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Abstract

The path-integral Monte Carlo method is used to cxamine the two-clectron state of
amodel quantum dot. Electrons in the two-dimensional quantum dot are confined
by a harmonic oscillator potential of strength hw = 1¢V. Mixed state densitics,
energies and pair correlation functions are evaluated at various temperatures, and
their temperature dependencies are analyzed. Also, the two-clectron pure state
energetics is resolved and the correlation induced shifts of the first and second
cxcited states arc cvaluated.

1. Introduction

Quantum dots are small man-made structures in a solid, typically
with sizes ranging from nanometers to a few micrometers. They
consist of 10°~10% atoms with an equivalent number of bound
clectrons. Electrons arc tightly bound to the atomic cores and
bonds except for a small fraction of free charge carriers [1].
Current nanofabrication technology allows precise control of the
size and shape of these dots. Thus, the size and shape of the
confining potential and the cffective mass of charge carricrs can
be adjusted to tunc the clectronic structurc and the cxcitation
spectrum, in particular [2].

Properties of few-electron quantum dots, e.g. at heterojunction
interfaces, are important to understand for the development
of novel secmiconductor technology. In semiconductor lascr
technology, quantum dots may provide unique opportunitics
in developments and advance the applications [3]. Thus, the
quantum dots are convenient for optoelectronic device design and
fascinating for theoretical studies. From the theoretical point of
view the quantum dots are atomic-like systems with localized
clectronic states. Thus, atomic physics can be applied here to the
ficld of semiconductor devices.

The two-electron system is one of the simplest non-trivial
quantum mechanical systems. Nevertheless, some analytical
results exist for two electrons in a symmetrical enough quantum
dot. Taut [4] reduced the problem of solving a six-dimensional
partial diffcrential equation to finding the rcal roots of a
polynomial, and thus, gavc analytic solutions to particular
oscillator frequencies of two interacting electrons in an external
harmonic oscillator potential. Dineykhan and Nazmitdinov [5]
found analytic expressions {or the ground state cnergy for 2D and
3D harmonic oscillators in external magnetic ficlds.

Inaddition to analytical results, there arc a number of numerical
results for two-electron quantum dots. A numerically exact
calculation for the energy spectra of two electrons in a finite
height cylindrical quantum dot by a coupled-channel method is
presented in details by Lin and Jiang [6]. Harju et al. | 7] studicd the
ground state of parabolically confined clectrons in a quantum dot
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by both direct numerical diagonalization and variational Quantum
Monte Carlo methods. In an older paper Harju et al. [8] applied
the Quantum Monte Carlo technique to a two-electron quantum
dot. Merkt, Huser and Wagner [9] have calculated the discrete
cnergy spectra for two clectrons in a two-dimensional harmonic
well in the effective-mass approximation as a function of the dot
sizc and the strength of a magnetic field directed perpendicular to
the dot plane using first order perturbation theory. Furthermore,
the states of two-electron paired quantum well quantum dots [10]
were calculated with diagonalization and the variational principle.

Morc complicated quantumd dots have been studied by many
methods: Perturbation theory [11], numerical diagonalization
[12], density-functional theory [13, 14], unrestricted Hartree-Fock
[15], diffusion Monte Carlo [16] and path-integral Monte Carlo
[17, 18, 19, 20, 21, 22, 23] methods. In these studies electronic
structure, addition spectra, clectronic states, Fermi liquid and
Wigner molcecule behaviour, ground and cxcited state cnergics,
shell cffects, clectron corrclations and low-cnergy slales were
examined.

Even for the correlation energy in a quantum dot a simple
but accurate analytic cxpression can be found in Wentzel-
Kramers—Brilloun approximation [24]. The bchavior of 3D
cxchange—correlation energy functional approximation of DFT
in anisotropic systems with 2D character is investigated by Kim
et al. [25]. They pointed out a fundamental limitation of LDA,
due to the nonlocal nature of exchange—correlation hole.

The physics of interactions becomes especially interesting in
zero external magnetic {icld, when clectron spins are not polarized
and are active players in the game [26].

In this study, we apply the path-integral Monte Carlo
simulation method [27] to investigate the properties of a two-
clectron quantum dot. We cvaluate the one-clectron distributions
and two-clectron correlation functions, and temperature cffects
on both. Furthermore, we resolve the finite-temperature mixed
states to the contributing pure states, and by that, we are able to
consider the transition energies, and thus, the optical response of
charge carricrs. Also, the correlation cffect on transition cnergics
is discusscd.

In the next chapter we briefly review the theoretical coneepts of
Monte Carlo methods and the optimization algorithm needed here.
Then, in chapter 3 we give the simulation results and compare
those to the analytical one-electron results. Chapter 4 is devoted
to the case of two correlated clectrons, and conclusions arc given
in chapter 5.

2. Method

In this chapter we bricfly describe the basic concepts of PIMC
method, the Monte Carlo simulation procedure we used and the
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optlimization scheme that was uscd to resolve the pure many-body
eigenstates from the mixed state.

2.1. Path-Integral Monte Carlo method

All stationary properties of a d-dimensional quantum N-body
system with Hamiltonian H =T+ V in thermal equilibrium at
temperature f§ = 1/kgT are obtained from the density matrix
Z = Tref 28] Here, T = YN | p2/2m; is the kinctic energy
opcrator and V includes the external potential and interactions
between particles.

2.1.1. Path-Integral Formalism. In discrete path-integral repre-
sentation the density matrix is

mM

dN/2
Z = <m> /CXp
(1

where operators K, and U, definc internal and external cnergics
of the system. In the primitive approximation [27] they are
written as

M
_ﬁZ(KH+UH) drO"'drM—]y

n=1

= S ) (2a)
n = 2h2[32 Fr—1 Fon)s a
1
Un - m(v(rnfl) + V(I‘,L)), (2b)

where m is the effective mass of the clectrons and M is called the
Trotter number, and ry = ry;. The primitive approximation, where
the external energy coincides with potential energy, contains all
the physics and converges to the correct limit, given a small
cnough /M [27]. Furthermore, it is simple and well defined,
and at the limit M — oo the truc many-body description (1) is
exact.

It is straightforward to calculate scalar operators, such as
density, potential energy, and the pair correlation functions; they
arc simply averages over the paths [27]. Usc can be made of the
symmclry in imaginary time, since all time slices £ arc cquivalent.
Thus, the average density and pair correlation functions are

p(r) = Ny {30 — r)) (3a)
and
8(r) = Ny Y (8(r = (rois — Fui), (3b)

., ot

where N, and N, are proper normalization factors, i and j refer
to different particles, and n and ¢ are as above.

The nondiagonal properties in coordinate basis, such as the
cnergy, Irec cnergy, and momentum distribution, arc not so
straightforward to calculatec. A thcrmodynamic cstimate of the
cnergy is obtained by differentiating the partition function with
respect to the inverse temperature [27] as

1dz
E(ﬁ):—zd—ﬁ = M(dN/(2p) — Ky + Up/M). “)

Path-integral Monte Carlo (PIMC) simulation method is a
“numerically exact” finite-temperature approach, the only limit-
ing factor being computational capacity, for evaluation of the
density matrix (1).

2.1.2. Monte Carlo simulation procedure. The quantum-
mechanical approximation of the finite temperature density matrix
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of the N-particle system, Eq (1), is a multidimensional integral
[29, 28], which turns out to be a partition function of a classical
M x N-particle canonical ensemble or NVT-system. This specific
classical system consists of N closed chains or “polymers”
of M knots or “bcads” in a nccklace with a certain special
description of interactions among the particles and between the
cxternal potential. Thus, quantum-mechanical density matrix can
be evaluated using classical formalism.

We use the Metropolis Monte Carlo scheme to evaluate
the intcgral (1). With this technique all the approximations
in intcgration scheme and in path-integral formulation are
controllable. The Metropolis algorithm samples very clfectivitely
the correct distribution of beads and thus the correct density matrix
Z using the integrand in (1) as the weight for the importance
sampling process. The main issue is whether the configuration
spacc is explored thoroughly in a reasonable amount of computer
time. Including many types of Monte Carlo moves makes the
algorithm more robust, since before doing a calculation one does
not necessarily know which type of moves will lead to a balanced
sampling of the phase space and rapid convergence of expectation
values. We used two types of moves: onc randomly sclected bead
in onc random nccklace and the center of mass of a random
necklace.

Distribution of steps in the phase space was taken to be
Gaussian such that the total Metropolis acceptance rate is about
70% and the frequency of cach move is about the same. This is
called the classic rule [27].

2.2. Finding the pure states

The density matrix (1) is a finitc temperature, mixed state,
description of the quantum system. Thus, the mixed state cnergy
E(f) at temperature T, Eq (4), is the Boltzmann weighted mcan
value of pure state eigenenergies E;

Zi dl'EiciﬁE'

E) = S

)
where the summation is done over all states i weighted by the
degeneracy d;. In principle, the contribution of cxcited state
cnergics E; can be scparated {rom cquation (5) by fitling, if
the function E(f5), Eq (4), is known analytically or can be
simulated accurately enough. In finding the pure states, the
infinitc summation (5) is approximated by a function f(f, E) =
Yo diErexp(—BE)/ Y " diexp(—BE;), where E is a finite
(truncated) vector containing the purc state cnergics E;, i =
0,1,...,m. In principle, it should be possible to find the pure
state densities p;(r) independently with the same procedure,
and thus, find a verification of pure state energies E; obtained
here.

From simulations at various tempcraturcs 7; we sampled the
mean energy function, and found it very similar to the one-
electron mixed state energy function, see below. The differences
in ground state energy Eqo and scaling with respect to f§ were
determined. We found the excited state cigenenergics E; by
fitting the cnergy formula (5) in the Icast squarcs scnsc. Two
optimization mcthods for fitting were tested, Gauss—Newton and
Levenberg—Marquardt algorithms [30, 31]. Both use quadratic
approximations to nonlinear residual vector, but L-M is so called
trusted region algorithm, i.c., it moves only in the region where
the fit is good, discarding oo long steps.

Actually, the Gauss—Newton method was not good cnough.
It is possible to find a few first pure states with that method,
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but Levenberg—Marquardt was much simpler to usc and morc
eigenenergies were found, and the algorithm is almost as simple.

The optimization can be simplified because of Boltzmann
distribution: at low enough temperature we get only one or two
states that contribute to the total energy. Thus, we can find casily
a few lowest cigenencrgics and when purifying more states, the
lowest states can be fixed.

One should note that the high temperature here is a
computational tool, only, and has nothing to do with any realistic
tecmperature related to quantum dots.

3. Single electron case

The one-electron harmonic oscillator is analytically solvable in
any dimensions. The cigenenergics of the 2D harmonic oscillator
arc E; = hao(l + i), wherei = 0, 1,. ... The degeneracy d; of the
statc i is i 4+ 1 for a 2D harmonic oscillator. The same degeneracy
is assumed for the two-electron case. When all states weighted
by the respective Boltzmannian probality are summed, Eq (5), we
get the temperature dependent energy [28] per dimension

/ he
E)= 29 coth ZC—)ﬁ, (6)
2 2

which cxplicitly shows how the temperature and the confining
potential arc related. Similarly, the clectron densitics of pure states
can be summed up to give the temperature dependent density and
by convolution we obtain the pair correlation function for the
non-interacting particles.

Thus, we can test the path-integral Monte Carlo code and
optlimization methods {or the single clectron case with analytical
cnergics and clectron densitics. Both methods turned out to work
fine. In figure 1, the one-electron states (energies, wavefunctions,
occupations and probabilities) are demonstrated. Note that this
one-electron energy diagram is identical with the excited states
diagram of the non-interacting N-clectron quantum dot.

The L-M algorithm is stable with respect to changes in starting
point and temperature in the one-electron case. Thus, the pure one-
electron eigenstates E; can be found until i &~ 7 easily, if replacing
simulated (4) by the analytical formula (6) in fitting. However, the
oplimization is scnsitive to the accuracy in mixed state cnergy: if
the analytical cnergics arc rounded to two decimals, the fitting
procedure docs not work reliably.

4. Two-electron correlations

The system we consider is two Coulomb-intcracting opposile

spin clectrons in a two-dimensional quantum dot. The lateral

confinement is approximated by a harmonic potential assuming
One-celectron states

0 1 OOp L%l

Fig. 1. Onc-clectron states for the 21D harmonic oscillator with hw = 1¢V. The
cnergy levels, with wavefunctions, densitics and probabilitics arc shown with
Boltzmann distribution for 7" = 300 K and 7" = 5700 K.

w
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circular symmetry and “strength” 7ico = 1 ¢V. Thus, the confine-
ment is very strong corresponding to a QD of a few nanometers
and a few hundreds atoms, only. This serves, however, as a nice
model and may be realistic with new fabrication technologies.
Assuming GaAs as the material we usc the electron cffective mass
m = 0.067m, and the diclectric constant € = 12.4.

The two-electron case with Coulomb interaction looses the full
separability, and the Hamiltonian can be reduced to center-of-
mass and relative motion, only. The wave function for the center-
of-mass can be solved analytically, but that describing the relative
motion must be solved using numerical methods. With the PIMC
method we treat the full Hamiltonian numerically, too.

4.1. Distributions

In fig 2 we compare the one-electron densities of the non-
interacting or the single electron case to the case of two interacting
electrons, at two different temperatures. In the upper panel we
sce the temperature broadening clearly but hardly any corrclation
clfects. However, the difference curves in the lower pancl reveal
the weak modifications duc to the Coulomb repulsion, which tends
to keep the electrons apart from each other. The resulting balance
seems to be: one at the center of QD and the other away, rather
than both slightly off {rom the center. Surprisingly, the difference
is larger at the higher temperaturc. We do not expect Wigner
crystallization type of clectron localization in our case, because
the effective density parameter here is r) & 0.15, the threshold
being ry > 7.5 [32].

Figure 3 shows the pair correlation functions for these
two cases together with the correcsponding non-interacting casc
Gaussianrcference function. Changes in pair correlation functions
due to the Coulomb interactions are illustrated in Fig 4. In addition
to temperature broadening the correlation effects are clearly seen,

N & T=300K

T=5700 K
-20 0 20 40

Fig. 2. Onc-clectron densitics for non-interacting or single- (dashed) and two-
electron (solid) systems, upper panel. Also, the differences of correlated and
non-interacting case densitics arc shown in the lower pancl (r in atomic units,
ag ~ 0.52A).

0 200 40 60 80
rlag]

Fig. 3. Pair corrclation functions g(r) of the two interacting clectrons.
Normalization with weight 277 is adjusted to unity.
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Fig. 4. Difference of pair correlation functions of the interacting and non-
interacting clectrons, cvaluated from the functions in Fig 3.

0.3
2 0.4 T=5700 K
= T=300 K
X

05

0 200 40 60 80
rlag]

Fig. 5. The average Coulomb correlation hole. Normalization to unity with the
weight factor 2zr.

1.5
> 1
L
Q
x O
o e e
0.5l mporezza—r ™7
0 2000 4000 6000

Temperature [K]

Fig. 6. Mixed state energy as a function of tecmperature of the corrclated two-
electron system, simulated with Trotter numbers 8 (c), 16 (x), 32 (4), 64 ()
and 128 (¥ Solid linc is a fit with functional form (6) and dashed lines show
analytical single electron total and kinetic (potential) energies, respectively. The
high temperaturcs arc only a computational tool to make the resolution of the
mixed state to pure states and, of course, have nothing to do with any realistic
tcmperaturcs ol any QDs.

too. The short range repulsive correlation (at a few a.u.) is strong
al room temperaturc, whercas it becomes weaker further away
(from 10 a.u.), as compared to the 5700K case. At the r — oc
limit the behavior is remarkably different. That however, may not
be relevant in any real 2D system, where the third dimension is
inevitably present.

We define the average correlation hole as g(r) — 2g,(r)
where g1(r) is the non-interacting casc (Gaussian shaped) pair
corrclation function. This is shown in Fig 5. It supports the
conclusions above, except for the range: the room temperature
repulsive Coulomb correlation hole is more pronounced, as
expected.

4.2. Excitation energetics

The analytical average cnergy of the single clectron mixed state
as a {unction of T, Eq (6), is shown in Fig 6. Also the cqual
contributions from the kinetic and potential energies are shown.
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The low temperature limit is 1 ¢V (0.5¢V) and contributions from
lowest excitation appear just below 2000 K.

The simulated interacting case energies are shown for
different Trotter numbers M = 8, ..., 128 and temperatures. The
asymptotic low temperature limit should be similar to the single-
clectron casc: contribution {rom the ground state, only. It is nicely
sccn how the small M cnergics deviate from this at low T,
thus failing in describing the quantum (kinetic) energy. However,
from low-T fitting the ground state energy 1.06eV is found.
Contributions from kinctic, cxternal and Coulomb repulsion arc
0.48¢V, 0.52 ¢V and 0.06¢V, respectively.

The Coulomb interaction keeps the clectrons more apart
than the noninteracting counterparts, which decreases the kinetic
energy but increases potential energy [25]. In Fig 6, it can be seen
that the kinetic energy decreases some 0.02 ¢V at low temperature,
that is, in quantum regime, but the cffect becomes smaller with
incrcasing tempceraturc.

The high-T behavior is seen to be similar to the single electron
case, though the analytical form (6) probably cannot be assumed.
However, a fit to (6) results in a scaling factor 0.48 for f3.

Resolution of the excited states by fitting f(f, E) to simulated
{E(f/)}, as described above, Icads to the two first excited cnergics
1.00¢V and 1.9¢V above the ground state. Thus, the corrclation
has an equal effect on the two lowest state energies but less on
the third, the second excited state. This probably can be related to
decrcasing Coulomb cnergy with increasing excitation energy.

As a QD becomes larger, the encrgy difference between
single-particle quantum states in thc QD becomes smaller
and the single-particle quantum states can mix thoroughly to
construct many-body quantum states at low-T7, already. In general,
many-body quantum states are determined by competition
between single-particle energy spacing and Coulomb interaction
[33, 25, 10].

5. Conclusions

We have shown that the path-integral Monte Carlo method is
suitable for the study of two-dimensional two-clectron quantum
dot. The temperature cffects and role of clectron-clectron
correlations, in particular, are nicely demonstrated.

An expected temperature broadening of one-electron distri-
bution was found. However, a detailed inspection of correlations
in terms of pair corrclation functions and correlation hole
reveales differences in the nature of correlation in two different
temperatures.

It is also demonstrated how (unreasonably) high temperature
simulations and the resulting mixed state data can be used to
resolve the pure quantum state propertics. This was applied here to
determine the cxcited state energetics, but the related densitics or
wavefunctions could be found similarly. In the present case, two-
dimensional quantum dot with harmonic (ho = 1eV) confining
potential, the two lowest two-electron states shift by 0.06eV,
0.06¢V up and the third 0.1 ¢V down in encrgy as a resull from
clectron-clectron Coulomb correlation.
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