latter being complex causing oscillating wave behavior and
numerical sign problem. This prevents interpretation of the Kernel
straightforwardly as a probability. We use the kernel of Eq. (14) for

simulation of time evolution, as in Eq. (10) in a short time step grid.
Regular grids may work, but as discussed earlier [4], Monte Carlo
grids generate less artificial interferences. We let the calculated
real wave function ψR(x) guide evolution of the grid in the role of
walkers by using Metropolis Monte Carlo algorithm [20]. Thus, in
addition of the eigenenergy we obtain the wave function twice:
calculated from the incoherent propagation, but also, represented
by the walker distribution.

Wave oscillations in Eq. (14) are strongest for large distances
|xa − xb| and small time steps ∆t . Therefore, the contributions
of most paths (far from extrema of action) cancel efficiently
by destructive interference, and in numerical calculations it is
important not to waste time and efforts to those. Instead, it is
necessary to choose or weight the paths with most constructive
interference, i.e., those with large wave function amplitude.

Increase of the number of walkers (grid size) will also damp
the artificial interference [4] and there are other methods to make
the kinetic term less oscillatory, e.g., by using effective propagators
[21,22]. Monte Carlo grids remove the interference arising from
regularity, but bring in the roughness from randomness. This may
cause lack of sufficient destructive interference of paths where the
walker density is low, i.e., where the wave function decays to zero.
Smoothening of the roughness can be expected to help [4].

Our approach here is the following. The initial wave function
ψ(xa, ta) presented pointwise in a grid of walkers is ‘‘smoothened’’
to a ‘‘gaussianwise’’ presentation in the same grid by using
Gaussian width parameter ϵ. We make it by modifying the kinetic
part of the propagator as

1
2π i∆t

N/2

exp


i
2∆t

(xb − xa)2


→


1

2π(i∆t + ϵ2)

N/2

exp


i
2(∆t − iϵ2)

(xb − xa)2

, (15)

which converges back to the pointwise presentation as ϵ → 0.
The second part of kernel contributes to the numerical sign

problem, if the potential is strongly variant along the paths, i.e., if
in Eq. (14) the change from V (xa) to V (xb) is far from linear or if
(V (xa)+V (xb)) is locally variant for nearby paths. To the latter, only
increase of walker density helps, whereas to the former, averaging
over the path or decrease of the time step∆t is needed. Decrease of
∆t leads essentially to decrease of |xa − xb| due to the ‘‘destructive
kinetic interference’’.

Averaging over the path could be done with some pseudo-
potential. Such approximation could be tailored to include all
the paths from xa to xb and remove the singularities, like the
∆t dependent pair potential approximation widely used for the
imaginary time propagation [5].

Here, we adopt a straightforward single path average approxi-
mation

Vavg =
1

xb − xa

 xb

xa
V (x)dx. (16)

In one dimensional space this yields for the harmonic potential

VH
avg =

ω2

6


x31b − x31a
x1b − x1a

+
x32b − x32a
x2b − x2a


(17)

and for the Coulomb potential

V C
avg =

ln(rb/ra)
rb − ra

, (18)

where x1 and x2 are the particle coordinates, and ra = x1a−x2a and
rb = x1b − x2b are the initial and final distances, as defined in the
next section.

This result can also be acquired from a more sophisticated
analysis and it is usually called semi-classical approximation [5].
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3. Hooke’s atom

The problem of two electrons in a harmonic potential, Hooke’s
atom, has been investigated by several authors [10,23–32].
There are even analytical solutions, but only for some specific
parameters [10]. There are also numerical solutions and some
approximate approaches, but to the ground state energy and wave
function, only [33–40].

3.1. Separation of three dimensional problem

Consider two electrons with Coulomb repulsion in a harmonic
potential well. Withme = 1 the Hamiltonian of the system is

H(x1, x2) = −
1
2
∇

2
1 −

1
2
∇

2
2 +

1
2
ω2x21 +

1
2
ω2x22 +

1
|x1 − x2|

, (19)

where x1 and x2 are the three coordinates of two electrons. The
relative and center-of-mass (CM) motion of the electrons can now
be separated by defining new three dimensional variables

r = x1 − x2 and R =
x1 + x2

2
. (20)

Thus, the Hamiltonian decouples as

H(r, R) = −
1
2µ

∇
2
r +

1
2
µω2r2 +

1
|r|

−
1
2M

∇
2
R +

1
2
Mω2R2

≡ Hr + HR, (21)

where µ =
1
2 and M = 2 are the reduced and the total mass

of electrons. The wave function and total energy separates as
ψ(r, R) = φ(r)Φ(R) and E = Er + ER, respectively.

The CMmotion is simple harmonic oscillation, which, of course,
can further be separated into three one dimensional components.
The relative motion of the two electrons is harmonic oscillation
with the Coulomb repulsion as the perturbation. This equation can
be separated into radial and angular components similarly to the
dynamics of the hydrogen atom.

With substitution φ(r) = u(r)/r the radial equation of ground
state takes the form

−
1
2µ

d2

dr2
+

1
2
µω2r2 +

1
r


u(r) = Eru(r). (22)

To find the exact solution we must solve a three step recurrence
equation [10], for which the solutions are restricted to some
specific values of confinement parameters, only. For example,ω =
1
2 is one of the viable and the strongest confinement with ground
state eigenenergy Er =

10
8 and wave function [10]

u(r) = rφ(r) = r
e−r2/8


|r|
2 + 1




8 + 5
√
π

 . (23)

3.2. Analytical solutions for one dimensional hooke’s atom

Oseguera and Llano [11] have proven that for the attractive
one-dimensional Coulomb potential, the singularity acts as
an impenetrable barrier and the space becomes divided into
two independent regions (space splitting effect). Therefore,
the solutions for positive and negative values of the relative
coordinates of two particle are completely independent. Due to
the space spitting effect for one dimensional Coulomb potential,
the wave function of the two particles should vanish where their
relative coordinate becomes zero.

Because of this, the relative dynamics in one dimension is that
of the radial part in three dimensions for the angular momentum

Fig. 1. Wave function of the ground state relative motion u0(r) for ω = 1/2, exact
(solid line) [10] and from the three lowest order PT (red dotted, green dash-dotted
and blue dashed lines). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

quantum number ℓ = 0, Eq. (22), [10]. With the definitions of r
and R in Eq. (20), in one dimension

ψ(r, R) = u(r)Φ(R), (24)

where u(r) is the relative motion wave function in one dimension
Eqs. (22)–(23). It is related to the three dimensional relativemotion
wave function with zero angular momentum via rφ(r) = u(r). In
the one dimensional space the CMdynamics is simply that of one of
the three R-components in Eq. (21). Thus, the ground state solution
of HRΦ = ERΦ is

Φ(R) =


Mω
π

1/4

e−MωR2/2, (25)

where M = 2 for electrons, and the corresponding energy is
ER =

1
2 h̄ω.

We have chosen this as the test case for the numerical methods,
below. Thus, the ground state wave function ψ(r, R) = u(r)Φ(R)
for one dimensional Hooke’s atomwithω =

1
2 is given by Eqs. (23)

and (25), which yields the energy of

E0 = ER + Er = ER + Ekin
r + Epot

r = 0.25 + 0.28941 + 0.96058

= 0.25 + 1.25 = 1.5. (26)
The exact relative coordinate wave function is illustrated as a

solid line in Fig. 1, where it is also compared to those from PT.
The differences between second order and third order perturbative
solutions and exact solution are shown in Fig. 2.

3.3. Solutions from perturbation theory

Now, let us consider the Coulomb interaction as perturbation
in Eq. (22). Then, the unperturbed wave function and first order
energy corrections are

u0
n(r) =

1
4√π

√
ξ exp


−ξ 2r2/2


Hn(ξ r)

√
2nn!

, (27)

δE1
n = 2e2


∞

0

u0∗
2n+1(r)u

0
2n+1(r)

|r|
dr, (28)

ξ =


µω

h̄
, (29)

where Hn(r) are the Hermite Polynomials with n = 0, 1, 2, . . . .
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Fig. 2. The differences between the exact solution and different order PT results are
shown. The first, second and third order corrections are shown by the dots (red),
dot–dash (green) and dash (blue) lines respectively. The highest order PT has the
best accuracy. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 3. Comparison of the ground state energies, exact [10] (black dots) and those
from the PT (lines with the same notations as in Fig. 1). The highest energy dot
(ω = 1/2) corresponds the wave functions in Fig. 1.

To calculate the higher order energy corrections and wave
function, we need matrix elements of the Coulomb potential.
Generally, all of these cannot be found in closed form, but for the
ground state we can write

V0,n =
e2ξ

√
2n+1n!

n!Γ

1 −

n
2

 , n ≥ 1 (30)

where Γ is the Gamma function.
Then, up to the second order, the perturbative approximation

of the ground state energy is

E0 =
3
2
h̄ω + 2e2


µω

π h̄
+

∞
n=1

|V0,2n+1|
2

−2nωh̄
. (31)

Fig. 3 shows the ground state energy as a function of ω. As the
figure shows, for small values of ω the perturbative solutions do
not converge to the exact values. We should notice that the PT is
valid only as long as the condition Vnn ≪ |En+1 − En| holds.

Average value of the kinetic energy can be used as a limit for
validity of the perturbation method. In the first order perturbative
approximation, the average kinetic energy of relative motion for

ground state, becomes negative for ω < 4e4µ/9π h̄3
≈ 0.07073

in au, and therefore, it can be chosen as the minimum acceptable
frequency ωmin in perturbation method for ground state.

Clearly, the perturbation theory, Eq. (31), works better for
strong confinements, ω > 0.5, where numerical approaches
and other methods may become inaccurate. For ω = 0.5 the
ground state energy for relative motion is 1.25 and perturbation
theory yields 1.314, 1.238 and 1.248 for the 1st, 2nd and
3rd order, respectively, whereas 0.75 and 1.1830 are found by
approximations for strong (ignoring e–e interaction) and weak
(harmonic approximation) confinements [10].

4. Monte Carlo simulations

We assess performance and accuracy of numerical solutions
by using the above defined one dimensional Hooke’s atom with
k = ω2

= 1/4, i.e., ω = 0.5, as the test bench. First of all we
consider our novel incoherent RTPI, as compared with diffusion
Monte Carlo. Finally, we introduce one more novel method by
combining these two.

4.1. Incoherent RTPI

To assess the performance of incoherent RTPI we first use
constant width parameter ϵ2 = 0.005, see Eq. (15), and monitor
the accuracy with respect to time step∆t and grid size N . The data
is collected in Table 1 and partly also shown in Figs. 4 and 5 in
graphical form.

We see that the accuracy improves with increasing grid size,
as expected. We find an optimal size for the time step, roughly
at ∆t = 0.1, for the modified Trotter kernel. Shorter time steps
strongly increase the error in the kinetic part of the propagator,
whereas longer time steps increase that of the potential part, as
discussed in sec. 2.4. Increasing time step also reduces the accuracy
of Trotter kernel approximation. Shorter time steps can be used
only with significantly larger grid size.

To allow estimation of convergence and statistical error of
energies for practical calculations the standard deviations are
given. It can be used to estimate the statistical accuracy (precision)
of evaluated expectation values in form of standard error of mean,
SEM = σ/

√
N , whereN is the number of uncorrelatedMonte Carlo

steps. Usually, 2 × SEM limits (95%) are assumed as a statistical
error estimate. For the present test cases evaluation of SEM is not
relevant.

Nextwe keep the grid size and time step constant,N = 30×103

and∆t = 0.1 and investigate the effect of the width parameter ϵ2.
The data is collected in Table 2. Obviously, the larger the grid size,
the smaller ϵ can be used, increasing the accuracy. However, ϵ at
least of the size of the average distance of walkers ‘‘smoothens’’
the wave function also increasing accuracy. On the other hand,
the last line of Table 2 proves that ϵ ≈ 0.3 is still applicable,
though the value ϵ ≈ 0.07. (ϵ2 = 0.005) was found the best with
N = 30 × 103.

In Fig. 6 the difference between calculated wave function and
the exact one is shown in terms of the root-mean-square deviation
as a function of time step length. This data have the same trends as
the error in total energy in Fig. 4.

Formore detailed analysis of thewave functionwewill consider
the relative motion and CM motion separately. First, Fig. 7 shows
a plot of all walkers (a snapshot of Monte Carlo grid points) as red
dots at the walker coordinates (r, u(r)), i.e., the relative coordinate
and real amplitude. The green line shows themaximum amplitude
given by Eq. (23). This is the simulation case of the last line of
Table 2. We see that the wave function match is pretty good, but
the energetics is not.
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Fig. 4. Error in the calculated total energy∆E from its exact value 1.5 as a function
of time step in atomic units,∆t (iRTPI) and τ (DMC). Symbols for RTPI are magenta
open diamonds, green open circles and blue open squares for N = 10k, 30k and
100k, respectively; and for DMC red full circles for 30k. Dashed line shows zero
reference. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. Error in the calculated potential and kinetic energies,∆V and∆E−∆V , from
their exact values 1.0856 . . . and 0.4144 . . . respectively as a function of time step
∆t . Open markers show the potential energy and filled markers the kinetic energy.
Otherwise notations are the same as in Fig. 4. When comparing with Fig. 4 we can
see that most of the error comes from kinetic energy.

Table 1
Accuracy and distribution of energetics in incoherent RTPI simulations of the
ground state. N is the number of walkers (k = 103),∆t the time step,∆E deviation
of expectation values from the exact value 1.5, ∆V deviation of expectation value
from the exact value 1.0856 . . ., σ standard deviation in 20 blocks of data with 50
iterations in block and ϵ2 the ‘‘gaussian width of walkers’’ discussed in Section 2.2.
(All quantities in atomic units).

N ∆t ∆E σE ∆V σV ϵ2

100k 0.3 −0.0152 0.0008 0.0109 0.0017 0.005
100k 0.1 0.0032 0.0014 0.0039 0.0021 0.005
100k 0.03 0.0601 0.0135 0.0054 0.0014 0.005
30k 0.3 −0.0185 0.0016 0.0161 0.0042 0.005
30k 0.1 0.0046 0.0058 0.0172 0.0111 0.005
30k 0.03 0.1544 0.0333 0.0221 0.0247 0.005
10k 0.3 −0.0220 0.0030 0.0126 0.0062 0.005
10k 0.1 0.0077 0.0123 0.0296 0.0505 0.005
10k 0.03 0.4324 0.0653 0.0154 0.0045 0.005

Another snapshot of walkers is shown in Fig. 8. This plot
presents the complex amplitude in complex plane after one time
step starting from the real wave function, Eq. (13), i.e., starting
from all the walkers lying in the real axis according to the
amplitude. With the walkers perfectly representing the stationary
state one expects no other changes than rotation of all walkers
around origin corresponding to the phase ϕ ∝ (E0 − ET )/∆t and
retaining their absolute value (modulus). Fig. 8 shows the case,
where ET = E0, and thus, ϕ = 0 is expected. Therefore, deviations
from the real axis present numerical or statistical error emerging
from the randomnature ofMonte Carlo grid in the figure. Thus, the
imaginary components of amplitude are zero in average and large
deviations from the average, shown in red and green, point out the

Fig. 6. RMS deviation of the calculated and analytical wave functions as a function
of time step∆t . Notations are the same as in Fig. 4.

Fig. 7. Snapshot of the simulation for relative motion wave function with N =

30k,∆t = 0.1 and ϵ2 = 0.1. The blue dots show walkers projected onto the plane
(r, u(r)). Green line shows the corresponding exact wave function u(r), Eq. (23) for
RCM = 0. The maximum amplitude of walkers is scaled to match the maximum
of the analytical maximum and r is in and atomic units. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 2
Effect of the gaussian width of walkers. Notations are the same as in Table 1.

N ∆t ∆E σE ∆V σV ϵ2

30k 0.1 −0.0235 0.0068 0.0510 0.0168 0
30k 0.1 0.0025 0.0037 0.0146 0.0112 0.005
30k 0.1 −0.0118 0.0024 0.0848 0.0194 0.1

walkers with largest error. Note the different scaling of real and
imaginary axes.

The same walkers as in Fig. 8 are shown in Fig. 9, but now
in two dimensional cartesian coordinate system of (x1, x2), the
coordinates of the two electrons in one dimension. Now, we see
that the walkers showing the most erroneous phase in Fig. 8
are those in the region with the lowest density, where the wave
function decays to zero. Obviously, the sparsewalker density is not
able to describe the amplitude smoothly, enough.

The sparse grid problem is expected but cannot be avoided, in
case the walker density represents the wave function amplitude
in the region of almost vanishing wave function. Increase of the
walker width parameter ϵ2 helps until it starts to adversely round
the shape of the wave function in other regions, see Fig. 7.

In Figs. 10 and 11 two different projections of again the same set
of walkers are shown. The real amplitude is presented as a function
of the relative and CM coordinate, i.e., walkers in planes (r, u(r))
and (R, u(r)), respectively. Thus, Fig. 10 is the same projection as
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Fig. 8. The complex wave function phase evolution of the real ground state in one
time step (∆ϕ = 0 expected.). Note the different scaling of axes. Color coding: red
for∆ϕ > 0.3 and green for∆ϕ < −0.3. These walkers are more than 20% off from
the known expectation value of energy. N = 30,000,∆t = 0.1 and ϵ2 = 0.005.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 9. Plot of the same walkers as in Fig. 8, but now in a plane of coordinates of
electrons (x1, x2) in atomic units. The color coding is the same, but size of blue and
other walkers is smaller and larger, respectively. The CM and relative coordinate
axes are also shown. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

that in Fig. 7, but now from a simulation with better numerical
parameters as judged by the accuracy of energetics in Table 1.

Now, we see strong fluctuations in amplitude with the RMS
deviation from the exact wave function given in Fig. 6. Cumulative
averaging over the Monte Carlo simulation, however, smoothens
these fluctuations away.

4.2. Simple DMC

Diffusion Monte Carlo in its most efficient form includes the
use of trial wave functions. Here we introduced only the simple
DMC approach in order to allow straightforward comparison with
RTPI. Moreover, simple DMC and RTPI can be combined to a novel
methodwith new practical properties that simplify the calculation
of various observables, not just the total energy. This will be
discussed in the next subsection in more detail.

Since Hooke’s atom does not involve attractive singular
Coulomb potentials, only +

1
r , the Trotter break-up is valid and the

Fig. 10. Snapshot of the calculated wave function in the relative motion
coordinates with N = 30,000,∆t = 0.1 and ϵ2 = 0.005. The walkers and the
color coding are the same as in Figs. 8 and 9. Units are the same as in Fig. 7. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 11. Snapshot of the calculatedwave function in the center of mass coordinates
with N = 30,000,∆t = 0.1 and ϵ2 = 0.005. The walkers and the color coding are
the same as in Figs. 8–10. Units are the same as in Fig. 7. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

branching term in Eq. (8) does not diverge. Therefore, sampling
without a trial wave function can be expected to give accurate
results with sufficiently small imaginary time step and large
enough number of walkers.

The data in Table 3 shows that the total energy converges to its
exact value as the imaginary time step τ → 0. By comparing the
data in Table 1 we see that with optimal parameters and the same
number of walkers N , RTPI gives similar accuracy as simple DMC,
if only the number of Monte Carlo steps matters.

However, RTPI is computationally much more demanding. This
stems from the fact, that for each MC step in DMC algorithm, only
N moves of walkers guided by the potential function is needed,
but with the present incoherent RTPI we need to calculate N × N
real time propagations to evaluate the guiding distribution before
moving the walkers.

4.3. Combination of DMC and RTPI

The simple DMC algorithm samples the nodeless ground
state distribution, which makes it cumbersome and inefficient to
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Table 3
Accuracy and distribution of energetics in DMC simulations of the ground state.
Number of walkers is N = 30k, τ is the imaginary time step, ∆E deviation of
the expectation value from its exact value 1.5 and σ is the standard deviation of
20 blocks of data. Each block consists of 50 iterations. A new energy estimate was
calculated after each block.

τ ∆E σ

1 −0.0526 0.0008
0.3 −0.0197 0.0016
0.1 −0.0096 0.0034
0.03 −0.0063 0.0049
0.01 −0.0041 0.0085
0.001 0.0137 0.0235

Table 4
Incoherent RTPI combined with DMC. The walker distribution N = 30k is sampled
by DMC with (τ = 0.01) and RTPI step length is ∆t = 0.1. Evaluated expectation
values and DMC total energy are givenwith their standard deviations. Notations are
the same as in the previous Tables. DMC is calculated from 20 blocks of data with
50 iterations per block. RTPI step is run once for every other block.

∆E σE ∆V σV ϵ2

RTPI 0.0033 0.0060 0.0022 0.0039 0.005
DMC −0.0041 0.0085

evaluate expectation values for observables other than the total
energy, even as simple as the potential energy. This is due to the
availability of the wave function in form of walker distribution,
only. Thus, in evaluation of the expectation value matrix elements
the walker distribution implicitly contributes as the bra wave
function, but ket is not available.

For direct sampling of matrix elements another representation
of the wave function, the ket vector, is needed. For this purpose
the incoherent RTPI on DMC walkers can be used. Then, also the
overlap integral and potential energy become straightforward to
sample for

⟨V ⟩ =
⟨ψ | V | ψ⟩

⟨ψ | ψ⟩
. (32)

Similarly, expectation values for any local multiplicative operators
become available. Also, another total energy estimate is obtained
from sampling the phase evolution in real time.

The incoherent RTPI can be used to evaluate, not only the
ground state, but also the excited states with the positive and
negative amplitudes, and thus, it provides means for locating the
nodal surfaces. This suggests combining the two approaches for
evaluation of excited states, or in general, states with nodes in the
spirit of released nodes idea; RTPI would be used in finding the
nodes and evaluating another wave function, as well as another
total energy, while DMC is used to sample the paths for RTPI. This
has potential for increasing the usefulness and capabilities of the
simple DMC approach.

For practical use the number of RTPI steps can be keptmuch less
than the DMC steps. In case nodal information is not needed, only
one RTPI step at the end may be sufficient. Evaluation of statistical
precision calls for more than that, of course.

In Table 4 we show the data evaluated with the combined
approach. The underlying DMC has been run with τ = 0.01, see
Table 3 and RTPI on top of that with ∆t = 0.1 with the optimal
choice of other parameters, see above. RTPI step has been run once
for every other block of 50 DMC steps.

We find that DMC sampling ofwalkers from the distribution de-
rived from the potential function leads to smoother spatial distri-
bution than that of guided by the wave function amplitude from
RTPI. This can be clearly seen by comparing the distributions in
Figs. 9 and 12, and also, the amplitudes in Figs. 10 and 13. This also
yields better energeticswhich can be seen by comparing the values

Fig. 12. DMC simulation snapshot of walker distribution in a plane of coordinates
of electrons (x1, x2) and separated coordinates (r, R), in atomic units. Parameters
τ = 0.001 and N = 30,000 were used.

Fig. 13. Snapshot histogram of walker distribution in DMC simulation with τ =

0.001 and N = 30,000. | xb − xa | projection. Green line is the analytical solution
fitted to the data. u is the number of walkers in each bin and r is in atomic units. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

from Tables 1 and 4. In the latter one there are less stray walkers
at very low density region. We assume that the reason for this is in
the different nature of the guiding distribution: for DMC it is sta-
ble well-defined potential, while for the Metropolis algorithm in
RTPI it is the calculated amplitude presented in the Monte Carlo
grid. This problem is always present at the region of low walker
density.

Thus, if more stability is needed and larger number of walkers
becomes too expensive, it may be necessary to use cumulative
distribution of the amplitude from several previous RTPI steps.
According to our preliminary testing, same type of problem may
arise in locating the nodal surfaces accurately enough. Use of
the cumulative distributions calls for numerical algorithms for
efficient interpolation and updating the collected data.

Based on the experience, so far, the combination of the
simple Diffusion Monte Carlo and incoherent Real Time Path
Integral methods form a novel approach for electronic structure
calculations that is capable of extending usefulness of the former.
However, its significance remains to be tested in practice.
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5. Conclusions

We have introduced a new approach based on the incoherent
real time path integrals (iRTPI) for ground and excited state
electronic structure calculations. It includes correlations between
electrons exactly, within the numerical accuracy, which can be
made better than the systematic error from the kernel simply
by using Monte Carlo technique. Here, we use Hooke’s atom,
a two-electron system with very strong correlation, as our test
case, which we solve with both iRTPI and diffusion Monte Carlo
(DMC) for comparison. The high accuracy and stability of iRTPI
is demonstrated, and the improved Trotter kernel is shown to
be useful with large enough number of Monte Carlo walkers. In
addition, useful numerical parameters for the present case have
been determined for stable and self-consistent simulations.

In its present form the computational cost of iRTPI is
significantly higher than that of DMC. However, one of the
advantages of iRTPI is that it provides one with the wave
function explicitly, and thus, the evaluation of local multiplicative
expectation values becomes straightforward. Moreover, it is also
capable of locating excited states, and thus, the related nodal
surfaces, the technical details of which were not considered
here. In addition, incoherent dynamics can be turned to coherent
dynamics, in case quantum dynamics is relevant.

We also showed that another novel approach obtained
by combining the iRTPI and DMC methods allows a more
straightforward means for evaluation of various observables
within the robust framework of DMC. Due the capability of iRTPI
for locating the nodal surfaces, it will be interesting to further test
this combination method in a released node fashion of DMC. This
would mean a trial wave function free DMC also for fermions.

Perturbation theory was shown to be useful for analytical
solutions in case of strong confinements, whichmay becomemore
challenging for numerical methods and available approximate
solutions. On the other hand, for weak confinements, e.g. in
quantum dots, the presented numerical iRTPI method is expected
to be robust.
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The system of two interacting electrons in one-dimensional harmonic potential or
Hooke’s atom is considered, again. On one hand, it appears as a model for quantum
dots in a strong confinement regime, and on the other hand, it provides us with a
hard test bench for new methods with the “space splitting” arising from the one-
dimensional Coulomb potential. Here, we complete the numerous previous studies of
the ground state of Hooke’s atom by including the excited states and dynamics, not
considered earlier. With the perturbation theory, we reach essentially exact eigenstate
energies and wave functions for the strong confinement regime as novel results. We
also consider external perturbation induced quantum dynamics in a simple separable
case. Finally, we test our novel numerical approach based on real-time path integrals
(RTPIs) in reproducing the above. The RTPI turns out to be a straightforward approach
with exact account of electronic correlations for solving the eigenstates and dynamics
without the conventional restrictions of electronic structure methods. Published by
AIP Publishing. https://doi.org/10.1063/1.5028503

I. INTRODUCTION

The problem of two electrons confined in a harmonic potential, sc. Hooke’s atom, has been
investigated by several authors.1–8 There are analytical solutions of the ground and excited states,
but only for some specific confinement parameters or oscillator frequencies.1 There are also some
approximate and numerical approaches to solve the problem, but all of these are focused on the
ground state energy and wave function of the three-dimensional system.8–13

Solution of the problem can be reduced to those of center-of-mass (CM) and internal dynamics,
and the latter one, further to radial and angular components. The radial component is the solution at
the positive and negative parts of one-dimensional space, and thus, it turns out to form the solutions
of one-dimensional Hooke’s atom—analytically for the above-mentioned specific set of confinement
parameters. These two parts can be combined to form symmetric and antisymmetric spatial wave
functions as singlet and triplet (or bosonic and fermionic) states, respectively.

However, the one-dimensional Coulomb potential is not trivial to consider, and therefore, it
has been a case of interest since 1959.14 It has been argued in many previous studies14–19 that
only the odd wave functions are valid solutions of the Schrödinger equation. More recent studies
on one dimensional strongly interacting confined quantum systems21–26 and previous studies on
relativistic and non-relativistic one dimensional Coulomb potential14–20,27,28 motivate us to revisit
the problem and demonstrate how to find solutions for all eigenstates and all confinement parameters
both analytically and numerically.

Oseguera and de Llano29 have proven that for the attractive one-dimensional Coulomb potential
the singularity acts as an impenetrable barrier and space is divided into two independent domains.
This is called the space splitting effect. Therefore, solutions for the positive and negative values of
the relative coordinates of a two-particle system are completely independent. In one-dimension, the
attractive delta function interaction and Coulomb interaction both cause the space splitting, too.29

Due to the space splitting, the relative coordinate wave function of two particles should vanish at
the origin. Extension of the problem to repulsive Coulomb potential is simple. It is enough to replace
�e2→ e2, and again, it can be shown similar to the attractive Coulomb interaction that the amplitude
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of reflection coefficient for repulsive Coulomb interaction equals to one and the singularity acts as
an impenetrable barrier.29

In this study, we complete the numerous earlier studies by presenting solutions from the pertur-
bation theory (PT) for all confinement parameters, and also, for both the ground state and excited
states dynamics. We assess the accuracy of PT solutions as a function of confinement and order of PT.
Our analytical PT results give better match with the exact numerical solutions in a strong confinement
region as compared with interpolation formula in Ref. 1.

Furthermore, with a novel numerical approach based on Feynman path integral formalism in
real time (RTPI),30 we find wave functions, energetics, and dynamics of such a strongly correlated
system to confirm the PT results and trends. We also assess the robustness of RTPI for excited states
and dynamics, where it is applied for the first time.

In Sec. II, we introduce PT and RTPI for the one-dimensional confined charged particles. In
Sec. III, we give the PT and RTPI solutions to Hooke’s atom and assess the quality and accuracy
by comparing with exact solutions for both eigenstates and quantum dynamics in an external time-
dependent electric field.

II. MODEL AND METHODS

A. Separation of variables

The Hamiltonian of two electrons in a 3D harmonic well is

H =
−~2

2me
∇2

1 +
−~2

2me
∇2

2 +
1
2

meω
2x2

1 +
1
2

meω
2x2

2 +
e2

|x1 − x2 | , (1)

where x1 and x2 are the three coordinates of electrons 1 and 2, respectively. The relative and center
of mass (CM) motion of the two electrons can be separated by defining new variables

r = x1 − x2

and

R=
x1 + x2

2
.

Now, the Hamiltonian separates as

H =H(r) + H(`) + H(R),

where H(`) = `(` + 1)~2/2µr2 is the rotational part. For the rotational ground state of the relative
motion (` = 0), one can rewrite the above Hamiltonian as follows:

H =
−~2

2µ
d2

dr2
+

1
2
µω2r2 +

e2

|r | +
−~2

2M
∇2

R +
1
2

Mω2R2 (2)

=H(r) + H(R),

where µ= me/2 and M = 2me are the reduced and the total mass of electrons, respectively. If separating
the wave function and total energy as ψ(r, R)= u(r)

r Φ(R) and Etot = E + ECM, then the CM motion is
simple harmonic oscillation in all three dimensions

−~2

2M
d2

dR2
Φ +

1
2

Mω2R2Φ=ECMΦ, (3)

where ECM = (N + 1/2)~ω with non-negative integers N. Relative motion of the electrons is harmonic
oscillation with the Coulomb interaction as a perturbation in the rotational ground state (` = 0),

− ~
2

2µ
u′′(r) + (

1
2
µω2r2 +

e2

|r | )u(r)=Eu(r). (4)

Equations (3) and (4) define the dynamics of 1D Hooke’s atom without external fields. The solutions
are bound states with quantized energies and those of the CM are states of a simple harmonic oscillator.
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B. Perturbation theory

In this section, we review the PT and its applicability in one dimensional confined quantum
systems with Coulomb potential as the interparticle interaction.

1. Reference states and boundary conditions

Equation (4) remains as the one dimensional Schrödinger equation to be solved. It would be
natural to consider the Coulomb repulsion as perturbation and choose the harmonic oscillator as
the reference system. However, in one-dimensional PT because of the space spitting effect, we are
looking for solutions of relative motion with the boundary condition and symmetry like those of
one-dimensional hydrogen atom at the origin14–19

u(0)= 0. (5)

This means that the odd numbered eigenstates of harmonic oscillator (4), only, are acceptable. Then,
the exactly solvable problem with the same boundary condition as one dimensional Coulomb potential
is31

− ~
2

2µ
ζ ′′n (r) +

1
2
µω2r2ζn(r)= εnζn(r), (6)

where ζn are the eigenstates of one dimensional harmonic potential. The exact solutions are

ζn(r)B

(
1

4√π
√
ξ
)

exp
( −1

2 ξ
2r2

)
Hn(ξr)

√
2nn!

,

εn = (n +
1
2

)~ω,

ξ =

√
µω

~
,

n= 1, 3, 5, . . .

where Hn are the Hermite polynomials and only odd quantum numbers apply.
The integral solution of Eq. (4) can be written as31

u(r)=−〈G(r, r ′)|δv(r ′)|u(r ′)〉, (7)

δv(r ′)=
e2

|r ′ | , (8)

where G(r, r ′) is Green’s function of Eq. (6) with the same boundary conditions as u(r), i.e., Eq. (5).
Using the eigenfunction expansion of Green’s function, we have31

un = ζn +
∑

p,n

〈ζp |δv |u〉
En − εp

ζp, (9)

En = εn + 〈ζn |δv |un〉. (10)

This is normal PT theory with odd numbered eigenstates. The validity condition (〈ζn|δv |un〉
� |En � En±1|) should also hold.32 We will discuss this in Sec. III.

C. Path integral approach

Recently, we have presented a novel real-time path integral (RTPI) approach to the electronic
structure calculations and coherent quantum dynamics. It was first tested in the case of a single
electron quantum dot.28 Combined with Monte Carlo sampling of paths, RTPI was demonstrated to
be a robust first-principles method and relatively simple to use, but computationally heavy.

Later, it was shown that in the case of Hooke’s atom RTPI is capable of incorporating the
electronic correlations exactly within numerical accuracy.31 Now, we demonstrate finding not only
the ground state but lowest excited states, and also, dynamics as a response to external electric fields.
We analyze the role of relevant approximations, the Monte Carlo method, and numerical parameters.
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Thus, the RTPI is a general numerical method for testing the perturbation theoretical predictions,
where analytical data are not available. Simultaneously, we can test the numerical performance and
accuracy of RTPI for finding more complex many-particle wave functions and quantum phenomena,
which are out of reach with the conventional first-principles methods.

The first and second excited states are calculated with the incoherent propagation path integral
Monte Carlo30,33 simulations. The used parameters in atomic units are time step (t = 0.1), number
of walkers (N = 300 000), and the walker size ε (ε2 = 0.005). The purpose of the last parameter is
to reduce the oscillations of the kinetic propagator. This is done by representing a single walker as a
Gaussian function with variance ε2 instead of Dirac delta function.33

Here, it should be noted that the RTPI simulations are carried out in single-particle coordinates
x1 and x2, thus testing the performance of description of the electron correlations.

III. ONE DIMENSIONAL HOOKE’S ATOM

In this section, we discuss the solutions of one dimensional Hooke’s atom within PT and RTPI.
First we consider lowest stationary states, and then, dynamics in the presence of external time
dependent electric field.

A. Stationary eigenstates
1. Ground state

Taut has introduced some exact solutions of 3D Hooke’s atom for certain confinement parame-
ters.1 For the relative motion, this means solutions to the following Schrödinger equation [Eq. (9) in
Ref. 1]:

−u′′(r)
2

+
1
2
ω2r2u(r) +

1
2

1
r

u(r)=Enu(r). (11)

This is equivalent to the Schrödinger equation (4) for a particle with reduced mass (µ = 1) and 1√
2

electric charge. However, the approach involves finding solutions of two simultaneous equations,
which restricts the answers to some specific values of ω and states.

Out of those we choose ω = 0.5, because the analytical exact solution of the ground state is
available for this value and it is also the largest one in the set of specified values of ω. In the first
order PT, the energy levels as a function of n and ω can be written as

En =

(
2n +

3
2

)
~ω +

e22−2n−1ξ√
π(2n + 1)!

∫ ∞
−∞

e−(ξx)2
H2n+1(ξx)2

|x | dx. (12)

Where n is non- negative integers. The first term in Eq. (12) represents the simple harmonic oscillator
energy levels with odd quantum number. Because of odd Hermite polynomials in the integrand, we
are not worried about the singularity at origin. Thus, the first few energy levels are

E0 = 2e2

√
µω

π~
+

3ω~
2

,

E1 =
5e2

3

√
µω

π~
+

7ω~
2

,

E2 =
89e2

60

√
µω

π~
+

11ω~
2

,

E3 =
381e2

280

√
µω

π~
+

15ω~
2

.

In Ref. 1, the interpolation method of eigenenergies is also presented. However, the fitting has
been done for the confinement parameters in a narrow region, only. The maximum value of ω for the
ground state is 0.5, and by increasing the number of states, the corresponding maximumω decreases.
Therefore, the extrapolation results for the ground state are accurate in region ω ≤ 0.5, for the first
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excited state in region ω ≤ 0.38, and for higher states this region becomes narrower (cf. Table I in
Ref. 1).

Rather than analytical exact solutions, there are two approximations in Ref. 1: the weak and the
strong confinement approximations. As discussed in Ref. 33, for the largest confinement parameter
(ω = 0.5), the PT gives more accurate results compared to the weak and strong approximations.

A comparison between the analytical exact and perturbative solutions for ω ≤ 0.5 is shown in
Fig. 1. The difference between these two decreases as n and ω increase, so the maximum difference
appears for the ground state. For small values of ω, the PT is less accurate, because the validity
condition for PT (Vnn � |En � En±1|) is violated. We can use the average value of kinetic energy as a
limit for the validity of PT. In the first order perturbative approximation, the average kinetic energy of

relative motion for the ground state becomes negative forω < 4e4µ

9π~3 , which sets a minimum acceptable
ω for the ground state in PT.

The ground state wave function and its properties have been discussed in detail in Ref. 33 already.

2. First two excited states

For the excited states with ω > 0.5, the PT gives accurate results even in the first order. The
accuracy of the PT results has been checked (up to fourth order) comparing the numerical exact
solutions for the one-dimensional Hooke’s atom.

FIG. 1. Comparison of PT and analytical exact total energies (solid black circles) results in Ref. 1 of Hooke’s atom in atomic
units (hartree). The first-, second-, and third-order corrected energies are shown by the dotted (red), dotted-dashed (green),
and dashed (blue) lines, respectively, and all axes are in logarithmic scale. (a) Ground state energy, n = 0 as a function ofω in
logarithmic scales. The pink cross shows the RTPI result.33 (b) First excited state, n = 1. (c) Second excited state, n = 2. (d)
Third excited state, n = 3.
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Figure 2 shows the relative errors between the first order PT and the numerical exact solution
eigenenergies for the ω ≥ 0.5. As seen, even in the first order PT the relative errors reduce rapidly
for excited states. The relative error for the ground state is around 5% and for states with n ≥ 3, the
relative errors are less than 1%.

We can compare the PT results for the first excited state of the relative motion with the analytical
exact solution for ω = 2

5.26 137 . This ω has been chosen, because the analytical exact solution for
the first excited state is available.1 The analytical exact solution wave function for this frequency
is1

u1,exact =Nr exp(−ω
2

r2)
(
r3 − 36(r + 4)r2ω + 12r2 + 72r + 144

)
, (13)

where N is the normalization constant.
Comparison between the exact solution and PT solutions is given in Fig. 3. As expected, the

first order PT has larger deviation from the exact solution, compared with the second and third
order PT. Figure 3(b) shows the relative error between different order PT wave functions and exact
solution.

Table I shows the results for the expectation values of Coulomb potential (V c), relative
motion harmonic potential (VH,r), and relative motion kinetic energy (T r). The total energy is the
ECM,0 + E0. The expectation values have been calculated directly from normalised wave functions. The
RTPI energetics is in good match with the exact energies (and PT, where the analytical exact results are
not available), but there is a systematic error where the electrons are close to each other (r→ 0) or when
their separation is large. The former is due to the improved Trotter kernel approximation28 with smaller
error near the singular potential with finite time step. The latter is mostly caused by the small density
of the Monte Carlo grid in that region and that error can be made smaller by increasing the number of
walkers.30,33

The first two excited states are combinations of the CM and relative motion ground states and
first excited states. The first (second) excited state is a combination of the ground state of relative
motion (CM) and excited state of CM (relative motion).

For the excited states, the results are reported for theω = 1
2 , because the analytical exact solution

for the ground state is available for this frequency,1 and the results can also be compared with
the the work on RTPI.33 Using the Virial theorem for one dimensional harmonic oscillator, we
have32

FIG. 2. The relative errors (EPT � Eexact-numeric)/Eexact-numeric for the eigenenergies n = 1, . . ., 8 of Hooke’s atom [ω = 0.5
(blue circles), 0.7 (brown squares), 0.9 (green lozenges), and 2.0 (red triangles)]. The PT results in this figure are of the first
order.
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FIG. 3. (a) Comparison between the analytical exact solution (solid black line) and different order PT results for the first
excited state wave function of relative motion (ω = 2

5.261 37 ). u(n)
PT ,1 represents the nth-order corrections in PT. The first, second,

and third order corrections are, respectively, shown by the dotted (red), dotted-dashed (green), and dashed (blue) lines. The
relative error increases around the node and tail of the exact solution, where the wave function tends to zero. The horizontal
axes represent relative distance between electrons in atomic units, i.e., bohr radius. (a) Analytical exact and different order PT
wave functions. (b) Relative error between PT and analytical exact wave function.

〈TCM〉= 〈VH ,CM〉= (n +
1
2

)
~ω

2
, (14)

where TCM is kinetic energy of center of mass motion and VH ,CM =
1
2 Mω2R2 is the CM harmonic

potential. Here, for n = 1, this gives 3/8 = 0.375. Table II shows the RTPI, PT, and analytical exact
values (where available) for kinetic and potential energies of Hooke’s atom. As one can see that the
results are in agreement with exact solution results.

TABLE I. Expectation values of kinetic and potential energies of the first
excited state in PT (ω = 2

5.261 37 ) calculated directly from normalized wave
functions. Comparison between the exact and PT wave functions is given in
Fig. 3.

Exact value 1st order PT 2nd order PT 3rd order PT

V c 0.3521 0.3638 0.3452 0.3508
VH,r 0.7671 0.7276 0.7832 0.7807
T r 0.5912 0.6217 0.5845 0.5807
Total energy 1.9006 1.9032 1.9030 1.9024

TABLE II. The first excited state (ω = 0.5) and its expectation values. The first excited state is the combination of first excited
state of CM and ground state of relative motion.

Exact value RTPI 1st order PT 2nd order PT 3rd order PT

V c 0.4474 0.4530(4)
a

0.4354 0.4443 0.4466
VH,r 0.5131 0.5117(1)

a
0.5161 0.5218 0.5181

T r 0.2894 0.2870(9)
b

0.3028 0.2847 0.2861
VH,CM 0.375 0.3722(1)

a
0.375 0.375 0.375

TCM 0.375 0.3765(15)
b

0.375 0.375 0.375

Potential energy 1.3355 1.3369(3)
b

1.3265 1.3412 1.3397
Total energy 2 1.9969(6)

c
2.0043 2.0010 2.0009

aPotential energy = V c + VH ,r + VH ,CM and its components are calculated as RTPI output.
bThe expectation values of T r and TCM are calculated directly from normalized wave functions.
cTotal energy has been calculated (independent from potential and kinetic energies) directly from the wave function’s phase in RTPI.
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TABLE III. The second excited state and its properties as Table II (cf. Fig. 4). The second excited state is combination of the
CM ground state and first excited state of relative motion. Analytical exact values for this state are not available. The accuracy
of the PT has been checked for the closest confinement parameter in Fig. 3(a) and Table I.

Exact value RTPI 1st order PT 2nd order PT 3rd order PT

V c . . . 0.4234(9)
a

0.4233 0.4074 0.4119
VH,r . . . 0.9811(9)

a
0.9530 1.0074 1.0043

T r . . . 0.786(4)
b

0.8159 0.7771 0.7753
VH,CM 0.125 0.1620(3)

a
0.125 0.125 0.125

TCM 0.125 0.0986(7)
b

0.125 0.125 0.125

Potential energy . . . 1.5665(6)
b

1.5013 1.5399 1.5413
Total energy . . . 2.4331(2)

c
2.4423 2.4420 2.4417

aPotential energy = V c + VH ,r + VH ,CM and its components are calculated as RTPI output.
bThe expectation values of T r and TCM are calculated directly from normalized wave functions.
cTotal energy has been calculated (independent from potential and kinetic energies) directly from the wave function’s phase in RTPI.

The energetics of the second excited state is shown in Table III. Clearly, for the second excited
state, the average of T r (relative motion kinetic energy), TCM , and VH,CM from RTPI simulation is
not well-fitted to the exact and PT results. This can be explained by the shape of the wave function.
As one can see from Fig. 4, the RTPI predicts wider wave function comparing to the exact and PT.
A wider wave function has smaller kinetic energy, and for the harmonic confinement, it gives larger
potential energy. However, the total value of the eigenenergy and potential energy is in agreement
with data from PT. Therefore, the different contributions balance each other in such way that the total
quantities approach the correct values.

B. Dynamics in the presence of external transient field

Time evolution of the stationary states has been successfully simulated using RTPI in Ref. 33
already. As expected, there appears as change in the phase of the wave function only. To test the time
evolution of Hooke’s atom, a short time pulse of spatially constant electric field (linear in space and
Gaussian in time) has been considered as a perturbation. We have chosen the external potential as

U(x, t)=
U0√
πα

x exp(− (t − t0)2

α
), (15)

where U0 = 1, α = 0.1, and t0 = 1 (in atomic units).

FIG. 4. A snapshot of the wave function from the converged RTPI simulation with ∆t = 0.1, N = 300 000, and ω = 0.5 (blue
walkers). Red line is an envelope curve from the 3rd order PT [cf. Fig. 3(a), ω ' 0.38] in (a) and exact solution from Eq. (3)
in (b) fitted to the data. All the figures are in atomic units. (a) The first excited state of Internal motion. (b) Ground sate of CM
motion.
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In the presence of this external electric field, the Hamiltonian of the system becomes as

H =
−~2

2me
∇2

1 +
−~2

2me
∇2

2 +
1
2

meω
2x2

1 +
1
2

meω
2x2

2 +
e2

|x1 − x2 | + U(x1, t) + U(x2, t)

=H(r) + H(R) + 2U(R, t)

=H(r) + H(R) + f (t)R,

where f (t)= 2√
πα

exp(− (t−t0)2

α ).

1. Exact solution

As expected the spatially constant electric field does not change the internal motion and its
effects appear only in CM motion. Therefore, in this subsection, we just discuss the CM motion.
However, the RTPI solves the unseparated total wave function in single-particle coordinates again,
and its results are presented in Subsection III B 2.

The Heisenberg equation of motion simplified into two coupled partial differential equations
(PDE) can be written as

d
dt
〈R〉= 〈PCM〉

M
, (16)

d
dt
〈PCM〉=−(Mω2〈R〉 + f (t)),

where PCM is the center of mass momentum. To find the average potential energy, we need 〈R2〉,
which is found from the following coupled PDEs:

d
dt
〈R2〉= 2

M
(
〈P2

CM〉
M

−Mω2〈R2〉 − f (t)〈R〉), (17)

d
dt
〈P2

CM〉=−2Mω2(
〈P2

CM〉
M

−Mω2〈R2〉 − f (t)〈R〉) − 2
d
dt
〈f (t)PCM〉.

Solution for 〈R〉 and 〈PCM〉, give us the average of the potential energies as a function of time. Figure 5
shows the average of the total potential energy as a function of time.

FIG. 5. Potential energy in atomic units from one MC simulation ∆t = 0.1 and N = 100 000 with different walker size ε in
atomic units. Blue short dotted line ε2 = 0.05, red dotted line ε2 = 0.005, and green dashed line ε2 = 0.0005. The black solid
line represents the exact solution.
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2. Coherent RTPI simulation

In the time domain simulations, the ground state is affected by Gaussian shape pulse discussed
above. As can be seen from the potential energies in Fig. 5, the walkers’ size ε affects the results much
more than in incoherent propagation. Too large ε cuts out higher energy states and results in incorrect
energies (blue line) and too small ε increases in the incidental numerical error from the kinetic energy
part of the propagator (green line). That is expected as it cuts out higher energy states, which are
not present in the simulation of lower eigenstates but contribute to the real time evolution. For the
real-time dynamics, ε must be chosen smaller than that for the optimal incoherent propagation.30,33

There is a delay in the system response to such an ultrafast transient process. It is due to the inertia of
electrons. After the external pulse, the total energy is conserved and the electrons remain in harmonic
oscillation.

Figure 6 shows the different interaction contributions in the potential energy. As expected, the
Coulomb interaction remains unchanged during the time evolution, and the effects of the external
electric field just appear in a short time interval.

3. Fourier transformation and time evolution

After the external pulse, the Hamiltonian of the system returns to its initial time indepen-
dent form, but the wave function remains as a superposition of eigenstates of the unperturbed
system,

Ψ(r, R, t)=
∑

ciψi(r, R)e−ı
Eit
~ ,

where ci depends on the matrix elements of the external potential. Therefore, the Fourier transform of
Ψ is a sum of Dirac delta functions located at Ei. In practice, one can perform the Fourier transform
by collecting finite samples of the wave function at different times and coordinates. Here the PT is
used to find the time evolution for illustration of the approach. In the absence of analytical solutions,
RTPI can be used to find the wave function time evolution.

Figure 7 shows the Fast Fourier Transformation (FFT) of the one dimensional Hooke’s atom
after applying the U(x, t) + U(x2, t) as the external potential. We choose a nonlinear perturbation
x + x2 because it has non-zero matrix elements for the first few excited states. The sampling rate is
100 (atomic units) and total integration time is 46 (atomic units). From Fig. 7, the eigenenergies are
located at {1.5, 2.0, 2.43, 2.5, 2.93, 3.45}. Here we used Ψ(1, 1, t) as the input in FFT.

FIG. 6. Contributions to the potential energy in atomic units from Coulombic (black solid line), harmonic (red dotted line),
and external potential (blue dashed line) effects from one MC simulation with N = 100 000 and ε2 = 0.005.
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FIG. 7. Fast Fourier Transformation (FFT) of time dependent wave function of the one dimensional Hooke’s atom. Peaks are
located at 1.5, 2.0, 2.43, 2.5, 2.93, and 3.45. The small peaks at the end of energy axis come from numerical error.

IV. CONCLUSIONS

Hooke’s atom has served as a well-defined model system, but also, as a challenging problem for
decades.1–20 In addition to analytical approaches,1–8 numerical calculations have been published,1–14

and the specific challenges have arisen from the one-dimensional case and Coulomb space splitting,
in particular.15–27 All of these studies, however, have considered the ground state, only.

In this study, we have been able to complete these numerous studies by including the excited
states and dynamics induced by an external potential. We have shown how perturbation theory (PT)
provides an accurate approach in the strong confinement regime, ω > 0.5, and in particular, the real-
time path integral (RTPI) approach with Monte Carlo simulation is a general and robust simulation
tool28,31 for confined quantum systems. It should be mentioned here that similar studies could be
carried out for other atoms with exact analytical solutions.34–36

We have demonstrated that PT is accurate enough, even for higher excited states. This means that
PT is probably suitable for studying the properties of the strongly one-dimensionally confined many
body or few-body quantum systems.21–26 Unlike earlier analytical results, as described in Sec. III,
PT is applicable for all confinement parameters and eigenstates.

With the RTPI, the improved Trotter kernel is shown to be useful with a large enough num-
ber of Monte Carlo walkers, in cases where exact propagators are not available. We find that the
accuracy and stability of RTPI are tunable with the number of Monte Carlo walkers and the real
time step size. Regarding ground states, the computational cost of RTPI is significantly higher than
that of Diffusion Monte Carlo. However, one of the advantages of RTPI is that it provides one
with the wave function explicitly, and thus, the evaluation of local multiplicative expectation values
becomes straightforward. Moreover, as RTPI is capable of locating the nodal surfaces of excited
states, it can be used to find the nodal surfaces in a diffusion Monte Carlo simulation of the excited
states.
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Abstract. Direct sampling of multi-dimensional systems with quantum Monte Carlo
methods allows exact account of many-body effects or particle correlations. The most
straightforward approach to solve the Schrödinger equation, Diffusion Monte Carlo,
has been used in several benchmark cases for other methods to pursue. Its robustness
is based on direct sampling of a positive probability density for diffusion in imaginary
time. It has been argued that the corresponding real time diffusion can not be realised,
because the corresponding oscillating complex valued distribution can not be used to
drive diffusion. Here, we demonstrate that this can be done by turning the distribution
piecewise positive and normalisable, and also, by using four types of walkers. This
study is a proof of concept demonstration using the well-known and transparent case:
one-dimensional harmonic oscillator. Furthermore, we show that our novel method
can be used to find not only the ground state but also excited states and even the time
evolution of a given wave function. Considering fermionic systems, this method may
turn out to be feasible for finding the wave function nodes for other approaches.

AMS subject classifications: 81-08

Key words: Path integral, quantum dynamics, first-principles, Monte Carlo, real-time.

1 Introduction

Quantum Monte Carlo (QMC) methods form a collection of robust approaches to study
quantum many-particle systems [1]. With QMC the central benefit is that one can deal
with multi-dimensional systems, where standard grid based methods become computa-
tionally too heavy. With Path Integral and Green’s function approaches the many-body
effects or correlations can be taken into account without introducing approximations and
evaluated within numerical accuracy, which is limited by the computational resources,
only. Furthermore, if starting from the first-principles, also the systematic errors are
avoidable. Thus, for the field of electronic structure calculations, with QMC one can
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benchmark the energetics and structure of atoms and molecules with desired accuracy. It
is even straightforward in cases where the wave function is everywhere positive or can
be considered as piecewise positive between given nodes.

Diffusion Monte Carlo (DMC) or Green’s function Monte Carlo is a typical represen-
tative of QMC. In several cases it has been demonstrated to be a simple but accurate
approach to find the ground state [1,2]. In particular, both bosonic [3] and fermionic [4,5]
systems have been successfully considered. A recent example is benchmarking the hy-
drogen molecule and its simple reaction conformations with increasing accuracy [6].

With DMC the Schrödinger equation in imaginary time turns to a diffusion equation,
whose ”imaginary time evolution” or iteration converges to the ground state. Transfor-
mation of the Schrödinger equation to the corresponding integral equation shows how
diffusion can be simulated with random walkers guided by the interactions of quantum
particles. The walker distribution, which is everywhere positive converges to the ground
state wave function. This is the simple idea of DMC simulation, where it is essential that
the product of the wave function and diffusion probability is everywhere positive. The
latter one is the kernel of the integral equation [6–9].

Due to the everywhere positive ”diffusion distribution” interpretation as the wave
function, simulation of excited states and indistinguishable fermions becomes problem-
atic with DMC [4,10]. Nodes of the wave function should be known, e.g. by symmetry, or
approximated with good enough accuracy to make it piecewise positive. Though there
are practical approximate ways around the problem, mostly with approximate nodes,
this remains as an impediment with DMC.

Based on the probability interpretation of the kernel and wave function, and diffusion
nature of the random walk, it has been argued that the simple and useful principles
of DMC, above, can not be used to solve the Schrödinger equation with real time path
integrals [11, 12]. In this study we show that this is not true and we present a practical
solution to this problem, which is related to the sc. ”numerical sign problem” of real-time
path integrals [12]. Furthermore, we demonstrate that our new real-time path integral
approach is capable of finding, not only the ground state, but also excited states, and
also, it can be used to simulate proper real time quantum dynamics – not to be mixed
with diffusion.

This study is a proof-of-concept demonstration of a novel ”real-time DMC”. There-
fore, we have chosen a transparent test case, the well-known one-dimensional harmonic
oscillator (ODHO), where the method and its performance are clearly seen. We also ben-
efit from the exact propagator of the harmonic oscillator while testing the real-time diffu-
sion.

2 Diffusion Monte Carlo and its real time counterpart

2.1 Positive probability density

The well-known imaginary time (τ= it) integral equation of the conventional Diffusion
Monte Carlo (DMC or τDMC) for the many-body wave function ψ is
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ψ(xb,τb)=
∫

a
G(xb,τb;xa,τa)ψ(xa,τa)dxa, (2.1)

where the kernel G is the Green’s function of the system, the position space representation
of the imaginary time evolution operator. The Eq. (2.1) is written in one-dimensional
space of x, here and in what follows, but extension to more dimensions is trivial. For a
time step τ=τb−τa, and using the Trotter expansion one gets

G≈ GdiffGB,

Gdiff=Cexp
[−(xb−xa)

2/2τ
]
,

GB=exp

[
−
(

1

2
(V(xb)+V(xa))−ET

)
τ

]
,

(2.2)

where C=(2πτ)−3/2 and ET is the trial energy, iterated to the ground state total energy
at self-consistency, ψ(xb) = ψ(xa). The Green’s function and the stationary solution of
Eq. (2.1) becomes exact as τ→0.

Now, the kernel G is everywhere real and positive, and therefore, it can be considered
as a normalizable probability density in Monte Carlo evaluation of the ground state wave
function ψ(x) as the stationary walker density [2]. The power of τDMC arises from the
independence of Monte Carlo walkers in ”diffusion”, and also, the locality of Gdiff, which
increases the accuracy of GB.

The imaginary time integral equation (2.1) can be derived from the more fundamental
real time equation [7] of the same form

ψ(xb,tb)=
∫

a
K(xb,tb;xa,ta)ψ(xa,ta)dxa, (2.3)

where the kernel K is the path integral over the time step t= tb−ta, (ta < tb),

K(xb,tb;xa,ta)=
∫ xb

xa

exp(iS[xb,xa])Dx(t). (2.4)

Here S[xb,xa]= S[x](xb,xa)=
∫ tb

ta
Lxdt is the action along the path x(t) from a=(xa,ta) to

b = (xb,tb) and Lx is the corresponding Lagrangian [7]. Now, finding the Monte Carlo
solutions for ψ from Eqs. (2.1) and (2.3) greatly differ.

The τDMC diffusion like procedure can not be used directly to solve Eq. (2.3) for ψ,
because the kernel K, as a path integral, is a complex valued functional of interfering
paths coupling all of the walkers. Thus, K can not be interpreted as a probability [11, 12],
and furthermore, it is delocalised with complex exponential tails oscillating in whole
space, the more the shorter the time step t.

Here, we present a novel idea solving this problem and formulate a ”real-time diffu-
sion Monte Carlo” (tDMC or RTDMC) procedure, which retains the advantage of ”dif-
fusion of independent walkers”. Furthermore, the tDMC enables evaluation of excited
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states and even real time quantum dynamics, out of reach with the τDMC. We have these
advanced features in our direct real-time path integral (RTPI) approach [8, 9], already,

but there, all of the paths coupling the walkers {xai}Na
i=1 and {xbj}Nb

j=1 need to be consid-

ered. With increasing number of walkers it leads to quadratic growth (∝ N2, assuming
Na = Nb = N) of computational efforts with RTPI. With tDMC, however, the growth of
efforts is close to linear (∝ N), only.

First, we separate the integrand in Eq. (2.3) to terms, which can be considered as ”pos-
itive probabilities”, and second, we accomplish normalization by restricting the space of
integration. We separate similarly both the kernel K ∝ exp(iφ) [7] and the wave function
ψ(a) at the right hand side of (2.3) to four parts as

K(b,a)=Cexp(iφ)=C [cos(φ)+isin(φ)]=C
[
cos(φ)+icos(

π

2
−φ)

]

=C

[
cos2(

φ

2
)−sin2(

φ

2
)+i

(
cos2

( π
2 −φ

2

)
−sin2

( π
2 −φ

2

))]

=K+(b,a)−K−(b,a)+iK+i(b,a)−iK−i(b,a) (2.5)

and

ψ(a)=ψ+(a)−ψ−(a)+iψ+i(a)−iψ−i(a). (2.6)

This splits the integrand into 16 terms. Here C and φ are some functions of a and b,
that can be chosen so that C is real and positive. Rearrangement of these terms allows
splitting the left hand side of (2.3) with the same principle as

ψ+(b)=
∫

a
K+ψ+dxa+

∫

a
K−ψ−dxa+

∫

a
K+iψ−idxa+

∫

a
K−iψ+idxa,

ψ−(b)=
∫

a
K+ψ−dxa+

∫

a
K−ψ+dxa+

∫

a
K+iψ+idxa+

∫

a
K−iψ−idxa,

ψ+i(b)=
∫

a
K+ψ+idxa+

∫

a
K−ψ−idxa+

∫

a
K+iψ+dxa+

∫

a
K−iψ−dxa,

ψ−i(b)=
∫

a
K+ψ−idxa+

∫

a
K−ψ+idxa+

∫

a
K+iψ−dxa+

∫

a
K−iψ+dxa,

(2.7)

each of which is everywhere real and positive. Here, all of the Ksub and ψsub on the
right-hand side stand for Ksub(b,a) and ψsub(a), respectively, where a=(xa,ta), b=(xb,tb)
and sub = { +,−,+i,−i }. Thus, the complete wave function at the end of the time step
t= tb−ta can be written as

ψ(b)=ψ+(b)−ψ−(b)+iψ+i(b)−iψ−i(b). (2.8)

Thus, our approach is reminiscent of an old τDMC method of Arnow et al. [4], where
positive and negative walkers were used for the respective parts of the wave function.
The main differences are the following. Here, we have four types of walkers and each
walker generates all other types of walkers. Therefore, all parts of Eqs. (2.7) are correlated
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and unlike in τDMC [4] they do not separately converge to the ground state, but instead,
we are able to simulate time evolution of a complex time-dependent wave function, as
discussed below.

In Eqs. (2.7), we have a fully delocalised piecewise everywhere positive probability
density to sample, which first needs to be normalised. In case of a wave function localized
in a finite domain we know that the contributions to ψ(b) in Eq. (2.8) cancel outside the
domain and close to the domain boundaries inside. Then, we can normalise the partial
probabilities of Eq. (2.5) in a so chosen domain and run diffusion localised in the domain.
Next, let us discuss the kernel and related approximations.

2.2 Kernel

The kernel in closed form is known for a few special systems only [7, 14]. The harmonic
oscillator (V(x)= 1

2 mω2) is one of those with the kernel

K(xb,tb;xa,ta)=exp(−iθ)

(
mω

2πh̄|sin(ωt)|

)1/2

×exp

{
imω

2h̄sin(ωt)

[
(x2

b+x2
a)cos(ωt)−2xbxa

]}
, (2.9)

where t= tb−ta and θ = π
4 (1+2trunc(ωt/π)). Here, ”trunc(x)” denotes the truncation

function, the largest integer less than or equal to x.

In general, for a given potential V(x) we need to approximate kernels and the most
usual approximation is sc. ”short time approximation” or Trotter kernel [11, 13]

K(xb,tb;xa,ta)≈
[

1

2πit

]N/2

exp

[
i

2t
(xb−xa)

2− it

2
(V(xa)+V(xb))

]
, (2.10)

which becomes exact as t→0, cf. Eq. (2.2).

Both of the kernels (2.9) or (2.10) can be written in the piecewise positive form by
using the recipe given in Eq. (2.5). For the Trotter kernel we define notations: average

Lagrangian L̄=
[

1
2t(xb−xa)2

]−[
t
2 (V(xa)+V(xb))

]
, C=

[
1

2πt

]1/2
and D= C

√
2

2 . Then, we
write

K(b,a)=C(−i)1/2exp(i(L̄))=Cexp
(

i
(

L̄−π

4

))

=
C
√

2

2

[
cos

(
L̄−π

4

)
+isin

(
L̄−π

4

)]
=D

[
cos

(
L̄−π

4

)
+icos

(3π

4
− L̄

)]

=D

[
cos2

( L̄− π
4

2

)
−sin2

( L̄− π
4

2

)
+i

(
cos2

( 3π
4 − L̄

2

)
−sin2

( 3π
4 − L̄

2

))]

≡D [K+(b,a)−K−(b,a)+iK+i(b,a)−iK−i(b,a)] . (2.11)
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In case of the harmonic oscillator it should be noted, that while the accuracy of short
time approximation increases with decreasing time step, the exact kernel allows any
length of time step. However, both of these kernels diverge for t= 0 and the exact one
also periodically for tn =nπ/ω.

2.3 Real-time diffusion

While the imaginary time diffusion is a very local phenomenon, the more the shorter the
time step τ, whereas, the real-time diffusion is fully delocalized in form of oscillatory
sin2 and cos2 functions, the wave length depending on the average Lagrangian in the
time step t. Thus, it is sufficient to consider and normalize these distributions in the
chosen domain, only, and correctly with respect to each other. Diffusion out of the box
can be ignored, because it is known that the different contributions in Eqs. (2.8) cancel at
long distances.

The four parts of the initial wave function ψ(a) in Eq. (2.6) are presented with cor-
responding four sets of walkers, whose total number is Na. Neither real contributions
ψ+(a) and ψ−(a) nor the imaginary contributions ψ+i(a) and ψ−i(a) should pairwise
overlap as the complex wave function should be single valued. This is not absolutely
necessary to carry on calculations, as we show later. Now, the real-time diffusion of these
walkers according to the Eq. (2.7) results in four strongly delocalised and pairwise over-
lapping contributions, real ψ+(b) and ψ−(b), and imaginary ψ+i(b) and ψ−i(b). Then, the
real and imaginary parts of the wave function are simply the two sums of their positive
and negative contributions. These are found by cancellation or pairwise annihilation of
nearby walkers until the nodal surfaces between the positive and negative amplitudes
appear.

There is a large cancellation of walkers also in the box, e.g., the wave function must
vanish close to the domain boundaries, and similar cancellation turns out to dominate
everywhere in the domain. In fact, it is only a small fraction of walkers, which eventu-
ally remain presenting the wave function. Due to the massive cancellation of diffusing
walkers all initial walkers need to be massively duplicated in each time step to maintain
the total number of walkers.

A one-timestep real time diffusion is demonstrated in Fig. 1. The initial state is ODHO
ground state gaussian real wave function, i.e., ψ(a)=ψ+(a). The real components ψ+(b)
and ψ−(b) after propagation with the exact kernel (2.9) over a short time step t are shown.
We see that most of the walkers will cancel out, leaving behind the initial real gaussian
shape, but slightly scaled down. Similarly, the ψ+i(b) and ψ−i(b) after cancellation result
in a small negative gaussian shape for the imaginary part, as expected, not shown in
Fig. 1. This corresponds to rotation of the wave function from the real axis downwards
with a small angle, which is interpreted as multiplication with the phase factor e−iEt/h̄.

Here we use a simple one-dimensional cancellation algorithm. We define a walker
touch parameter δ, and when positive and negative walkers appear closer than δ, they
annihilate each other. Finding an efficient cancellation algorithm turns out to be a key fac-
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Figure 1: Distribution of a) positive and b) negative walkers (ψ+(b) and ψ−(b)) after one time step t= 0.1

from gaussian real wave function ψ+(a) and N(xa)≈107 walkers. Histogram bin width is 0.08.

tor in the present method with large number of walkers and oscillatory nature of tDMC
propagators it may become a key issue in multidimensional spaces. Continuation with-
out walker annihilation leads to waste of efforts, as can be predicted from Fig. 1, and
finally, losing the remaining meaningful wave function into noise. This is one manifesta-
tion of the ”sign problem”, which still is an area of ongoing research [6, 10, 15].

3 Coherent propagation

First, we consider straightforward simulation of quantum dynamics by using the above
developed tDMC. We call this coherent propagation, because the phase factor of the wave
function is properly treated. Next, we consider incoherent propagation and demonstrate
its use for finding the stationary eigenstates of the system instead of running full quan-
tum dynamics.

3.1 Quantum dynamics from real time diffusion

Because this study is a ”proof of the concept tDMC”, we continue with the simple, well-
known and transparent ODHO as the test bench. Furthermore, for ODHO we have the
exact propagator available, and thus, the issues related with the real time diffusion and
approximate propagators can be investigated separately.

Hence, we run dynamics of a particle in the potential V(x)= 1
2 mω2x2 with ω=2. This

may be related to an electron in a ”harmonic quantum dot” or in an atom. Thus, it is
practical to use related atomic units, where m= h̄ = a0 = 1, where a0 is the Bohr radius
and the unit of time is (ma2

0)/h̄ ≈ 24 as. Now, ω = 2 corresponds to relatively strong
confinement.
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Figure 2: Distribution of walkers after the first time step, T=π/4, from the positive real ground state ψ+(a)
of ODHO, followed by cancellation. All four components of the wave function are presented: a) positive real
(N≈6.27×107), b) negative imaginary (N≈6.26×107), c) negative real (N≈2.0×103) and d) positive imaginary
(N≈ 0.9×103) walkers. Note the different scaling on the vertical axes of the latter two. Red solid line is the
properly normalized exact wave function and same normalization is used for all components. Notations are the
same as in Fig. 1.

For the stationary ground state dynamics (E= 1), in each time step we expect to see
the rotation of the phase factor exp(−iEt/h̄) = exp(−it), only, without any change in
the absolute value of the wave function. Thus, the dynamics is expected to be simple
oscillation of the real and imaginary parts of the ground state wave function in a phase
difference of π/2. The initial phase is chosen to be zero at T0 = 0, i.e., ψ(0) = ψ+(a)
as before. We start with N(a) = 107 and run the simulation with the exact kernel (2.9),
time steps t = π/4 and duplicating walkers in xa enough so that after the cancellation
N(b)≥N(0). Fig. 2 shows the distribution of remaining walkers after the first time step,
T=π/4.

As expected, we find the same copy of the starting gaussian as the positive real and
imaginary parts and small remnants of incomplete cancellation in both opposite sign
parts, as a numerical error. Here, with the walker touch parameter δ=0.01, the remaining



I. Ruokosenmäki and T. T. Rantala / Commun. Comput. Phys., 25 (2019), pp. 347-360 355

-4 -2 0 2 4
x

0

1

2

3

4

5

N
um

be
r o

f w
al

ke
rs

10 5

a)

-4 -2 0 2 4
x

0

1

2

3

4

5

N
um

be
r o

f w
al

ke
rs

10 5

b)

-4 -2 0 2 4
x

0

1

2

3

4

5

N
um

be
r o

f w
al

ke
rs

10 5

c)

-4 -2 0 2 4
x

0

1

2

3

4

5

N
um

be
r o

f w
al

ke
rs

10 5

d)

Figure 3: Distribution of negative imaginary walkers at a) T=π/4, b) T=2π/4, c) T=3π/4 and d) T=4π/4
in the dynamics started in Fig. (2). Notations are the same as in Fig. 2.

opposite sign walkers are less than the proper walkers with a factor smaller than 10−4.
Thus, the cancellation is almost perfect.

In Fig. 3 we show the negative imaginary part of the wave function from further
simulation, at times T=π/4, 2π/4, 3π/4, and 4π/4. Clearly, the evolution is correct and
at T=π the wave function is purely real and negative with zero imaginary contribution.

3.2 Evaluation of observables and eigenenergies

Evaluation of transient expectation values of local operators, like multiplicative potential
energy faces the same problem as with the τDMC, the wave function is given by the
walker density, only. Application of operators on the wave function or even finding the
square of the wave function ψ∗ψ numerically is not straightforward. In our earlier studies
we have demonstrated, that for τDMC one can easily evaluate the complex valued wave
function of the system at each τDMC walker by using our direct real time path integral
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(RTPI) approach [8]. The RTPI time step is heavy to calculate, and therefore, could be
restricted only to a few τDMC iteration steps, where needed.

Now, the RTPI can be used together with tDMC similarly as with τDMC in cases,
where the wave function is purely real or imaginary. This becomes relevant and useful
with eigenstates and incoherent dynamics, in the next section.

With the eigenstates we should be able to monitor the phase factor of the wave func-
tion to find the corresponding eigenenergies. Now, we cannot evaluate the local energy
for each walker as can be done with RTPI [8]. However, we can evaluate the change in the
ratio of the number of real and imaginary walkers to approximate the average collective
change in the phase factor. Thus, for the eigenenergy we write

E=− θh̄

t
=−tan−1

(
ψIm

ψRe

)
h̄

t
≈ tan−1

(
N(x∓i)

N(x±)

)
h̄

t
. (3.1)

For this to be accurate the time step should be short enough that the phase angle θ is
small, but also, the ratio N(x∓i)/N(x±) should be close to one so that the noise effect is
minimised. Furthermore, one should keep track of the quadrants of the complex plane
and corresponding changes of sign, where relevant.

If the wave function is not an eigenstate but a superposition, for a short time step and
small angle we can approximate

− θh̄

t
=−tan−1

(
∑i cisin(θi)

∑i cicos(θi)

)
h̄

t
≈−tan−1

(
∑i ciθi

∑i ci

)
h̄

t
≈ ∑i ciEi

∑i ci
=E, (3.2)

where the sum goes over the eigenstates with contributions ci.

4 Incoherent propagation

Earlier, we have developed the RTPI for coherent quantum dynamics and another RTPI
version with incoherent dynamics for finding the eigenstates and energies of a system [8].
The incoherent dynamics is kind of quantum Zeno propagation, where the wave function
is kept real. In numerical simulation this can be accomplished by collapsing the complex
wave function to a real one after each short time step. In practise, the complex wave
function is projected onto the real values by dropping off the imaginary part [8].

4.1 Finding excited eigenstates

The τDMC simulation converges to the lowest eigenstate (ground state) by adjusting the
potential zero reference parameter ET in Eq. (2.2) to the lowest eigenvalue. The conver-
gence is usually unstable and needs continuous regulation with ET. Recently, we have
shown that the incoherent propagation of real time path integral dynamics RTPI drives
the system to an eigenstate, which is closest to the zero reference of the potential en-
ergy [8]. Furthermore, the convergence is stable and does not need careful adjustment of
potential zero reference.
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Figure 4: Positive (N=150×103) and negative walkers (N=50×103) of the superposition of 1st excited and
the ground state (N=100×103 each). Other notations are the same as in above figures.

Here too, we can insert the zero reference parameter ET into the Eq. (2.10) and use it
to choose the energy, for which we want to find the closest excited state. Also, we can
scan the parameter ET to find all eigenstates within a given range.

Fig. 4 shows a superposition of walkers of the real ground state and those of the
real first excited state. We see that the representation of the superposition is not unique,
but calls for cancellation of positive and negative walkers. However, we demonstrate
robustness of the incoherent tDMC by starting with this initial wave function and run
100 time steps of length t=0.1 with 106 walkers. The zero reference is set as ET =0.

We monitor the eigenenergy from Eq. (3.1) in Fig. 5. The exact value E=1 is expected.
It can be seen that the convergence has been achieved in about 60 time steps to about
E=1.1. Thus, there is some systematic error left, which we trace coming from the short
time step. With a too short time step false positive imaginary walkers appear, although
all correct imaginary contribution should be negative. This seems to relate also with the
size of the domain, 8 atomic units. Now, increasing the time step to t=0.8 after 100 steps
improves the energy estimate as clearly seen in the last ten time steps. Then, the energy
estimate from simulation is 0.9974±0.0030 (2 SEM).

Finally, we search for the first excited state by using the incoherent propagation and
starting from the same initial superposition state shown in Fig. 4. Now, the potential zero
reference is set as ET =2.5 and we expect to find the eigenenergy of 3.

By using a time step t=π/12 the first excited state is found as shown in Fig. 6 and the
eigenenergy becomes as 3.0199±0.0076 (2 SEM). Fig. 6 shows the distribution of walkers
after 100 timesteps to the convergence. As the figure shows, the node of the wave func-
tion is clear and sharp. By fitting to the histogram we get 0.0191, which is close to the
exact value of 0.
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Figure 5: Estimated energy that demonstrates convergence starting from the superposition of the 1st excited
state and ground state in incoherent tDMC ending to the ground state. The exact ground state eigenenergy is
one, E=1. N≈106, and t=0.1 for the first 100 time steps and then t=0.8.
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Figure 6: Distribution of positive (N≈ 0.57×106) and negative (N≈ 0.56×106) real walkers after the system
has converged to its 1st excited state. Red solid line is the properly normalized exact wave function.

This approach may be one of the practical ways to locate nodal surfaces for other
QMC methods like τDMC, and thus, give help in finding the practical solutions to the
fermion sign problem.
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5 Conclusions

We have demonstrated how the real-time path integral kernel K(xb,tb;xa,ta), Eq. (2.4), can
be used to evaluate the time evolution of a wave function with an entirely new way: driv-
ing delocalised ”diffusion” of Monte Carlo walkers. Therefore, we call our new approach
as real-time DMC or tDMC. There is a transparent analogy with the conventional imagi-
nary time DMC or τDMC, where a local kernel G(xb,τb;xa,τa), Eq. (2.2), drives ordinary
like diffusion of walkers in imaginary time. However, it should be noted that tDMC is
based on the real time path integral formalism, but τDMC is not!

It had been suspected that the real time counterpart of τDMC can not be realised, be-
cause the oscillating complex valued K delocalised in space is not capable of driving real
time diffusion similarly as the everywhere positive and normalizable G drives imaginary
time diffusion. It was known, of course, that the real time kernel can be used to evaluate
the time-dependent wave function by using the Eq. (2.3) directly, which couples all walk-
ers within a time step making the numerical calculations heavy. For that and some other
practical reasons we were the first to realise the Real Time Path Integral (RTPI) approach
for such light particles as electrons [8, 9].

Thus, our tDMC is a truly novel QMC method. It incorporates the essential fea-
tures of τDMC, and similarly, it can be used to find the system ground state energy and
wave function with accuracy depending on the computational capacity. In addition, with
tDMC one can find also the excited states and the wave function nodes. The latter may
turn out to be useful in practical solutions of the fermion sign problem, if combined with
other approaches like the conventional τDMC.

The tDMC can be run for incoherent dynamics or coherent dynamics, the same way as
the RTPI. The former is used to find the eigenstates, while the latter, for evaluation of the
time evolution of a wave function. Comparison of tDMC and RTPI in running quantum
dynamics is interesting. In RTPI the walker distribution is (or follows) the wave function,
i.e., it is essentially localised in the wave function. This may restrict the wave function
response to fast transient effects or tunneling to a region, where walkers do not exist.
The tDMC with the fully delocalised diffusion, instead, fills the whole considered space
with excess walkers in each time step before cancelling of walkers takes place. Thus, the
propagation is fully delocalised in the whole space in the spirit of path integrals, though
the actual wave function may remain relatively localised. Thus, the time evolution im-
mediately responds to any distant changes in the external potential and allows start of
tunneling into a region, where the wave function is essentially zero.

As we consider this first study as a ”proof of concept” for tDMC, we chose a trans-
parent and well-known one-dimensional harmonic oscillator as the test bench for the
demonstration. Now, the tDMC remains to be tested with many-particle systems, where
the challenge will be the walker cancellation procedure in multi-dimensional space. With
further developments, we expect the tDMC supplement the RTPI approaches [8, 9], the
QMC methods without the Fermion sign problem.
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