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ABSTRACT

The characteristics of Nature can be surveyed in surprisingly wide scope by ap-
plying path-integrals. For example, studies of the behavior of condensed helium
at temperatures of milli-Kelvins to the investigations of properties of light ele-
ments in the interior of giant planets are conducted using path-integrals—does
Jupiter have a rocky core or what is the cause of supra liquids? Particularly, fi-
nite temperature is naturally taken into account readily, which is a rather difficult
task with other quantum methods. Furthermore, the path-integrals allow us to
study the phenomena beyond the Nature—that is the vague district between the
classical Nature and quantum Nature.

The work presented in this thesis is based on the the path-integral formalism
which is used to describe few-particle quantum systems, concentrating on many-
body correlations and temperature effects. The path-integrals are evaluated with
Monte Carlo methods, and therefore the foundations of Monte Carlo is briefly
introduced. Furthermore, the estimators of potential and kinetic energies and
distribution functions are given and their efficiency is studied. These are applied
to nanophysics, surface science and molecular physics.

First, we study objects of modern nanophysics, called quantum dots. Properties
of charge carriers that are restricted to a small confinement are essential in under-
standing and development of novel semiconductor technologies. We evaluate the
one-electron distributions and two-electron correlation functions, and study the
finite temperature effects on both in a two coupled disc-like quantum dots with
one or two electrons. It is found that an increase of temperature broadens the
distributions as expected, the effect being smaller for correlated electrons than
for the single ones. Also, the two-electron pure state energetics of a parabolic
quantum dot is resolved from the finite-temperature mixed state energies, and
the correlation induced shifts of the first and second excited states are evaluated.

Second, finite temperature many-body quantum behavior of hydrogen adsor-
bates on Ni(001) surface is simulated. The adsorbate–surface and adsorbate–
adsorbate interactions are described by the many-body alloy potential form, fit-
ted to the adsorption parameters from density functional theory calculations. This
allows consideration of substrate atom dynamics, too. Temperatures 100 K and
300 K and coverages from 1/8 to 7/8 are considered. Also quantum and classical
adsorbate behavior are compared.

At low temperatures, the quantum delocalization of the adsorbates is consider-
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able with all studied coverages, and therefore, the temperature dependence of the
distributions is weak. At higher temperatures, however, the thermal dynamics of
the substrate dominates all studied phenomena and a classical description seems
to be sufficient. At T = 300 K, however, the H–H interaction energy has a con-
siderable effect on distributions and energetics. Both temperature and coverage
dependencies become strong at studied temperatures.

Third, the coupled quantum dynamics of the electron and the nuclei in the hy-
drogen molecule ion, a three body system, is studied. The coupling effects are
demonstrated by comparing differences in adiabatic Born–Oppenheimer and non-
adiabatic simulations, and inspecting projections of the full three-body statistics
onto adiabatic Born–Oppenheimer approximation. The nuclear pair correlation
function is found to broaden and the average bond length is larger. Also, a non-
adiabatic correction to the binding energy is found.

Computating capacity is found to become the limiting factor in all simulations
with increasing accuracy or increasing number of particles. Besides that, it should
be noted that adopting efficient algorithms is very crucial.



FOREWORD

Path-integrals are an alternative—but equivalent to the conventational wavefunc-
tion—description of quantum mechanics. It has the origin in the PhD work of
Richard Feynman at Princeton (Brown, 2005). Feynman emphasizes the experi-
mental nature of physics, mastering the mathematical tools, too. The gedanken ex-
periments of Feynman are simple and pedacogical, and thus, are not easy to con-
duct in the real world—while revealing the character of physical law very clearly.

Though the concept of path-integrals have arisen from quantum mechanics, these
are a powerful tool in many other branches of science and mathematics, e.g. finan-
cial mathematics, too. However, there is some theoretical work still to be done:
the time-dependent path-integrals are not on a perfectly solid ground, yet, and
solutions to fermion sign as well as Coulomb singularity problems need more
development. Despite that, it should be noted, that essentially we are able to
solve all path-integrals in quantum mechanics which correspond to problems for
which the Schrödinger equation have exact analytical solutions, see Grosche and
Steiner (1995) for an extensive listing.

Quantum Mechanics and Path Integrals, Feynman and Hibbs (1965), is an excellent
book to start studying time-dependent quantum mechanics and path-integrals.
The stationary systems are studied in Feynman (1948) and Feynman (1972), which
is a collection of lectures on statistical mechanics. Kleinert has conducted re-
search in collaboration with Feynman, and his brick (2004) deals mainly with
time-dependent problems. The book of Schulman (1981) has more physical point
of view, and is more readable still being quite rigorous. Müller-Kirsten (2006)
deals with general quantum mechanics and also with path-integrals, Ballentine
(1999) and Binder and Heermann (2001) have also written some chapters about
path-integrals.

Furthermore, there exist many lecture notes on the subject, nowadays freely avail-
able on the internet. Some of those are Ali and Inomata, Wetterich (2006), In-
gold or Simmons. Also, one should take a look at the large quantity of works of
Ceperley and Tuckerman, both concentrating on numerical evaluation of path-
integrals.

This thesis collects and completes the results of a study which I have conducted
under supervision of Professor Tapio T. Rantala at the Institute of Physics, Tam-
pere University of Technology. The thesis is partitioned in three chapters. The
first part describes the foundations of quantum mechanics and path-integrals,
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the second part guides to the Monte Carlo simulations and to the estimation of
properties, and the third part is a summary to our applications of path-integrals
to nanophysics, surface science and molecular physics.

The two questions, about fermion sign problem and Coulomb singularity are not con-
sidered in this thesis in detail. These problems plague the path-integral many-
body calculations, and must be solved—or somehow circumvented—in ab initio
material design. In literature, many different approaches are invented to over-
come the problems.

In this work, all mathematical terminology—where possible—refers to free re-
sources, such as Wolfram MathWorld (www.mathworld.com) or Wikipedia, the
free encyclopedia (www.wikipedia.org). Furthermore, every algebraic step is
clearly visible, while most of the arithmetical steps are left out to shorten the no-
tation, allowing a more readable introduction to quantum mechanics within the
path-integral formalism.

First and foremost, I would like to thank my supervisor, professor Tapio T. Rantala
for his guidance and support during these years needed to finish this thesis. I
would also like to thank the crew of TCOMP and Institute of Physics, particu-
larly docents Jouko Nieminen and Matti Lindroos. The younger generation of
TCOMP need commendations, with special respects to Mr. Jussi Ojanen and Mr.
Ilkka Kylänpää. This thesis was reviewed and critized by two distinguished ex-
perts, Anders Sandvik and Göran Wahnström, to whom I express my gratitude. I
would like to thank the Finnish Cultural Foundation (Pirkanmaan Maakuntara-
hasto) and the Graduate School of Tampere University of Technology for financial
support. Last but not least, I want to thank my family, my relatives and all my
friends. Onko helmenkalastajilla arkea?
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CHAPTER 1

INTRODUCTION TO
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· · ·

Microscopic properties of Nature are described astonishing well by a mathemat-
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ical structure called quantum mechanics. It is postulated in section 1.1, where the
ideas of state, observable and measurement are given. Some of the tools of func-
tional analysis and measure theory, which are given in this section, however, are
not essential in the following sections. These are given to link the quantum me-
chanics with rigorous mathematical theory. Section 1.2 extends basic ideas to
density matrices, and thereafter, the path-integrals are introduced.

First, section 1.3 deals with the concept of path-integrals by using the free particle
and related systems. Then, in section 1.4, path-integrals of quantum particles in
general potentials are considered. Also, the dynamical, or time-dependent path-
integral is introduced. The results needed in computations are shown again in
a compact form in section 1.5. The special example of the harmonic oscillator is
worked out in detail in section 1.6.

1.1 POSTULATES OF QUANTUM MECHANICS

The mathematical formalism of quantum mechanics is well developed and can
be abstracted from any of several textbooks. The postulates and formalism that
are presented here are extracted mainly from the books of Atkins and Friedman
(1970), Ballentine (1970, 1999), Cronström and Montonen (1991), Lahti (2005),
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Nielsen and Chuang (2002). Furthermore, some more mathematically oriented
textbooks are used, especially von Neumann (1955, p. 36–46) and textbooks of
standard functional analysis (Gariepy and Ziemer, 1995, Pedersen, 2000).

The primitive concepts are those of state and observable, and the practise needs the
definition for the process of measurement and composite systems, too.

1.1.1 STATE

The description of a physical system S is based on a complex, separable (usuallyThe basis for separable Hilbert space is at
most countable. infinite dimensional) Hilbert1 space H known also as the state space. The Hilbert

space is linear and complete, and there is a Hermitian2 inner product. EspeciallyHermiatian, aka self-adjoint, aka conjugate
symmetric. in texts about physics, the inner product is usually postulated to be linear subject

to the second argument and antilinear to the first argument, and that is denoted
by 〈·|·〉, opposed to mathematics notation (·|·) or (·, ·) (Kahanpää, 2005, Footnote
in p. 49). A Hilbert space is equipped with an orthonormal basis, and all elements
of the Hilbert space can be written in a unique way as a linear expansion, or sum
of multiples, of these basis elements. In some physical cases the Hilbert spaceaka. Gelfand triple, nested Hilbert space,

equipped Hilbert space. With that one can
handle some pathological problems,

e.g. normalization of exp(ıpx).

must be extended to the sc. Rigged Hilbert space (Ballentine, 1999).

Postulate 1. Each state ρ̂ of the system S is represented by some self-adjoint, nonnega-
tive, and of unit trace operator in the Hilbert spaceH

ρ̂ : H → H.

The state is also called a statistical operator, density operator, or density matrix,
although the latter term should be restricted to its matrix form (in coordinate
representation). The set of all states is convex: if ρ̂1 and ρ̂2 are states, then tρ̂1 +The term density function is not widely used

in literature. (1 − t)ρ̂2 is also a state when t ∈ [0, 1]. The state ρ̂ = ρ̂2 is called a pure state if
it belongs to the extreme point of the convex set. Otherwise, it is called a mixed
state.

All states ρ̂ can be diagonalized in terms of its eigenvalues and eigenvectors, re-
sulting in sc. canonical expansionCanonical is an adjective derived from canon

which comes from the Greek kanon (rule).
Mathematicians use the word canonical to

refer to concepts that have a kind of
uniqueness or naturalness. A canonical form

of an object is a standard presentation.

Because the set {λ ∈ σ(bρ)
˛̨
|λ| > ε > 0} is

finite for discrete spectrum, the
zero-excluding spectrum σ(bρ) \ {0} can be

arranged to a sequence (λi), and the
measure dE(λ) in spectral theorem

bρ =
R
σ(bρ) λdE(λ) reduces to a projection

Pn = dE({λn}) = |φn〉〈φn|.

ρ̂ =

∞∑

i=0

ρiP̂i, (1.1)

where ρi ∈ [0, 1],
∑
ρi = 1, and P̂i is an orthogonal projection operator to eigen-

space P̂i(H) = ker(ρ̂− ρiÎ), related to the orthonormal set of eigenvectors {|φi〉}
of ρ̂ for the discrete (point) spectrum by

P̂i =

di∑

j=0

|φij
〉〈φij

|. (1.2)

1David Hilbert, 23 Jan 1862–14 Feb 1943 (Königsberg, Prussia, now Kaliningrad–Göttingen, Ger-
many).

2Charles Hermite, 24 Dec 1822–14 Jan 1901 (Dieuze, Lorraine, France–Paris, France)
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If the state is pure, only one eigenvalue (or probability, or weight) ρi differs from Note that bρ = bIbρbI =P
ij |φi〉〈φi|bρ|ψj〉〈ψj | ≡

P
ij |φi〉ρij 〈ψj |

can be diagonalized.
zero, in Eq. (1.1). The |φi〉 ∈ H is called a ket vector and 〈φi| ∈ H† (dual space) is
called a bra vector, and the parameter j labels the degenerate eigenvectors which
belong to the same eigenvalue ρi of ρ̂. Furthermore, the projection operator satis-
fies the identity property,

Î =

∞∑

i=0

P̂ (|φi〉) =

∞∑

i=0

|φi〉〈φi|. (1.3)

The sums in Eq. (1.2) and Eq. (1.3) become integrals in the case of continuous
spectra. The eigenvectors and eigenvalues of a density operator indicate one of The numbers 〈ψi|χ〉 are called the

coordinates (abstract Fourier coefficients) of
vector |χ〉 related to orthonormal sequence
{|ψi〉}∞0 . Also, those are called as the scalar
projections of |χ〉 in direction |ψi〉.

many possible ensembles that may give rise to a specific density operator, and
the generalized projection operator |φ〉〈ψ| denotes an operator |χ〉 → 〈ψ|χ〉|φ〉.

The Frechet3 –Riesz4 representation theorem states that a Hilbert space identifies
with its dual: Let φ ∈ H be a continuous linear functional. Then there is a unique
z ∈ H such that φ(x) = 〈x|z〉 for all x ∈ H. So the segregation of bra and ket
vectors is not necessary in the case of Hilbert space. According to the Frechet’–Riesz’

representation theorem, there exists a
functionH×H → H : ρ(X, Y ) ≡ 〈X|bρ|Y 〉,
which in coordinate basis, X,Y ∈ Rn ⊂ H,
is called the density matrix.

1.1.2 PHYSICAL QUANTITY

If a physical quantity has only a discrete spectrum, σp(Â) = {a1, a2, . . . }, then Â,
with finite trace, can be expressed as a spectral representation If bA ∈ H is a self-adjoint operator, then there

exists an unique spectral measure E
satisfying

bA =

Z

R

λdE.

There is the least subset σ( bA) ⊆ R such that
integration over σ( bA) yields the same result.

Â =
∑

i=1

aiP̂i, (1.4)

where the numbers ai ∈ σp(Â) are the eigenvalues of Â and the P̂i are the projec-

The eigenequation: bA|φij 〉 = ai|φij 〉.

tion operators described in Eq. (1.2). The proof is omitted here, see Nielsen and
Chuang (2002, p. 72) or Lahti and Ylinen (1989). Generalization to the continuous
spectrum is straightforward. Eq. (1.4) is equivalent to the statement that an ob-
servable must posses a complete orthogonal set of eigenvectors (Ballentine, 1970),
thus, the eigenvectors of Â generate an orthonormal basis (|φij

〉) to the Hilbert
spaceH. Therefore any vector state |ψ〉 of H can be expressed as a superposition

|ψ〉 =
∑

i

di∑

j=1

〈φij
|ψ〉|φij

〉, (1.5)

where i labels the eigenspaces, and for any i, j labels the basis for current eigen- Let X be a set. Then a Borel σ-algebra F is a
nonempty collection of open subsets of such
that: (1) X ∈ F , (2) If A ∈ F , thenAc ∈ F ,
and (3)If An ∈ F for n ∈ N, then
∪∞n=1An ∈ F .

space, which is also called a degeneracy. When an eigenspace is more than one
dimensional, we say that it is degenerate.

The justification to present a physical quantity, or observable, as a self-adjoint
operator is based on the spectral theorem; according to that every self-adjoint
operator Â : D(Â) → H and real spectral measures from Borel5 algebra of R to A mapping µ : σ-algebra→ [0,∞] is a

measure, if µ(∅) = 0 and
µ(∪∞i=1Ei) =

P∞
i=1 µ(Ei).

3Maurice René Fréchet, 2 Sep 1878–4 June 1973 (Maligny, Yonne, Bourgogne, France–Paris)
4Frigyes Riesz, 22 Jan 1880–28 Feb 1956 (Györ, Austria-Hungary–Budapest,Hungary)
5Armand Borel, 21 May 1923–11 Aug 2003 (La Chaux-de-Fonds, Switzerland–Princeton, New Jer-

sey)
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a set of all bounded linear operators in H, EA : B(R) → L(H) are in one-to-one
correspondence to each other (Lahti, 2005, p. 13). Spectral measureEA associated
to operator Â is related to the spectral representation of Â, Eq. (1.4), by

EA({ai}) =

di∑

j=1

P̂i =

di∑

j=1

|φij
〉〈φij

|.

EAρ : B(R)→ (0, 1), sometimes referred as
pAρ =

R
R

dEAρ .

Some usually met observables in quantum mechanics are the energy (free energy,
total energy, kinetic energy, interaction energy, correlation energy, exchange en-
ergy), the position or momentum of particles, pair correlations between particles,
pressure, or entropy.S = −kB〈ln bρ〉.

1.1.3 MEASUREMENT

Any pair of state ρ̂ and quantity Â of the system S defines a probability measure
pA

ρ , and the quantity Â can be identified with the mapping ρ̂ → pA
ρ . The tracepAρ =

R
R

dEAρ .

operator Tr is used in mapping.

Postulate 2. The expectation value of an observable Â in a state ρ̂ is given by

〈Â〉 = Tr(ρ̂Â), (1.6)

where Tr (·) is the trace of the operator in the parentheses.

The trace is cyclic, Tr (ÂB̂) = Tr (B̂Â), and linear, Tr (aÂ+ bB̂) = aTr (Â) +Tr ( bA bB) =
P
φ〈φ| bA bB|φ〉 =P

φ

P
ξ〈φ| bA|ξ〉〈ξ| bB|φ〉 =P

φ

P
ξ〈ξ| bB|φ〉〈φ| bA|ξ〉 = Tr ( bB bA).

bTr (B̂). Furthermore, from the cyclic property it follows that trace is invariant
under unitary transfomations. The expectation value converges for all trace class
operators. Because the series expansion of the state ρ̂ is not unique, then for every
quantity Â it holds

〈Â〉 =
∑

ti〈φi|Â|φi〉 =
∑

si〈ψi|Â|ψi〉,

if {(|φi〉, ti)} and {(|ψi〉, si)} are the weighted vector state sequencies of ρ̂. Thus,
the two sets are indistinguishable. For a discrete spectrum σp(Â) and specially,
for a vector state |ψ〉〈ψ|, we getFor the state |ψ〉, the measure is

〈 bA〉 =
R

R
dEA|ψ〉 = 〈ψ| bA|ψ〉.

〈Â〉 = Tr (|ψ〉〈ψ|Â)) = 〈ψ|Â|ψ〉

and, furthermore, by using the eigenspace expansion of operator Â, Eq. (1.4), this
can be written asThe variance σ2

A ≡ 〈 bA2〉 − 〈 bA〉2 can also be
calculated, and for the vector state |ψ〉 the

variance vanishes, σ2
A = 0. 〈ψ|Â|ψ〉 =

∑

i

ai〈ψ|Pi|ψ〉 =
∑

i

ai

di∑

j=1

|〈φij
|ψ〉|2,

where {φi1 , . . . , φidi
} is the set of degenerate eigenvectors corresponding to theThe orthonormal basis of eigenspace

EA({ai})(H) = ker( bA− ak bI). eigenvalue ai.
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In the position representation of density matrices the trace is written as an inte-
gral, and thus we get, after substituting an identity operator

∫
|x′〉〈x′|dx′ between

ρ̂ and Â

〈Â〉 =

∫
〈x|ρ̂|x′〉〈x′|Â|x〉dxdx′ ≡

∫
ρ(x, x′)A(x′, x)dxdx′.

Usually, only diagonal operators are used, thus

〈x′|Â|x〉 = 〈x|A(x′)|x′〉 = A(x′, x′)〈x|x′〉 ≡ A(x′)〈x|x′〉 (1.7)

giving 〈Â〉 =
∫
ρ(x, x)A(x)dx for normalized density matrix ρ(x, x′). E.g. for position, bA(~x) = ~x, and

〈~x〉 =
R
~xρ(~x, ~x;β)d~x, and for momentum

bA(~x) = bp = −ı}∂~x we get after integrating
by parts 〈bp〉 = ı}

R
(∂~xρ(~x, ~x

′))~x′=~xd~x.
1.1.4 COMPOSITE SYSTEMS

Suppose the system we are interested in is made up of two or more distinct phys-
ical systems, S1 and S2 with Hilbert spaces H1 and H2, respectively. The Hilbert
space of the composite system, S = S1 + S2, is the tensor product H = H1 ⊗H2, Tensor product is also called an outer product.

Kronecker product is a special case of tensor
product on matrices and dyadic product on
vectors.

and there exists a bilinear mapping f : H1 ×H2 → H such that

〈f(φ1, ψ1)|f(φ2, ψ2)〉H = 〈φ1|φ2〉H1
〈ψ1|ψ2〉H2

for all φ1, φ2 ∈ H1 and ψ1, ψ2 ∈ H2. Furthermore, the set {f(φ, ψ)|φ ∈ H1, ψ ∈
H2} spans a dense subspace inH. The function f is written as f(φ, ψ) ≡ |φ〉⊗|ψ〉.

Postulate 3. The state space of a composite physical system is the tensor product of the
states of the component physical systems. If the component systems are numbered from
1 to N , and the system number i is prepared in the state |ψi〉, then the joint composed
system is at state

|ψ1, ψ2, · · · , ψN 〉 ≡ |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψN 〉. (1.8)

Often the tensor product mark, ⊗, is not explicitly written, thus we write for
the N -particle ket |ψ1, ψ2, · · · , ψN〉 = |ψ1〉|ψ2〉 · · · |ψN 〉. Because the subspace
spanned by f(φ, ψ) is dense, the orthonormal basis {|φi〉} ⊂ H1 and {|ψi〉} ⊂ H2

generate an orthonormal basis to H with the help of tensor product; {|φi〉 ⊗
|ψj〉} ⊂ H is an orthonormal basis of the composed system S. All states |ξ〉 ∈ H
can be written with the help of basis, such as |ξ〉 = ∑ij〈φi ⊗ ψj |ξ〉φi ⊗ ψj

The special characteristic in quantum mechanics is that identical particles are Symmetric sum

|ψ1, ψ2, · · · , ψN 〉 =
NX

i=1

(±1)N |ψ1ψ2 · · ·ψN 〉,

where + sign is for bosons and− sign for
fermions.

undistinguishable. This poses new complications, such that, actually, Eq. (1.8)
is not valid, but the state must have a well defined symmetry. The systems we
are considering in this thesis, however, essentially does not need the use of Bose6

or Fermi7 symmetries. Thus, the definition given in Eq. (1.8) is assumed to be
valid here.

For example, the quantum mechanics of spin- 1
2 hydrogen atom is based on Hilbert Hilbert space L2(R3

p,C
2) , L2(R3

p)⊗ C2 is
the outer product space of square-integrable
function (L2) and spin space (C2).

6Satyendranath Bose, 1 Jan 1894–4 Feb 1974 (Calcutta, India–Calcutta)
7Enrico Fermi, 29 Sep 1901–28 Nov 1954 (Rome, Italy–Chicago)
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spaces Hp , L2(R3
p,C

2) and He , L2(R3
e,C

2) where the subscripts p and e refer
to proton and electron, respectively. Thus, a hydrogen atom can be regarded as
(Lahti, 2005, p. 26)

Hp ⊗He , L2(R3
p,C

2)⊗ L2(R3
e,C

2)

, L2(R6,C4)

, L2(R3
cm)⊗ L2(R3

rel)⊗ C
2 ⊗ C

2,

where the subscripts cm and rel are center of mass motion and relative motion.
Usually, when speaking about the hydrogen atom, the space L2(R3

rel) is consid-
ered; the quantum nucleus is taken into account only in a few studies so far.

Most of the definitions and results in this thesis are given for one particle in one-
dimensional space, but the many of the results are easy to generalize following
the idea given in Postulate 4.

1.2 DENSITY MATRICES

For a given density operator ρ̂ =
∑

i ρi|φi〉〈φi|, neither the states |φi〉 nor the
weights ρi are necessarily unique, as was earlier pointed out. The quantum me-
chanical system can be prepared many by means in a given mixed state, ρ̂, e.g. by
measuring the system properly. One way to set up the system is the use of equi-
librium distributions.

The probability distribution that maximizes the entropy, S = −ρ̂ ln ρ̂, requiringOther canonical ensembles are micro
canonical (N, V,E) and (Gibbs’s) grand

canonical (µ, V, T ). In the former, we need
sc. Fock space.

that the number of particles is fixed and the mean value of energy 〈Ĥ〉 = E is
constant (N, V, T distribution), is called the canonical ensemble. Here, for simplicity
the number of particles is assumed to beN = 1. Next, the density operator ρ̂ for the
canonical ensemble is defined by using the method of Lagrange8 undeterminant
coefficients, and a little algebra shows thatδ ln bρ = bρ−1δρ − 1

2
bρ−2δ2 + · · ·

δ(〈S〉 − λ1〈Ĥ〉 − λ2〈Î〉) = 0

= Tr δρ(− ln ρ̂− Î − λ1Ĥ − λ2Î),

where λ1 and λ2 are the undetermined multipliers. Requiring that the variation
of the expression must vanish, we get

ρ̂(β) =
1

Q
e−β bH , (1.9)

where the coefficients are named differently. The probability distribution given
in Eq. (1.9) is called the canonical or Boltzmann9 distribution. The constant Q is
called the partition function, and is given by

Q = Tr e−β bH .

All thermal properties of an equilibrium distribution can be calculated from theE.g. total energy: E = −∂ lnQ/∂β, entropy:
S = ∂(T lnQ)/∂T , free energy:

F = −kBT lnQ.
8Joseph-Louis Lagrange, 25 Jan 1736–10 Apr 1813, (Turin, Sardinia–Paris)
9Ludwig Boltzmann, 20 Feb 1844–5 Oct 1906 (Vienna, Austria–Duino, near Trieste, Austria (now

Italy))
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partition function (Arponen, 1994, p. 102). The parameter β defines the temper- Temperature is defined as
kBT = (δE/δS)V,N . Because
〈S〉 = −〈ln bρ〉 = βE + lnQ,
δS = (Eδβ + βδE + δQ/Q), and
δQ = −δβEQ, we get that δS = βδE and
δE/δS = 1/β.

ature T of the system; β = 1/(kBT ), where kB is called the Boltzmann constant.
Furthermore, β is also the inverse temperature of the surrounding system, which
is in thermal contact only with the system, thus in a heat bath.

By differentiating Eq. (1.9)—assuming Q ≡ 1, because ρ̂ can always be normal-
ized afterwards—we get a differential equation for β-independent Hamiltonian10

Ĥ When bH ≡ − 1
2
∇2 + bV , equation (1.10a) is

also called diffusion equation (β corresponds
time) or heat equation or Kolmogorov’s
backward equation or Smoluchowski
equation or Fokker–Planck equation.

∂ρ̂

∂β
= −Ĥρ̂ (1.10a)

with the initial condition

lim
β→0

ρ̂(β) = 1̂. (1.10b)

This is called Bloch11 equation. It describes the evolution of the density operator
with respect to the parameter β, or inverse temperature. Thus, it is an alterna- Furthermore, remember that the density

operator can be written in terms of an
orthonormal sequence of Hilbert space
bρ(β) = bρ(0)

P∞
i=1 exp(−β bH) bPi as

described earlier, see Eq. (1.1).

tive, and sometimes very convenient method of obtaining the density operator
ρ̂. The physically correct initial condition ρ̂(0) (Bloch equation with Q included)
of the solution ρ̂(β) = ρ̂(0) exp(−βĤ) is chosen such that the density matrix is
normalized to one, Tr ρ̂(β) = 1.

The eigenvalue equation ρ̂|φn〉 = pn|φn〉 gives the probabilities of the system
being in energy eigenstate |φn〉 The energy eigenstates is a complete

orthonormal set of vectors inH.

pn =
1

Q
e−βEn ,

with normalization condition
∑

n pn = 1 and pn ≥ 0 for all n. The canonical dis-
tribution of one-particle system, with one-particle energy εn, is also called Boltz-
mann distribution (Arponen, 1994, p. 100). The probability of the nth state is
pn = exp(−βεn)/Q, and exp(−βεn) is called the Boltzmann factor

The density matrices in this thesis are of this type, and most of them are discussed
in coordinate basis, i.e.

ρ(x, y;β) = 〈x|ρ̂(β)|y〉,

which is the unique solution for the Bloch equation, Eq. (1.10a), (Barker, 1978). It
is called also the Green’s function G(x, y;β), the fundamental solution, or prop-
agator, because it describes how the particle travels or propagates from y to x in
imaginary time β (Keller and McLaughlin, 1975).

1.2.1 FREE PARTICLE

For a one-dimensional free particle, the Hamiltonian takes the form Ĥ ≡ T̂ ≡
− }

2

2m∇2, and the Bloch differential equation, Eq. (1.10a), in coordinate basis with

10Sir William Rowan Hamilton, 4 Aug 1805–2 Sept 1865 (Dublin, Ireland–Dublin)
11Felix Bloch, 23 Oct 1905–10 Sep 1983 (Zurich, Switzerland–Zurich)
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cartesian12 coordinates becomes

∂ρ0(x, y;β)

∂β
=

}2

2m

∂2

∂x2
ρ0(x, y;β).

This is a standard text-book diffusion-type equation, and the solution to this
equation is easily seen to be, see Feynman (1972, p. 49), Strauss (1992, p. 48)
or Tervo (2000, p. 167) (or any other book about partial differential equations)

ρ0(x, y;β) =

√
m

2π}2β
exp

[
− m

2}2β
(x− y)2

]
, (1.11)

where the constant is chosen such that the boundary condition, Eq. (1.10b) isEx. Show by integrating that

ρ0(x, y; β) =

Z
ρ0(x, y; β)ρ0(y, y; β)dy.

satisfied

Remember that

δ(x) = lim
β→0

1

2
√
πβ

e−x
2/4β

and δ(ax) = (1/|a|)δ(x).

Note that there is no such a function δ(x)
which is supposed to be zero for x 6= 0 and

to be infinite at x = 0. Thus δ must be
defined as a generalized function, as a

distribution, or as a linear functional
characterized by the above

identity(Keller75).

lim
β→0

ρ0(x, y;β) = δ(x− y).

Instead of solving the differential equation for the free particle, use can be made
of the existence of a basis in Hilbert space. Write

ρ0(x, y;β) = e−β bH
∑

i

〈x|ψi〉〈ψi|y〉 =
∑

i

e−βEiψi(x)ψ
∗
i (y). (1.12)

If the particle is in a large box of volume V , take the wave function to be as the mo-
mentum eigenfunction in coordinate basis ψp(x) and since the p’s are distributed
over a continuum, the sum over the “indices” p is really equivalent to an integral
over the values of p (Feynman and Hibbs, 1965, p. 88), (Ceperley, 1995, p. 284),
namely

∑

i

→
∫
V dp
2π}

and ψi(x)→ ψp(x) =
1√
V

eıpx/}

with total energy Ep = p2/2m, thus getting

For a > 0 we have
Z ∞

−∞
exp

`
−ax2 + bx

´
dx =

r
π

a
exp

„
b2

4a

«
.

ρ0(x, y;β) = 〈x|e−β bT |y〉

=

∫
〈x|e−βbp2/2m|p〉〈p|y〉dp

=

∫
〈x|p〉〈p|y〉e−βp2/2mdp

=

(
1

2π}

)∫
eıp(x−y)/}e−βp2/2mdp (1.13)

=

(
m

2π}2β

)1/2

exp

[
− m

2}2β
(x− y)2

]

but the change of variables needed here is not really legitimate because ıp is com-
plex, but can be justified as a “shift of contours,” as is done in any respectable
complex analysis course, see Strauss (1992, p. 326).

12René Descartes, 31 Mar 1596–11 Feb 1650 (La Haye (now Descartes), France–Stockholm, Sweden)
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1.2.2 HARMONIC OSCILLATOR

The harmonic oscillator is a particle confined in a potential V (x) = 1
2mωx

2,
where ω =

√
k/m is called the frequency of oscillatory motion with k being the

force constant. Evaluation of the partial density matrix for harmonic oscillator is
straightforward but tedious. Therefore, by quoting Feynman (1972, p. 51), the
result is The diagonal density matrix is

ρho(x, x;β) =

r
mω

2π} sinh }ωβ
×

exp

„−mω
}

x2 tanh }ωβ

«

because
cosh 2x− 1

sinh 2x
= tanh x.

ρho(x, y;β) =

√
mω

2π} sinh}ωβ

× exp

[ −mω
2} sinh}ωβ

[
(x2 + y2) cosh}ωβ − 2xy

]]
. (1.14)

By defining new position variables χ =
√
mω/}x and ξ =

√
mω/}y and new

Ex. Show by integrating that

ρho(x, y; β) =

Z
ρho(x, y

′; β
2
)ρho(y

′, y; β
2
)dy′.

coefficient w = exp(−β}ω), we can write (Barone et al., 2003)

sinh }ωβ =
1− w2

2w

cosh}ωβ =
1 + w2

2w

and, thus, the density matrix can be written as

ρho(x, y;β) =

√
wmω

π}
exp

[
− 1

2 (χ2 + ξ2)
]
(1− w2)−1/2 exp

[
−w

2(χ2 + ξ2) + 2wχξ

1− w2

]

and, by applying Mehler’s Hermite polynomial formula, we get the spectral repre-
sentation Mehler’s Hermite polynomial formula states

that
∞X

n=0

wn

2nn!
Hn(x)Hn(y) =

(1− w2)−1/2 exp

„
2xyw − (x2 + y2)w2

1−w2

«

where Hn(x) is the Hermite polynomial,
and |w| < 1.

ρho(x, y;β) =

√
mω

π}
exp

[
−mω

2}
(x2 + y2)

]
×

∞∑

n=0

1

2nn!
Hn(

√
mω/}x)Hn(

√
mω/}y)e−β}ω(n+1/2)

for the harmonic oscillator. From this proposition, the energetics, the wave func-

Hermite polynomials are

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

.

tions and the normalization coefficients can be extracted. Instead of using the
Mehler’s formula, just by expanding the density matrix of harmonic oscillator,
Eq. (1.14), in successive powers of exp(−β}ω), the wave functions can be achieved,
see Feynman and Hibbs (1965, p. 200).

Now, if the temperature is high, β → 0, or confining potential is small ω → 0,
Eq. (1.14), reduces to that of free particle, Eq. (1.11), as can be seen easily by sinh 2x = 2x+ 4

3
x3 + · · ·

cosh 2x = 1 + 2x2 + · · ·expanding the hyperbolic functions in Taylor series.

1.3 PATH-INTEGRALS

Now we have developed the theory for one quantum particle in density matrix
formalism. The results presented here can be straigthforwardly generalized to
N noninteracting particles with definite symmetry, but the existence of mutual
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interaction between particles makes things more complicated. Thus, we follow
here the path with one particle, only. The next task is to make the density matrix
look like a path, and we note that it implies some integrations. Therefore, we get
the path-integrals, and, furthermore, find the continuous and discrete versions of
it.

The path-integrals arise from the fact that (Schulman, 1981) for any operator
exp(Â) = exp(Â/M)M for all M ∈ R \ {0}. Thus, the density operator ρ̂(β) in
Eq. (1.9) can be developed incrementally (Feynman, 1972, p. 72) with M steps

ρ̂(β) = e−τ bHe−τ bH · · · e−τ bH ,

where Mτ = β. In the coordinate basis, the density matrix becomes, by inserting
totally M − 1 identity operators in between adjacent short time slice propagatorsNote that in the discrete representation the

end-points x and y are replaced by x0 and
xM , respectively, to explicitly show the

dependence on M .
ρ(x0, xM ;β) =

∫
ρ(x0, x1; τ)ρ(x1, x2; τ) · · · ρ(xM−1, xM ; τ)dx1 · · ·dxM−1. (1.15)

Thus, the particle propagates from x = x0 to y = xM via route x1, x2, . . . , xM−1,
which defines a path (Feynman, 1972, p. 72). The total propagator ρ(x, y;β) is
given by a sum (or an integral) over all possible—though they are prohibited in a
classical sense—paths.Fixed point (f(x) = x) theorem; contraction

(A mapping f from a metric space (M, d)

into itself is called a contraction if
∃α ∈ (0, 1) such that

d(f(x), f(y)) ≤ αd(x, y)∀x, y ∈M ).

First, in forthcoming sections, we deal with the free particle and some problems
related to that, and then find the general statement and see how it is related to
Schrödinger13 formulation, and lastly we consider the special case of harmonic
potential.

1.3.1 FREE PARTICLE

For the free particle, with Hamiltonian including only kinetic energy term, Ĥ =

T̂ = bp2

2m as in section 1.2.1, the path-integral result is achieved trivially. Clearly,
by writing the discrete path on ρ0(x0, xM ;β) = ( m

2π}2β )1/2 exp[− m
2}2β (x0 − xM )2],

see Eq. (1.11), and by using M − 1 intermediate steps (xi)
M−1
i=1 , we get

exp(α bA) exp(α bA) =
∞X

n=0

(α bA)n

n!

∞X

m=0

(α bA)m

m!

=
∞X

n=0

(2α bA)n

n!
= exp(2α bA).

ρ0(x, y;β) = lim
M→∞
Mτ=β

∫
ρ0(x0, x1; τ)ρ0(x1, x2; τ) · · · ρ0(xM−1, xM ; τ)dx1 · · ·dxM−1

(1.16)

= lim
M→∞
Mτ=β

( m

2π}2τ

)M/2
∫

exp

[
−m
2}2τ

M∑

i=1

(xi−1 − xi)
2

]
dx1 · · ·dxM−1

because the Hamiltonian commutes with itself. Here, the two undefined vari-
ables must be defined, so let x0 = x and xM = y. To find the path-integral
representation of free-particle density matrix, first take the limit and buck against

13 Erwin Rudolf Josef Alexander Schrödinger, 12 Aug 1887–4 Jan 1961 (Erdberg, Vienna, Austria–
Vienna)



1.3 PATH-INTEGRALS 11

theoretical problems. Here, we try the continuous case to taste the formalism of
path-integrals, and postpone most of the problems to the next section.

The limiting function (xi)
M−1
i

M→∞−−−−→ x(u) is assumed to be continuous. The easy Function f is continuous if the preimage of
any open set is open. Actually, almost all
paths are continuous but nowhere
differentiable, see section 1.4.3.

way to make the function continuous is by piecewise linear interpolation between
adjacent points xi−1 and xi, but that is not the only method, e.g. the knowledge
of the classical orbits could be taken advantage of (Feynman and Hibbs, 1965). By
dividing the finite differences xi−1−xi = x(iτ − τ)−x(iτ) in the sum with τ , the
result will approach to−dx(u)/du|u=iτ , a negative derivative of x(u) with respect

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

to the parameter u. Summation in the exponential can be written as an integral

The limit

lim
max ∆xk→0

nX

k=1

f(x∗k) ≡
Z b

a
f(x)dx∆xk

where x∗k ∈ ∆xk defines the Riemann
integral.

with the help of Riemann sum. Furthermore, the integral measure (dxi)
M−1
i=1 will

be written as

lim
M→∞
Mτ=β

∫
dx1√

2π}2τ/m
· · · dxM−1√

2π}2τ/m
=

∫∫
Dx(u),

which indicates the integration over all possible paths. There are many ways to
define a subset of all the paths between x and y, as Feynman and Hibbs (1965)
argued. Thus, we find that the path-integral for the free particle will be

ρ0(x, y;β) =

∫∫
exp

[∫ β

0

m

2}2
ẋ2(u)du

]
Dx(u) (1.17)

with constraints x(0) = x and x(β) = y. The integral term in the exponential is
usually called an Euclidian14 action. The equation of motion x(u) for a free

particle is according to Euler–Lagrange
formalism is

x(u) = x(0) +
x(β)− x(0)

β
u.

For continuous f, g, lim
x→x0

f(x) = f( lim
x→x0

x)

and lim
x→x0

f(x)g(x) = f( lim
x→x0

x)g( lim
x→x0

x).

Function f is continuous if the preimage of
any open set is open.

The density matrix in the path-integral formalism can be calculated for some sys-
tems by using the method of variations in classical path, xcl(u) (Feynman, 1972,
p. 79). Thus, let the total quantum path be x(u) = xcl(u) + δx(u) with bound-
ary conditions for the deviation from the classical path xcl(u) be δx(0) = 0 and
δx(β) = 0. In the case of free particle, the classical path xcl is straight line, with
differential respect to β being constant, which is called velocity v = (y − x)/β.
Then, the Euclidian action without the constant m/2}2 will be

∫ β

0

(v + d
duδx(u))

2du = βv2 +

∫ β

0

( d
duδx(u))

2du

because of the boundary conditions on variation, δx(u) eliminates the crossterm.
So, the density matrix (1.17) can be written with the help of a classical “straight-
line” density and the quantum part, as

ρ0(x, y;β) = exp

[−m(x− y)2
2}2β

]
F (β)

with path-integral F (β) which is the quantum part, and depends β only, not the
end points any more,

F (β) =

∫∫
exp

[
−m
2}2

∫ β

0

d
duδx

2(u)du

]
Dy(u).

14Euclid of Alexandria, (about) 325 BC–265 BC (Alexandria, Egypt)
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We still need to solve F (β). According to the convolution theorem of density
matrices, we have ρ0(x, y;β1 + β2) =

∫
ρ(x, x′;β1)ρ(x

′, y;β2)dx′, thus giving

F (β1 + β2) =

√
2π}2β1β2

m(β1 + β2)
F (β1)F (β2),

from which we get the continuous solution for F (β),

F (β) =

[
m

2π}2β

]1/2

eαβ

with α ∈ R. Furthermore, because our density matrix ρ0 is unnormalized, it must
be normalized with Tr ρ̂ when calculating the expectation values of observables,
see Eq. (1.6), and immediately we note that the F (β) cancels out. On the other
hand, below we will find, that α = 0. The method of variations in the classical
path can be widely used in evaluating path-integrals, but in this thesis we will
work in a different direction, from the discrete versions to continuous case.

To evaluate the discrete path-integral, one must return to the definition, Eq. (1.16),
and first, integrate and then take the limit. The integrand consists of a set of
Gaussian15 integrals, only. These can be integrated recursively (Feynman and
Hibbs, 1965, p. 42), by noting that

( m

2π}2τ

)2/2
∫ ∞

−∞

exp

[ −m
2}2τ

(
(x0 − x1)

2 + (x1 − x2)
2
)]

dx1

=
( m

2π}22τ

)1/2

exp

[ −m
2}22τ

(x0 − x2)
2

]
.

Next we multiply this result by the next term in the product (or sum), ρ0(x2, x3; τ),
and integrate again, this time over x2. The result is similar to the previous, expect
that (x0−x2)

2 becomes (x0−x3)
2 and factor 2τ is replaced by 3τ in the coefficient

and variance. In this way a recursion process is established, which, afterM steps,
gives

ρ0(x0, xM ;β) =

(
m

2π}2β

)1/2

exp

[ −m
2}2β

(x0 − xM )
2

]
, (1.18)

since Mτ = β.

Other, perhaps numerically more favoured method is the sc. staging method, see
Sprik et al. (1985b) for an introduction, more can be found e.g. in i Barberà (2002),
Martyna et al. (1999), Pollock and Ceperley (1984), Sprik et al. (1985a,b), Tucker-
man et al. (1993, 1996), where the coupled springs (xi−1 − xi)

2 can be decoupled
by defining new variables ui. The staging method has more advantages in com-
putational procedures.

15Johann Carl Friedrich Gauss, 30 Apr 1777–23 Feb 1855 (Brunswick, Duchy of Brunswick (now
Germany)–Göttingen, Hanover (now Germany))
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Starting as earlier, that is, writing the density matrix as a product of M high tem-
perature density matrices, and integrating, we arrive at

ρ0(x0, xM ;β) =

∫
ρ0(x0, x1; τ)ρ0(x1, x2; τ) · · · ρ0(xM−1, xM ; τ)dx1dx2 · · ·dxM−1

=

∫
ρ0(x0, xM ;β)

[
ρ0(x0, x1; τ)ρ0(x1, xM ; (M − 1)τ)

ρ0(x0, xM ;β)

]
×

×
[
ρ0(x1, x2; τ)ρ0(x2, xM ; (M − 2)τ)

ρ0(x1, xM ; (M − 1)τ)

]
× · · ·

×
[
ρ0(xM−2, xM−1; τ)ρ0(xM−1, xM ; τ)

ρ0(xM−2, xM ; 2τ)

]
dx1dx2 · · ·dxM−1,

where there are totallyM−1 different conditional probabilities for picking up the
next point, or bead, xi+1 based on the present bead xi and the final bead xM , in
square brackets. The intermediate beads are referred as to the staging beads, the
other beads as end point beads. Each of the square brackets must be evaluated.
By simple arithmetics the ith bracket can be written as

ρ0(xi, xi+1; τ)ρ0(xi+1, xM ; (M − 1− i)τ)
ρ0(xi, xM ; (M − i)τ)

=
[ mi+1

2π}2τ

]1/2

exp
[
−mi+1

2}2τ
(xi+1 − x̃i+1)

2
]
,

where we have defined

mi+1 =
M − i

M − 1− im

x̃i+1 =
xM + xi(M − 1− i)

M − i
and i = 1, . . . ,M − 2. Now, make the change of variables The inverse transformation is

xi = ui +
xM + (M − i)xi−1

M − i− 1
.u1 = x1

ui = xi − x̃i, i = 1, . . . ,M − 1.

Thus we arrive at The terms in Jacobian of transformation are

∂ui

∂xi
= 1 and

∂ui

∂xi−1
= −M − i− 1

M − i
and the determinant of the Jacobian becomes
according to the expansion by Minors

∂(u)

∂(x)
=

M−1Y

i=1

∂ui

∂xi
= 1.

Remember that
Z ∞

−∞
exp(−ax2)dx =

p
π/a.

ρ0(x0, xM ;β) =ρ0(x0, xM ;β)

M−1∏

i=1

∫ ( mi

2π}2τ

)1/2

exp

[−mi

2}2τ
u2

i

]
dui

=ρ0(x0, xM ;β)

because the Gaussian integrations are not coupled anymore, these can be inte-
grated straightforwardly. Thus we arrive at the same result as earlier, as is ex-
pected.

Now, after the integrations are completed and we have the discrete path-integral
Of course, there is plenty of different
methods to integrate the Gaussian functions,
see e.g. Feynman and Hibbs (1965, p. 43) for
one more.

density matrix for the free particle, the limit to continuous path-integral may be
taken. The limiting process is trivial, and the classical case, the discrete path-
integral representation and continuous path-integral scheme all yields the same
result as the density matrix formalism, Eqs. (1.11) and (1.18). By equating equa-
tions (1.17) and (1.18) we find that
∫∫

exp

[
−m
2}2

∫ β

0

(
dx(u)

du

)2

du

]
Dx(u) =

(
m

2π}2β

)1/2

exp

[ −m
2}2β

(x− y)2
]
,
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and thus, for the free-particle only the classical paths are required to get a correct
description of its dynamics (statistics), or differently stated, the result is inde-
pendent of the path. Furthermore, the classical paths are dependent only on theNote that

−m
2}2

Z β

0

„
dx(u)

du

«2

du

=
−m
2}

Z
}β

0

„
dx(τ)

dτ

«2

dτ.

boundary conditions, x(0) = x and x(β) = y.

The coefficient for the exponential term, also the variance divided by
√

2π, in
Eq. (1.18) shows the spatial width of a free particle at finite temperature. It is the
inverse of “thermal de Broglie16 wavelength”, and thus given the name Λβ, or
more formally stated,The thermal de Broglie wavelength is

originally defined for a free ideal gas of
massive particles in equilibrium.

Λβ =

(
2π}2β

m

)1/2

. (1.19)

For free ideal gas, when the Λβ � d, the interparticle distance, the gas can be
considered to be a classical or Maxwell-Boltzmann gas. If Λβ � d quantum effects
will dominate and the gas must be treated as a Fermi gas or a Bose gas, see Sec.
1.1.4.

1.3.2 INFINITE BARRIER

The easiest quantum mechanical problem of a particle confined in some region
are the problems of reflecting wall and infinite square well. We consider these ex-
amples using the finite-temperature path-integral formalism. The material used
here is extracted from the book of Schulman, (Schulman, 1981, p. 40 and p. 61–
63 and 156), and articles of Barker (1978), Fulling and Güntürk (2003), Goodman
(1981), Grosche (1993), Keller and McLaughlin (1975), Nevels et al. (1993). TheNote that, in rigorous qm there might be

problems, because the potential is not
differentiable everywhere, see Prugovecki

(1971).

potential function for infinite barrier (or hard wall) is

The Schrödinger solution for momentum
eigenstates is

〈x|p〉 =
(

1√
π}

sin(px/}) for x > 0

0 for x ≤ 0,

V (x) =
{ 0 for x > 0

∞ for x ≤ 0.

The potential can also be thought of as a restriction on the domain of position,
now we have ρ : R+ × R+ → R+ instead of the domain in R earlier. Even the
quantum mechanical tunneling to negative x-axis is forbidden. Nonetheless, it
is easy to expect that the solution is of the form of the free particle ρ0, but there
might be refinements arising from the boundary.

The solution can be written as

lim
β→0

ρb(x, y; β) = δ(x − y) − δ(x + y)

but the former delta function is zero
everywhere in the domain.

ρb(x, y;β) = ρ0(x, y;β)− ρ0(x,−y;β)

=

√
m

2π}2β

[
exp

( −m
2}2β

(x − y)2
)
− exp

( −m
2}2β

(x+ y)2
)]

(1.20)

= ρ0(x, y;β)− ρ0(−x, y;β).

The density matrix ρb satisfies the Bloch equation, Eq. (1.10a), because both terms
in the summation satisfy it. Also, the correct initial condition in the domain is

16Louis Victor Pierre Raymond duc de Broglie 15 Aug 1892–19 Mar 1987 (Dieppe, France–Paris)
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achieved, see Eq. (1.10b). Thus, because of uniqueness property of partial differ-
ential equations, the Eq. (1.20) must be the correct density matrix for the potential
barrier. Instead of just the mathematical jargon, there are two more path-integral,
or physical, justifications for the result.

The first method is called the method of images, and is based on physical intuition.
Because the particle is free on its domain, its density matrix would be closely
related to that of free particle. As we saw in Eq. (1.18), the free particle density
matrix depends only on the straight paths between the end points. Here, there Straight in Euclidean sense.

0−y y

B

x

Bounced path according to Goodman (1981).

are two such classical paths: one of a free particle and the other of a particle that
bounces off the wall on its way; thus its a path where the y is reflected about
the line y = 0 to −y and then constructed the new free particle path from x to
−y, giving ρ0(x,−y;β). By applying the Feynman17 summation over the classical
paths, the result is almost that given in Eq. (1.20), the only difference being the
phase factor in reflected path, here its by the boundary condition −1 = exp(ıπ).
Schulman (1981, p. 40) argued, that the phase factor might be exp(ıπ/2) because
of a turning point, but there is no way for a phase of π to occur in one dimension!

Goodman (1981) argues that every path must be counted, and that there is no a
priori reason for preferring the classical paths. Furthermore, the reflected path is
not even physically allowed, since it intersects at one point the forbidden region
x ≤ 0.

The second method, introduced by Goodman (Goodman, 1981), concentrates on

x xf

Forbidden and allowed path according to
Goodman (1981).

all these forbidden paths, where the trajectory xf (τ) < 0 for some τ . Consider
an arbitrary forbidden path xf (τ) from x(0) = x to x(τ) = y and let τmax be
the maximum time slice for which x(τ) < 0. Clearly τmax exists because x(τ) is
continuous. Now, define a permitted path x(τ) in R from x to −y such that For the continuity of paths, see sec. 1.4.3.

Note that
Z β

0
ẋ2
f (τ)dτ =

Z β

0
ẋ2(τ)dτ.

x(τ) =
{ xf (τ) for τ ≤ τmax

−xf (τ) for τ > τmax.

Thus, the mapping between forbidded and permitted paths is bijective, and we A function f : A→ B is bijective if it is both,
surjective (onto) and injective (one-to-one). f is
onto, if f(A) = B. f is injective, if
f(x) = f(y)⇒ x = y.

see, while keeping the continuous free particle density matrix, Eq. (1.17), in mind,
that

∫∫ y

x

exp

[
− 1

}2

∫ β

0

m

2
ẋ2

f (τ)dτ

]
D(xf ) =

∫∫ −y

x

exp

[
− 1

}2

∫ β

0

m

2
ẋ2(τ)dτ

]
D(x)

and we may conclude that, the second term in Eq. (1.20) cancels exactly the con- Furthermore, there is a third method for
obtaining the same result. It is based
eigenfunction expansion, which is based on
presenting the propagator in form of
Dirac-delta functions, see Grosche (1993).

tribution from the forbidden paths in the first term. This method is called the
forbidden path method.

17Richard Phillips Feynman, 11 May 1918–15 Feb 1988 (Far Rockaway, New York–Los Angeles,
California
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1.3.3 PARTICLE IN A BOX

The problem of infinite square-well potential can be solved using the same meth-
ods described earlier. Thus, the image, forbidden paths and eigenfunction-expan-The Schrödinger solution reads

〈x|n〉 =
r

2

L
sin
“ n
L
πx
”

En =
π2}2n2

2mL2
≡ E1n

2.

sion methods are available here, too. The potential is of the form

V (x) =

{∞ for x < 0

0 for 0 < x < L

∞ for x > L,

but the system can also be thought as being in a manifold, or a restriction ofA manifold is a topological space that is
locally Euclidean. One of the goals of

topology is to find ways of distinguishing
manifolds.

space, with x ∈ [0, L].

The particle confined in a box can bounce from the walls infinitely many times,
and thus, the method of images must be used repeatedly. We get,

ρw(x, y;β) =
∞∑

r=−∞

(−1)rρ0(x, xr;β), (1.21)

whereBecause we are doing nonrelativistic qm, we
are not supposed to worry about the fact that

the speed of these paths becomes arbitrary
large as |r| increases. xr =

{ rL+ y for r even
(r + 1)L− y for r odd

and ρ0(x, xr ;β) is the density matrix for a free particle, Eq. (1.18). The density
matrix ρw(x, y;β) is a sum over all paths by which a particle could travel from
the source point x to the point y, obeying classical mechanics. We may interpret
x − xr as the separation between x and the original source point y along a path
that winds around the original circular space several times. The integer r can be
though as a winding number.

The density matrix (1.21) is periodic in x with period L and hence satisfies the
boundary conditions. Furthermore, it satisfies the correct differential equation,
and for x and y both between 0 and L it has the right initial conditions, because
the term for n = 0 reproduces the needed delta function while the other terms
vanish. Therefore, it must be the correct propagator, as described in Fulling and
Güntürk (2003).

As in the case of infinite barrier, the result, Eq. (1.21), can be justified with the path
−2 0 2 4
0

1

2

3

4

5

6

7

8

9

t
1
, n

1
 = 1

t
2
, n

2
 = 2

t
3
, n

3
 = 1

t

r

The cancelling paths. There are eight (23)
different paths, (Goodman, 1981).

cancellation (Goodman, 1981). Let xf (τ) : [0, β] → R be a forbidden path, with
xf (0) = x and xf (τ) = y. This path intersects some of the lines x = rL, where
r ∈ Z is an integer. Define τni

to be the largest time slice, when xf (τ) = niL before
xf (τ) terminates or intersects any other these lines. Let nk be the last vertical line
that the path intersects—at time slice τnk

. Now, the original path can be reflected
to give 2k (if k is finite) new paths with the end-points x(τ) at image points, by
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Figure 1.1: Particle in a potential well. In the figure, the square of two lowest
energy states are drawn (solid). Also, path-integral diagonal density matrix,
Eq. (1.21) is shown (dashed). The lower path-integral density is for r = 0

only. The other, that matches exactly with the Schrödinger result, is for r =

{−1, 0, 1}. Note that, the Boltzmann factor for the second and higher states
is zero at “normal” temperatures. The structure parameters are m = 1, L =

1.

using e.g. following relation

x1(τ) = xf (τ)

...

x2i+j(τ) =
{ 2nk−iL− xj(τ) for τ ≥ τk−i

xj(τ) for τ < τk−i.

These 2k paths belong to the same equivalence class because they can be trans- An equivalence class is defined as a subset of
the form {x ∈ X|xRa}, where is a an
element of X and the notation "xRa" is used
to mean that there is an equivalence relation
between x and a.

formed into each other by reflection. All these distinct 2k paths have the same
free-particle action, because the square of the velocity is unchanged except at a
finite number of points, which is a set of measure zero. Furthermore, an equal
number of the reflected paths terminate at even-numbered as odd-numbered im-
age points, as can be seen in the definition of the reflection process, resulting in
a zero net effect. Thus, the path-integration over the forbidden paths yields zero,
or differently stated

∞∑

r=−∞

∫∫ y

x

exp

[
m

2}

∫ β

0

ẋ2
f (τ)dτ

]
Dxf (τ) = 0.

The only approximation is that the path is somehow well behaved, a sufficient
condition being that it is piecewise continuously differentiable (Goodman, 1981).
In general, they are not. However, if the path-integral is the limit of integrals over
piecewise linear paths, the above arguments are valid, and Goodman argued,
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that if they are valid at each step in the limiting process, then they are valid in the
limit.

We conclude that the image points cancel the contribution of the free particle
propagator ρ0(x, y;β) from paths that enter the forbidden regions x ≤ 0 and
x ≥ L.

Furthermore, by using the intermediate result in deriving the free-particle density
matrix, Eq. (1.13), the path-integral density-matrix for the particle in a box can be
calculated (Goodman, 1981) to give

ρw(x, y;β) =
1

2π}

∞∑

r=−∞

∫ ∞

−∞

[
exp

(
−βp

2

2m
− ıp

}
(x− 2rL− y)

)

− exp

(
−βp

2

2m
− ıp

}
(x − 2rL+ y)

)]
dp

=
1

2π}

∫ ∞

−∞

exp

(
−βp

2

2m

)
exp

(
− ıpx

}

) [
2ı sin

py

}

] ∞∑

r=−∞

exp

(
2ırLp

}

)
dp.

The sum over r is easily evaluated by the Poisson sum rule,The summation in DN (u) =
PN
n=−N eınu

is a finite geometric series, and the sum
equals DN = sin((N + 1

2
)u)/ sin(u/2).

DN (u) is called the Dirichlet kernel. It has
period 2π, and

R π
−π DN (u)du = 2π.

Furthermore, limN→∞DN (u) = 2πδ(u).
By extending the integration limits ad

infinum, we get the Poisson18 sum formula

∞X

n=−∞
eıbnu =

2π

b

∞X

m=−∞
δ

„
u−m2π

b

«
.

∞∑

r=−∞

exp

[
ı
2L

}
pr

]
=

}π

L

∞∑

n=−∞

δ(p− }π

L
n),

where the Dirac delta function is in a distribution sense, thus it picks out the
values p = }πn/L of the integral over momentum, p. Thus, we are left with

ρb(x, y;β) =
ı

L

∞∑

n=−∞

exp (−βEn) exp(−ıknx) sin(kny),

where En = (1/2m)(πn}/L)2 and kn = πn/L. Now, because sin 0 = 0, the term
with n = 0 vanishes, and the positive and negative terms in summation index
can be combined

ρb(x, y;β) =
2

L

∞∑

n=1

exp (−βEn) sin(kny) sin(knx),

which is the familiar result from the Schrödinger formulation of the very same
problem.

1.3.4 PERIODIC BOUNDARY CONDITIONS

In the previous problem, the domain of the free particle was restricted to an areaThe three most important boundary
conditions are (1) Dirichlet: ρ; (2) Neumann

∂ρ/∂n; (3) Robin ∂ρ/∂n+ αρ is specified on
the boundary.

[0, L] with zero boundary conditions. Here, on the other hand, the actual problem
is the same, but the conditions laid on density matrix are different. The charac-
teristic is that the points x and x + L of density matrix are identified. Usually,
in solid state physics, these boundary conditions are called Born20–von Kármán21

20Max Born, 11 Dec 1882–5 Jan 1970 (Breslau (now Wroclaw), Prussian–Göttingen, Germany )
21Theodore von Kármán, 11 May 1881–6 May 1963 (Budapest, Austria-Hungary–Aachen, Ger-

many)
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condition when applied on wave function. This can be thought also as the particle
is constrained to a circle. This space is the group manifold of the

group SO(2), and with this metric, it is flat
(Schulman, 1981).For the travelling waveψ(x) = L−1/2 exp(±ıkx) the periodicity of density implies

that |ψ(x)|2 = |ψ(x + L)|2. Thus, it immediately follows that ψ(x) = Cψ(x + L)

for any C such that |C|2 = 1. We find that

ψ(x) = CL−1/2ψ(x+ L)⇒ 1 = Ce±ıkL.

We therefore have a solution to k, actually k = 2πn/L where n ∈ Z. Thus, the
travelling wave with periodic conditions is ψn(x) = L−1/2 exp(±2πınx/L). The
eigenvalue (-energy) of this eigenfunction of the Laplacian with periodic bound-
ary condition is readily calculated, and we find that

−}2

2m
∇2ψn(x) =

2}2π2n2

mL2
ψn(x),

which gives that En = 2}2π2n2/(mL2). Armed with this representation of wave
functions, we can employ the Boltzmann summation, Eq. (1.12) or Eq. (1.1), to get
the density matrix, For time-dependent density the

path-integral solution can be found
straightforwardly, see Schulman (1981, p.
193–195).ρpbc(x, x

′) =
1

L

∞∑

n=−∞

[
exp

(
−2}

2π2

mL2
β

)]n2

exp

(
2πın

L
(x′ − x)

)
(1.22a)

=
1

L
ϑ3 (z, q) . (1.22b)

In the last line the definition of Jacobi22 theta function, ϑ3, is used to simplify the The Jacobi theta functions are the elliptic
analogs of the exponential function, and
may be used to express the Jacobi elliptic
functions. These are quasi-doubly periodic.

notation. The abbreviations z and q denote

z =
π

L
(x′ − x)

q = exp

(
−2}2π2

mL2
β

)
.

However, if the Gaussian is sharply peaked, or β}2/m � L2, the summation in
Eq. (1.22a) can be changed to integral which can be done exactly, giving

ρpbc(x, x
′) =

√
m

2π}2τ
exp

(
− m

2}2τ
(x− x′)2

)

for the high-temperature τ . This is the free particle density matrix, given already
in Eq. (1.11).

1.4 GENERAL PATH-INTEGRALS

So far we have been concentrating on the trivial example of free-particle and
some modifications of that. Thus, the introduction part to the path-integrals is
clear, and we can proceed deeper to the realms of path-integrals. There are many

22Carl Gustav Jacob Jacobi, 10 Dec 1804–18 Feb 1851 (Potsdam, Prussia (now Germany)–Berlin,
Germany)
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different routes to the general path-integral formalism; here we first propose the
perturbation theory, and second the Trotter expansion. In the last subsection here,
we show the mathematical problems and definitions and also the time-dependent
path-integral.

1.4.1 PERTURBATION EXPANSION

Let the Hamiltonian operator be Ĥ = T̂ + V̂ where T̂ the is part of the Hamil-
tonian which can be solved analytically. In the following T̂ is supposed to be
kinetic energy Hamiltonian, but there is no restriction to that only. The Bloch
equation, Eq. (1.10a), describes the quantum evoluation of both ρ̂0 = exp(−βT̂ )

and ρ̂ = exp(−βĤ), with the corresponding Hamiltonian operators. We assume
(Feynman, 1972) that ρ̂(β) is close to ρ0(β). Let us calculate the differential

∂

∂β
(eβ bT ρ̂) = eβ bT V̂ ρ̂(β).

Thus, by integrating both sides of the previous equation from β′ = 0 to β, and
multiplying it from left with e−β bT = ρ̂0(β) we get the density operator ρ̂(β) that
is subject to a small perturbation V̂Contraction: Let (M, d) be a metric space. A

mapping f : (M,d)→ (M, d) is a
contraction, if ∃ α ∈ (0, 1) such that

d(f(x), f(y)) ≤ αd(x, y) ∀x, y ∈M . Let f
be a contraction. Then by Banach fixed point

theorem f has exactly one fixed point.

ρ̂(β) = ρ̂0(β) −
∫ β

0

ρ̂0(β − β′)V̂ ρ̂(β′)dβ′. (1.23)

This should be compared to Dyson’s23 equation, G = G0 + GV G0. Again, mul-
tiplying Eq. (1.23) from left with bra 〈x| and right with ket |y〉 and inserting an
identity operator Î =

∫
|y′〉〈y′|dy′ between ρ̂0 and V̂ in the integral, it gives the

coordinate representation (or density matrix) of the perturbation expansion

ρ(x, y;β) = ρ0(x, y;β)−
∫ ∞

−∞

∫ β

0

ρ0(x, y
′;β − β′)V (y′)ρ(y′, y;β′)dβ′dy′

because 〈y′|V̂ = V (y′)〈y′| for any diagonal potential operator V̂ : H → R. Actu-
ally, by iterating this procedure (by inserting the ρ(β) in Eq. (1.23) to the integral
in Eq. (1.23)), we get the Feynman diagrams used widely in the fields of many-
body and high-energy physics. For small β = τ , we can approximate ρ(τ) with
ρ0(τ) in the convolution term rather accurately,

ρ(x, y; τ) ≈ ρ0(x, y; τ) −
∫ ∞

−∞

∫ τ

0

ρ0(x, y
′; τ − τ ′)V (y′)ρ0(y

′, y; τ ′)dτ ′dy′.

The Gaussians are very localized at small τ , thus most of the contribution to the
integral over y′ occurs near y′ = x0, whereThe extremum is found when the argument

in exponential of ρ0(x, y′; τ − τ ′)×
ρ0(y′, y; τ ′) is zero. By differentiating the

argument respect to y′, and solving for y′ we
get the desired result, x0.

x0 =
τ ′x+ (τ − τ ′)y

τ
.

23Freeman John Dyson, 15 Dec 1923– (Crowthorne, Berkshire, England)
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The convolution becomes simple, because

ρ(x, y; τ) ≈ ρ0(x, y; τ) −
∫ τ

0

V (x0)

∫ ∞

−∞

ρ0(x, y
′; τ − τ ′)ρ0(y

′, y; τ ′)dτ ′dy′

= ρ0(x, y; τ) −
∫ τ

0

V (x0)dτ ′ρ0(x, y; τ)

≈ ρ0(x, y; τ) − τV (x)ρ0(x, y; τ)

if x ≈ y and consequently x0 is close to x and V (x0) is constant over the range of
integration. This is acquired by the assumption that |x−y| and τ are small. Thus, Feynman gives some more approximations

for the integral, e.g. (τ/2)(V (x) + V (y)) or
τV ((x+ y)/2) but says that the original is
accurate enough. The former approximation
satisfies the hermitian property, and gives
the same result for the discrete path-integral.

we arrive at the solution (Feynman, 1972, p. 75), that

ρ(x, y; τ) ≈ ρ0(x, y; τ) [1− τV (x)] ≈ ρ0(x, y; τ)e−τV (x).

So, the discrete path-integral representation for the particle in a potential V (x) is
given by

ρ(x0, xM ;β) ≈
[
mM

2π}2β

]M/2 ∫
exp

[
−β

M∑

n=1

(
mM

2}2β2
(xn−1 − xn)2 + V (xn)/M

)]

which is, as shown, only an approximate solution, and requires that (1) the po-
tential V (x) is constant between two adjacent points, xn−1 and xn. By increasing
M , the distance between adjacent points xi and xi−1 becomes smaller, because of
the harmonic potential term in the exponential.

1.4.2 TROTTER EXPANSION

In the previous section, the discrete path-integral representation was achieved by
using the perturbation expansion for the density matrices. Here, on the contrary,
we stay in the path-integral formalism, and find out, in which conditions exp(X̂+

Ŷ ) can be written as a product exp(X̂) exp(Ŷ ). This is preferable, because usually
X̂ and Ŷ are trivially diagonalizable, as is already seen for T̂ and V̂ . The problems
arise, however, because the operators do not generally commute.

If the (C0) class operators, or semigroups, Tt and T ′
h, commutes we find that the A contraction semigroup on Banach space X

is a family of bounded everywhere defined
linear operators Pt, 0 ≤ t <∞mapping
X → X such that (a) P0 = 1, (b)

PtPs = Pt+s and ‖Pt‖ ≤ q, 0 ≤ t <∞ and
(c) limt→0 Ptf = f . The term contraction
comes from the fact that ‖Pt‖ ≤ 1.

semigroup condition Tt+s = TtTs is satisfied for semigroup Ua,t = T ′
tT

′
at because

Ua,t+s = TtT
′
a(t+s) = TtTsT

′
atT

′
as = TtT

′
atTsT

′
as = UatUas.

(The rigorous proof is given in Trotter (1959)). This suggests that a “product semi-
group”

Sa,t = lim
h→0

(ThT
′
ah)t/h

is also a semigroup for noncommutative semigroups. Here, we restrict the case
to semigroups of type exp(−τX̂) and wish to show that if T̂ and V̂ are linear
operators on a Banach space X then

e−β( bT+bV ) = lim
M→∞

(e−β bT/M e−β bV /M )M . (1.24)
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The operators T̂ , V̂ and Ĥ ≡ T̂ + V̂ are infinitesimal generators of the contraction
semigroups exp(−τ T̂ ), exp(−τ V̂ ) and exp(−τĤ) = exp(−τ(T̂ + V̂ )), respectively.
Unfortunately, the proof is too technical to show here, but it is described well in
Trotter (1959) and Schulman (1981).The generator bA of Pt is the operator

defined by bAf = limt→0 t−1(Pt − 1)f on
the domain D( bA) of all f ∈ X for which the

limit exists.
In the noncommutative case, Trotter found it necessary to impose a condition on

The norm used above is defined as follows
‖Q‖ = infβ∈B β where

B = {β|‖Qx‖ ≤ β‖x‖ ∀ x ∈ X} and ‖x‖ is
the norm in X.

the norms of exp(−τ T̂ ) and exp(−τ V̂ ), that is ||e−τ bV || ≤ Meωτ for all τ > 0.
Applying this to potential operator V̂ , we get

||e−τ bV ψ|| =
∫

e−τV (x)ψ∗(x)e−τV (x)ψ(x)dx ≤
∫

e−2τV (x)dx.

There are potentials, e.g. Coulomb potential, which are not bounded from below,
and thus do not satisfy the criteria needed by the Trotter formula.

The Trotter formula holds only in the limit, thus at some finite M we introduceError term, or a Landau symbol, was
introduced by Paul Bachmann in 1894, in the

2nd vol. of Analytische Zahlentheorie. It was
popularized by Edmund Landau. The big-O

(order of ), was originally a capital omicron.

an error term. For τ = β/M we find

e−τ( bT+bV ) = e−τ bT/M e−τ bV /M + o(τ)

with error term o(τ). In path-integral scheme, we need to multiply these sums
M times, and thus there will be an error term

∑M
i=1 o(τ

M ). However, the Trotter
formula, Eq. (1.24), ensures that thoughM →∞ the overall error term stays small
and reduces to finally zero.

According to the Trotter formula, the short-time, or high-temperature density ma-
trices ρ(xi, xi+1; τ) in expansion Eq. (1.15) can be written as aNote that exp( bX) =

P∞
n=0

bXn/n!.

ρ(xi, xi+1; τ) ≡ ρ0(xi, xi+1; τ)ρ1(xi+1; τ) + 〈xi|o(τ)|xi+1〉

for diagonal operators V̂ , see Eq. (1.7). The one-particle density matrix for theNote that

ex = lim
n→∞

„
1 +

x+ yn

n

«n
.

potential term is ρ1(xi+1; τ) = exp(−τV (xi+1)), and it includes the external po-
tential and interactions between particles. Assuming that the error term o(τ) is
negligible, we find that the discrete path-integral representation for the particle
in a potential V (x) at temperature β is

ρ(x0, xM ;β) ≈
[
mM

2π}2β

]M/2 ∫
exp

[
−β

M∑

n=1

(
mM

2}2β2
(xn−1 − xn)2 + V (xn)/M

)]

which is, as shown, only an approximate solution, and requires that (2) the po-
tential V (x) is bounded from below and that (3) the error term o(τ) = o(β/M) is
negligible.

HIGHER ORDER EXPANSIONS

The Trotter formula uses only the first term in the series ln(exp X̂ exp Ŷ ). It en-
sures that by using the first-order approximation, the discrete path-integral den-
sity matrix will converge to the correct density matrix as the Trotter number M
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approaches some higher integer, preferably infinity. However, by introducing
higher order approximations in the exponential product, the convergence may
be more certified and, furthermore, more rapid allowing the study of more com-
plicated systems with reasonable CPU time in computations.

By writing out the formal power series for ln(exp X̂ exp Ŷ ), we get the sc. Haus-

e
bX =

∞X

n=0

bXn

n!

ln(1 + bX) =
∞X

n=1

(−1)n−1

n
bXn.

dorff24 series

Ĥ = X̂ + Ŷ + 1
2 [X̂, Ŷ ] + 1

12 ([X̂, [X̂, Ŷ ]]− [Ŷ , [X̂, Ŷ ]])− 1
24 [X̂, [Ŷ , [X̂, Ŷ ]]] + · · ·

= X̂ + Ŷ + 1
2 [X̂Ŷ ] + 1

12 ([X̂2Ŷ ]− [Ŷ X̂Ŷ ])− 1
24 [X̂Ŷ X̂Ŷ ] + · · ·

with higher order terms, which are dependent on commutator of X̂ and Ŷ . The
long commutator [Â1Â2 · · · Ân] = [A1, [A2, [· · · [An−1, An]]]] is a usual shorthand
notation for commutators. The formal calculation is not very convenient, and
within the framework of Lie25 algebra more can be done. Originally the series Lie Algebra is a nonassociative algebra

obeyed by objects such as the Lie bracket
and Poisson bracket.

ln(exp X̂ exp Ŷ ) was used to define a multiplication law in Lie groups associated
to a given Lie algebra (Kurlin, 2006). The series contains commutators of all order
and E. Dynkin26 found a closed formula for the series, and nowadays, it is called
Baker27 –Campbell28 –Hausdorff formula

ln(e bXebY ) =

∞∑

n=1

(−1)n−1

n

∑

pi,qi≥0
pi+qi>0

[X̂p1 Ŷ q1X̂p2 Ŷ q2 · · · X̂pnŶ qn ]

p1!q1! · · · pn!qn!
∑n

i=1(pi + q1)
,

and it provides us with the higher order correction terms. The proof is not pre-
sented here, see Kleinert (2004, p. 179), Kurlin (2006) or any standard Lie algebra
text book. Both expansions shown here indicate that if the variables X̂ and Ŷ

commute then ln(exp X̂ exp Ŷ ) = X̂ + Ŷ . The Hausdorf series is not useful as is,
but when then changing the infinity in the summation to some smaller integer,
e.g. to 1 or 2 we get useful approximations.

The higher order terms can be used to obtain better discrete approximations to Symplectic integrator is a numerical
integration scheme.path-integrals, or even in generating better symplectic integrator to the solving

of time-dependent Schrödinger equation (Chin and Chen, 2001). De Raedt and
De Raedt (1983) introduced the Hermitian approximation Hermitian property is important when

calculating expectation values for operators
which are not diagonal in the position
representation.

e−τ( bX+bY ) = g4(X̂, Ŷ ) +O(τ5)

= e−τ bX/2e−τ bY /2e−τ3 bC3/2e−τ bY /2e−τ bX/2 +O(τ5)

with C3 = [[Ŷ , X̂ ], X̂ + 2Ŷ ]. They applied this to the harmonic oscillator and [[y, x], x+ 2y] =

4yxy − 2xyx+ yx2 − 2xy2 + x2y − 2y2x.double well potential, and found that they converge much faster than the original

24Felix Hausdorff, 8 Nov 1868–26 Jan 1942 (Breslau, Germany (now Wroclaw, Poland–Bonn, Ger-
many)

25Marius Sophus Lie, 17 Dec 1842–18 Feb 1899 (Nordfjordeide, Norway–Kristiania (now Oslo))
26Eugene Borisovich Dynkin, 11 May 1924– (St Petersburg)
27 Henry Frederick Baker, 3 Jul 1866–17 Mar 1956 (Cambridge, England–Cambridge, Cam-

bridgeshire)
28John Edward Campbell, 27 May 1862–1 Oct 1924 (Lisburn, Co Antrim, Ireland–Oxford, Oxford-

shire,England)
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Trotter expansion. Li and Broughton (1987) followed the work of De Raedts and
found two more equally good approximants to g4 by using the cyclic property of
the trace, and found that a new averaged approximant would be

g
(4)
4 = 2

3g4(X̂, Ŷ ) + 1
3g4(Ŷ , X̂)

= e−τ bX/2e−τ bY /2e−τ3 bC′

3
/24e−τ bY /2e−τ bX/2,

where C ′ = [[Ŷ , X̂], Ŷ ] = }
2

2m (∇V )2when the definitions of X̂ = T̂ = }
2

2m∇2

and Ŷ = V are introduced. Thus, C ′ is only a function of coordinate and not
of momentum. This approximant is applied to harmonic oscillator and double-
well potentials, but also to the e–Li+ system and the hydrogen atom, see Li ande–Li+ interaction is modelled with a

pseudopotential. Broughton (1987) and Burghard et al. (1998). Barberá demonstrated the use of
these higher-order approximants in his PhD Thesis (i Barberà, 2002), also. For the
harmonic oscillator V = 1

2mω
2x2 we find that applying the correction C ′, results

in an effective frequency ωeff = (1 + τ2ω2/12)ω.

1.4.3 FEYNMAN–KAC FORMULA

The continuous path-integral is obtained by allowing τ to approach zero with the
constraint that Mτ = β, thus

ρ(x, y;β) = lim
M→∞
Mτ=β

∫
ρ(x, x1; τ) · · · ρ(xM−1, y; τ)dx1 · · ·dxM−1

= lim
M→∞
Mτ=β

( m

2π}2τ

)1/2
∫

exp

[
−

M∑

i=1

( m

2}2τ
(xi−1 − xi)

2 + τV (xi)
)]

× dx1√
2π}2τ/m

· · · dxM−1√
2π}2τ/m

. (1.25)

The Eq. (1.25) can be thought as a “continuous” path (trajectory) of a particleThe Wiener measure and Wiener integral can
be defined in a similar way. moving from a point x to x1, then from x1 to x2 and so on until it reaches the

end-point y. Here, the path is constructed by connecting all the adjacent points
xi and xi+1 with a straight line, but instead of that, some other interpolation
scheme, e.g. sections of the classical orbit (Andersson and Driver, 1999, Feynman
and Hibbs, 1965), could be used. By integrating over the intermediate points, weIt should be shown that the result is

independent of interpolation scheme, to get
the Riemann/ Lebesgue integral.

include all the paths from x to y, and the limiting procedure allows us to make a
more representative sample of all the paths in between x and y. As the time slice
interval τ → 0 together with M →∞, the resulting integral could be interpretedAlthough, Eq.(1.26) is an integral over paths,

the definition, Eq. (1.25), does not involve
paths; the variables xi are independent

variables of integration.

as a single integral over the space of functions f : [0, β]→ R rather than multiple
integrals over the underlying configuration space (Valtakoski, 2000).

After a similar limiting process as the one shown in Section 1.3.1, we get the
Feynman29 –Kac30 formula for the density matrix ρ(x, y;β) in Eq. (1.25). It can be
written formally asThe definition for the path-integral,

Eq. (1.26), is given in Eq. (1.25).

Note that the derivative ẏ is to be calculated
to nondifferentiable paths, see below.

29Richard Phillips Feynman, 11 May 1918–15 Feb 1988 (Far Rockaway, New York–Los Angeles,
California)

30Mark Kac, 3 Aug 1914–26 Oct 1984 (Krzemieniec, Poland, Russian Empire–California, USA)
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ρ(x, y;β) =

∫∫
exp

[
−
∫ β

0

(
1
2mẏ

2 + V (y)dτ
)
]
Dy(τ) (1.26)

with boundary conditions y(0) = x and y(β) = y, for continuous V or having Actually, the Kolmogorov continuity
theorem assures the continuity.at most finite number of discontinuities. It should be noted that in the exponent

of Eq. (1.26) is the integral of the Euclidian Lagrangian31 function with negative Lagrangian bL = bT − bV with inverse
potential: bV → −bV gives Euclidian
Lagrangian bL = bT + bV = bH, a Hamiltonian.

potential, also called an Euclidian or imaginary time action or an action integral.

The “measure”Dy(τ) appearing in Feynman–Kac formula is problematic. In this
case it is thought (or defined) as an infinite product of Lebesgue32 measures

Dy(τ) = lim
M→∞

dy1√
2π}2τ/m

· · · dyM−1√
2π}2τ/m

,

but neither it, nor the normalization constant (m/2π}
2τ)1/2, has the limit of their

own. Strictly speaking, the expression above is meaningless because there is no
translational invariant (Lebesgue) measure in infinite dimensions, see Andersson
and Driver (1999), Bodmann et al. (1997), and thus the heurestic interpretation of
the “measure” Dy is somewhat ambiguous in the literature, see Andersson and
Driver (1999) for discussion.

The solution is to introduce Wiener’s33 measure. It was originally constructed as a
mathematical model for the phenomenon of Brownian34 motion. Mark Kac iden-
tified it as the key to a probabilistic representation of Schrödinger semigroups The expectation occurring in this

representation is of the same type that occurs
in derivative security pricing.

(Bodmann et al., 1997) and found that a similar representation could be given for
solutions of the heat equation with external cooling terms.

The Wiener space W ([0, T ]; R), T > 0 is the space of continuous paths from pos-
itive interval [0, T ] into Euclidian space R which start at the origin, y(0) = 0, or
differently stated (Andersson and Driver, 1999, Bodmann et al., 1997)

W ([0, T ]; R) = {y : [0, T ]→ R : y(0) = 0 and y is continuous}.

The Kolmogorov35 extension theorem states that there exists a unique measure on
the space of paths in R, the and Wiener measureDwy associated the Wiener space
is the unique probability measure on W ([0, T ]; R). It is a Gaussian probability
distribution (or measure) on the space of continuous paths y. Furthermore, the
measure Dwy is concentrated on continuous but nondifferentiable paths for al- Stochastic process x is differentiable at t, if

∃yt with finite variance such that

lim
h→0

xt+h − xt
h

= yt ≡ x′.

most all τ , these are the Brownian paths, which renders the exponent in Eq. (1.26)

It can be shown that only (almost
everywhere) nondifferentiable Brownian
paths have a nonzero Wiener measure.

meaningless. The brownian paths are of fractal nature, having Hausdorff dimen-
sion larger than 1. It is easy to see, e.g. Abbot and Wise (1981), that the Hausdorff
dimension of a one-dimensional quantum path is 2.

Since Dy is a positive, countably additive and has a normalized measure, the
powerful machinery of general integration and probability theory is at hand for

31Joseph-Louis Lagrange, 25 Jan 1736–10 Apr 1813 (Turin, Sardinia-Piedmont (now Italy)–Paris)
32Henri Léon Lebesgue, 28 June 1875–26 July 1941 (Beauvais, Oise, Picardie, France–Paris)
33Norbert Wiener, 26 Nov 1894–18 Mar 1964 (Columbia, Missouri, USA–Stockholm, Sweden)
34Robert Brown, 21 Dec 1773– 10 Jun 1858 (Montrose, Scotland–London))
35Andrey Nikolaevich Kolmogorov, 25 Apr 1903–20 Oct 1987 (Tambov, Tambov province, Russia–

Moscow, Russia)
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the computational estimation of Wiener integrals
∫∫
f(y)Dy, where f is a function

of the paths (Bodmann et al., 1997). Thus, the concept of stochastic integrals al-
lows to give precise meaning in a suitable probabilistic sense to (line) integrals of
the form given in Eq. (1.26).

Some cautions, or remarks, should be noted when dealing with the Feynman–
Kac formula. First, transformations of coordinates in Eq. (1.26) seem to be easy.
However, problems arise, because the paths that contribute to the value of the
integral are nondifferentiable. Thus instead of the normal limiting process, more
attention to the process should be paid. Second, the discretization from contin-
uous x to some discrete xi should be made with care. Actually, one can use in-
finitely many discretizations, xi +λ(xi−1−xi), where λ ∈ [0, 1], but it can shown,
see Valtakoski (2000, p. 23), that all these discretizations yield different results.
Schulman points out this by noting that it is not clear where the vector potential
A(x) should be evaluated (Schulman, 1981, p. 23). In case of magnetic fields, the
midpoint rule is the correct one. In quantum mechanics, fortunately, we always
have the Schrödinger equation to check the correct discretization.

1.4.4 TIME-DEPENDENT PATH-INTEGRAL

By a strict inspection of the Bloch equation, which is shown in the beginning
of the thesis, Eq.(1.10a), we note that by a change of variable β → ıt it trans-The change of variables, β → ıt, is also

called Wick rotation, or analytic continuation
of β to the complex plane.

forms into time-dependent Schrödinger equation. By making a similar change
of variables in the evolution of Eq. (1.26), we get the time-dependent quantum
mechanical density matrix,

ρ(x, y; t) =

∫∫
exp

[
ı

∫ t

t0

(
1
2mẏ

2(t′)− V (y(t′))dt′
)]
Dy(t′)

instead of quantum statistical. Now, there is the Lagrangian in the exponential in-
stead of total energy Hamiltonian, resulting in an “imaginary variance” in Gaus-
sian functions. Furthermore, the imaginary unit ı is plaguing the density matrix.

A lot of work have been laid out to put the time-dependent problem on solid
ground, because there is the problem that there cannot be such a measure to
satisfy the time-dependent density matrix. The theory of measure can be gen-
eralized to complex measures, but this is not even a complex measure. No such
countably additive measure exists due to the imaginary factor ı that makes theA mapping µ is a measure if (1) µ(∅) = 0

and (2) µ(∪∞i=1Ei) =
P∞
i=1 Ei for disjoint

sets Ei.
exponential oscillating. There is no measure-theoretic definition of the Feynman
integral, it is only a linear functional, instead of a functional integral (Valtakoski,
2000, p. 30). There are, however, several definitions which do not use a measure
at all (Keller and McLaughlin, 1975). For example, see the work of Cécile Morette
DeWitt Cartier and DeWitt-Morette (1995), DeWitt (1972), Laidlaw and DeWitt
(1971), Keller and McLaughlin (1975) or Valtakoski (2000) for references.

Furthermore, it can be shown, that the time-dependent path-integral density ma-
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trix satisfies the Schrödinger equation, and thus is correct from the physical point The Schrödinger equation is a differential
equation for ψ which is of first order in t and
of second order in x, so it is like the heat
equation, but differs by having a factor ı.
Because its solutions are wave-like, ψ is also
called the wave function of the particle
(Keller and McLaughlin, 1975).

of view. Furthermore, almost all quantum mechanical problems that can be solved
from the Schrödinger formalism can be solved also by means of path integration
(Grosche and Steiner, 1995).

1.5 DISCRETE PATH-INTEGRALS

Now the idea and concept of of path-integrals should be clear, but the useful
results are hidden in the numerous previous pages. Thus, a brief summary is
given here.

The evolution of density matrix at finite temperature T is governed by the Bloch For example, for a two-particle system at
high temperature or low τ the total density
operator bρ is a product of three terms,
bρ ≈ bρ0bρ1bρ2, where we have the free-particle
density operator, bρ0, the density operator for
the external potential, bρ1, and the density
operator for the interaction between
particles, bρ2. Thus, the density matrix is

〈x1
i−1x

2
i−1|bρ(τ)|x1

i x
2
i 〉

≈〈x1
i−1x

2
i−1|bρ0bρ1bρ2|x1

i x
2
i 〉

=

Z
〈x1
i−1x

2
i−1|bρ0|y1y2〉

× 〈y1y2|bρ1|z1z2〉
× 〈z1z2|bρ2|x1

i x
2
i 〉dy1,2dz1,2

=

Z
〈x1
i−1|bρ0|y1〉〈x2

i−1|bρ0|y2〉

× 〈y1|bρ1|z1〉〈y2 |bρ1|z2〉
× 〈z1z2|bρ2|x1

i x
2
i 〉dy1,2dz1,2

=

Z
〈x1
i−1|bρ0|y1〉〈x2

i−1|bρ0|y2〉

× 〈y1|ρ1(z1)|z1〉〈y2 |ρ1(z2)|z2〉
× 〈z1z2|ρ2(x1

i , x
2
i )|x1

i x
2
i 〉dy1,2dz1,2

=

Z
ρ0(x1

i−1, y
1)ρ0(x2

i−1, y
2)

× ρ1(z1)〈y1 |z1〉ρ1(z2)〈y2|z2〉
× ρ2(x1

i , x
2
i )〈z1z2|x1

i x
2
i 〉dy1,2dz1,2

=ρ0(x1
i−1, x

1
i )ρ0(x2

i−1, x
2
i )

× ρ1(x1
i )ρ1(x2

i )ρ2(x1
i , x

2
i ).

Usually ρ1 is made hermitian.

equation, Eq. (1.10a), ρ̇(x, y;β) = −Ĥρ(x, y;β). The density matrix can be written
with the help of wave functions φi(x), the solutions to the Schrödinger formalism,
as is shown in Eq. (1.1), or

ρ(x, y;β) =
∑

i

e−βEiφi(x)φ
†
i (y), (1.27)

where Ei is the ith eigenenergy, Ĥ|φi〉 = Ei|φi〉 and β is the inverse temperature,
β = 1/(kBT ). The discrete path-integral formalism is obtained by writing density
matrix ρ(x0, xM ;β) as an integral

ρ(x0, xM ;β) =

∫
ρ(x0, x1; τ)ρ(x1, x2; τ) · · · ρ(xM−1, xM ; τ)dx1 · · ·dxM−1

with τ = β/M , x0 = x and xM = y inserting M − 1 identity operators between
short time propagators. This generates a trajectory, or a “path”, going through
the points x0, x1,. . . , xM at imaginary times 0, β/M , . . . , β. Here, the position
eigenvector |x〉 shown in this section is readily generalized to N -body position,
|x〉 ≡ |x1, x2, . . . , , xN 〉. By using the Trotter formula, or higher order approxi-
mations, the product of density matrices in the integration can be approximated,
and thus the density matrix becomes as shown in Eq. (1.25) where the continuous
case for one particle is shown. The many-body density matrix in path-integral
formalism is similar,

ρ(x0, xM ;β) =

[
mM

2π}2β

]MNd/2∫
exp

[
− β

M∑

n=1

(Ti + Vp(xi−1, xi))

]
dx1 · · ·dxM−1

(1.28)

where

Ti ≡ T (xi−1 − xi) =

N∑

j=1

mjM

2}2β2
(xj

i−1 − x
j
i )

2

is the internal energy, and Vp includes the interaction between different particles
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and the effect of external potential. In the primitive and Hermitian approxima-
tion, suggested by the Trotter expansion, it is written as

Vp =
1

2M

N∑

j=1

[
V (xj

i−1) + V (xj
i )
]

+
1

M

N∑

j=1

N∑

k=j+1

V (xj
i , x

k
i )

where V (·) is the external potential and V (·, ·) is the pair potential between par-
ticles. This is easily generalized to any potentials. It should be noted, that the
potential between particles is between the same time slice beads, only. The path-
integral formulation requires that (1) the potential is constant between two adja-
cent points, xn−1 and xn, that (2) the potential is bounded from below and that
(3) the error term o(τ) is negligible. For example, Coulomb36 −1/r potential does
not satisfy this criterion.

Often, a somewhat different notation for the density matrices is used, and the
path-integral is written as

ρ(x, y;β) =

∫
exp

[
−

M∑

i=1

S(xi−1, xi; τ)

]
dx1 · · ·dxM−1. (1.29)

The short time action S(xi−1, xi; τ) is written explicitly as

S(xi−1, xi; τ) =
dN

2
ln(2π}

2τ/m) +

M∑

j=1

[
T̃i + VS(xi−1, xi; τ)

]

with internal energy

T̃i ≡ T (xi−1 − xi) =
m

2}2τ
(xi−1 − xi)

2.

The Hermitian external potential VS should contain quantum mechanical effects
too, allowing the use of finite Trotter number M . To ensure hermiticity, it is writ-
ten as VS(xi−1, xi; τ) = τ

2 [U(xi−1) + U(xi)] containing the terms of external po-
tential and interactions with other particles. The exact form of U depends on
the system and the temperature considered. In the sc. primitive approximation the
potential U(xi) ≡ V (xi) is the external potential, as described earlier.

In some applications, when only pair potentials are needed, the short time densityE.g. The Coulomb potential in ab initio
calculations. matrix ρ(x, y; τ), or S(xi−1, xi; τ), can be approximated with the sc. pair potential

form. At sufficiently high temperature τ = β/M , the short time density matrix in
Eq. (1.29) for N particles can be written as

ρ(x, y; τ) =

[
N∏

i=1

ρ0(x
i, yi; τ)

][
N∏

i,j=1
i<j

ρ2(x
i, yi; τ)

]

with ρ2(x, y; τ) being the pair potential density matrix which contains the tem-
perature and Trotter number dependent potential and the effects arising from the
finite Trotter number.

36Charles Augustin de Coulomb, 14 Jun 1736–23 Aug 1806 (Angoulême, France–Paris).
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1.6 HARMONIC OSCILLATOR

The general considerations about path-integrals should be clear in mind at this
stage. Thus, now it is time to extend the machinery from the free particle to har-
monic oscillator. Let us calculate the harmonic oscillator in detail following the
work of Schweizer et al. (1981). Also, the brick of Kleinert (2004, p. 128) should
be beared in mind when studying this. For quadratic potentials V (x) = 1

2mω
2x2,

Eq.(1.25) can be done explicitly because it involves only Gaussian integrations,
but to shorten the notation, we write R = }ωτ and qi = xi(mω/(2}))1/2, which
gives for the differentials dqi = (mω/(2}))1/2dxi. We get for the discrete density
matrix

ρ(x0, xM ;β) =

∫ ( m

2π}2τ

)1/2

(πR)
−(M−1)/2×

exp

[
−

M∑

i=0

[
(R+ 2R−1)q2i − 2R−1qi−1qi

]
]

dq1 · · ·dqM−1.

Because of periodicity with respect to the index i, the external potential term in
the exponential can be written in a more symmetric form

−2R−1
M∑

i=0

qi−1qi = −R−1
M∑

i=0

(qi−1qi + qiqi+1).

Introduce two vectors in RM−1, ~q = [q1, q2, . . . , qM−1]
T for the integration vari-

ables, and ~b = 2R−1[q0, 0, . . . , 0, qM ]T for the coupling between integration vari-
ables q1 and qM−1 with the fixed end-points, q0 and qM . Now the density matrix
ρ(x0, xM ;β) can be written as shortly as

ρ(x0, xM ;β) =
( m

2π}2τ

)1/2

(πR)−(M−1)/2 exp
[
− 1

2 (R + 2R−1)(q20 + q2M )
]
I(~q)

where integral I(~q) is defined by Let A ∈ Rn×n . ThenR
exp(− 1

2
~xTA~x+~bT ~x)d~x =

[(2π)n detA−1]1/2 exp( 1
2
~bTA−1~b). If

a ∈ R, |aA| = an|A|.
I(~q) =

∫
exp[−~qTA~q +~bT ~q]d~q

with A ∈ R(M−1)×(M−1) being a tridiagonal symmetric matrix whose elements
are

Aij = (R + 2R−1)δij −R−1(δi−1,j + δj,i+1).

Because the matrix A is symmetric and positive definite, the integral may be im- A Hermitian (or symmetric) matrix is
positive definite iff all its eigenvalues are
positive.

mediately evaluated to give

I(~q) = (πM−1 detA−1)1/2 exp( 1
4
~bTA−1~b).

The determinant of the former form is easily evaluated and is given by The eigenvalues of such a tridiagonal
Toeplitz band matrix are
Aii + 2

p
Ai,i−1Ai−1,i cos(iπ/M).

detA =

M−1∏

i=1

(
R + 2R−1 − 2R−1 cos(iπ/M)

)
.
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Comparing that and the one found from Gradshteyn and Ryzhik (1980, p. 34, Eq.
1.396.1 (KR 58 (28.1)))

M−1∏

i=1

(f2 + 1− 2f cos(iπ/M)) =
f2M − 1

f2 − 1

we note that to get a correct factor in front of cosine term, take 1/R as a common
factor

detA =

M−1∏

i=1

1

R

(
R2 + 2− 2 cos(iπ/M)

)

=
M−1∏

i=1

1

fR

(
fR2 + 2f − 2f cos(iπ/M)

)
.

Now, the cosine term is in the right form; we should choose f such that

fR2 + 2f = f2 + 1 which is reduces to f = 1 + 1
2

(
R2 +R

√
R2 + 4

)

and the determinant can be written as

detA =
f2M − 1

f2 − 1
(fR)−M+1.

To solve the integral, we need to find the inverse of A. However, the remaining1
4
R2~bTA−1~b =

(q0, . . . , qM )TA−1(q0, . . . , qM ) =

q20(A−1)1,1 + q0qM (A−1)M−1,1 +

q0qM (A−1)1,M−1 + q2M (A−1)M−1,M−1 =

(q20 + q2M )(A−1)1,1 + 2q0qM (A−1)M−1,1 .

quantity, ~bTA−1~b, involves only four terms, (A−1)ij for i, j equal to 1 or M − 1,
since the vector ~b has only two nonzero components. Furthermore, because the
inverse of a symmetric matrix is symmetric, the two diagonal elements are equal,

Remember that (AT )−1 = (A−1)T for any
nonsingular matrix A.

as are two off diagonal elements. The determinants for the minors are already
known, thus straightforwardly by Cramer’s37 rule we get

Cramer’s rule:
(A−1)ij = (−1)i+j |Aij |/ detA.

The determinant of a triangular matrix is the
product of its diagonal elements.

(A−1)1,1 = Rf(f2M−2 − 1)/(f2M − 1)

(A−1)1,M−1 = RfM−1(f2 − 1)/(f2M − 1).

Together these results yield for the exponential part of the density matrix

1
4
~bTA−1~b = R−1

(
(q20 + q2M )f(f2M−2 − 1) + 2q0qMfM−1(f2 − 1)

)
/(f2M − 1)

which may be combined with earlier equation, and after the substitution of con-
stants q and R we get the result for the density matrix of a particle in a harmonic
potential

ρ(x0, xM ;β) =

(
m

2π}2τ

f2 − 1

f2M − 1
fM−1

)1/2

×

exp

[
mω

2}

[(
− 1

2}ωτ − (f2M−1 + 1)(f − 1)

}ωτ(f2M − 1)

)
(x2

0 + x2
M )+

2
fM−1(f2 − 1)

}ωτ(f2M − 1)
x0xM

]]
.

For the diagonal density matrix, xM = x0, we find a shorter expressionRemember that R2 + 2 = (f2 + 1)/f and
thus R2 + 4 = (f + 1)2/f and R can be

written as R =
√
f(f − 1)/f .

37Gabriel Cramer, 31 July 1704–4 Jan 1752 (Geneva, Switzerland–Bagnols-sur-Cèze, France)
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Figure 1.2: Diagonal density matrix for harmonic oscillator with M = 2i,
i = 1, 2, . . . , 11 (left). The higher order approximations are also showed
(right). Already withM = 25 the density matrix converge to the continuum
case. Here, T = 300 K, ω = 0.0104816 Ha a−2

0 and m = 1836/2.

ρ(x0, x0;β) =

(
m

2π}2τ

f2 − 1

f2M − 1
fM−1

)1/2

exp
[
− mω

2}

(
fM − 1

)
(f + 1)

f1/2(fM + 1)
x2

0

]
.

(1.30)

The normalization factor—or partition function—of the harmonic oscillator is
easily seen to be

Q =

∫
ρho(x0, x0;β)dx0 =

fM/2

fM − 1
. (1.31)

By taking the limit M → ∞ we find that f → 1 and fM → exp(β}ω), and these Remember that
exp(f(x)) = limM→∞(1 + f(x)/M)M .gives the density matrix
The limits are f2 − 1→ 2}ωβ/M and
f − 1→ }ωβ/M , and hyperbolic functions
are defined as sinh x = 1

2
(ex − e−x) and

cosh as its symmetric counterpart.

ρ(x, y;β) =

(
mω

2π} sinh }ωβ

)1/2

exp

[ −mω
2} sinh}ωβ

(
(x2 + y2) cosh}ωβ − 2xy

)]

for the limiting case β → ∞, or continuum case. This is exactly the same result
shown earlier, see Eq. (1.14). Thus we note that the discrete path-integral yields
exact results for harmonic potential.

The diagonal density is shown in Fig. 1.2 (left density). The Trotter numbers are
2, 4, 8, . . . and the density is spreadening as more quantum mechanical behavior
is obtained. Already at M = 24 the discretized diagonal density matrix coincides
with the continuum case, red line. Furthermore, the use of higher order Trotter
approximations, see Sec. 1.4.2, is shown on the right (blue). Thus, the harmonic
frequency is temperature dependent, ωeff = ω(1+ τ2ω2/12). The density is totally
different, but converges to the same continuous result.
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CHAPTER 2

EVALUATION OF PATH-INTEGRALS

· · ·
Tuoll’ lehdossa vaaran alla

oli kummia äskettäin,
niin vienoa, ihmeellistä

all’ lehvien vehreäin.
· · ·

There are only a small number of analytically solvable path-integrals—solutions
to free particle and harmonic oscillator problems were given in Chapter 1—thus,
numerical methods must be used to obtain density matrices of more compli-
cated, or more realistic systems. Path-integrals, unfortunately, are rather expen- N : number of particles, M : Trotter number,

d: dimension.sive to solve numerically because the solution needs the evaluation of NMd-
dimensional integral. In literature it can be found three main approaches of opti-
mizing a path-integral algorithm: by using more accurate forms of the action (Sec
2.1), by sampling more efficiently (Sec 2.2) and by “estimating” the energy with
lower variance (Sec 2.3), as described by Chakravarty et al. (1998)

The advantage of path-integral methods is that it includes the correlations be-
tween particles and the effects of finite temperature readily. Furthermore, it en-
ables the study of the transition from classical systems to fully quantum mechani-
cal systems by changing the the Trotter number, only. These phenomena are hard
to study with other quantum mechanical formalisms, e.g. using density func-
tional theory.

2.1 NUMERICAL APPROACHES

The quantum effects are temperature dependent. In the “action formalism”, see
Sec. 1.5 the idea is to find a numerically well behaving action S(xi−1, xi; τ), or
potential VS(xi−1, xi; τ) that gives the correct quantum mechanical density ma-
trix with as small Trotter number M as possible, see Ceperley (1995, p. 309 and
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forward).

Because evaluation of path-integrals involves integrations, usually Monte Carlo
methods are established. However, for example, most one-body problems can be
solved easier with s.c. matrix squaring methods, as will be described below. And,
as in Car–Parrinello quantum dynamics scheme, also molecular dynamics can be
used to evaluate quantum mechanical path-integrals.

The molecular dynamics method of solving path-integrals is somehow off the
mainstream. It is based on the idea that the closed path of beads, also necklace,
is influenced by the harmonic potential field generated by the neighbor beads
and the external potential, and thus the dynamics for the beads can be simulated.
This movement can be simulated by classical methods, or Newtonian1 dynamics.
By using Nosé–Hoover chains Tuckermann et al (Martyna et al., 1992) are able
to get a canonical ensemble via continuous dynamics. However, the simple ap-
proach is rather inefficient, and thus by using the staging variables, introduced
in Sec. 1.3.1, more efficiency is gained, see Tuckerman et al. (1993). The method
is tested against harmonic oscillator and the excess of an electron in helium andL–J potential with εHe = 10.22 K,

σHe = 2.556 Å, and εXe = 229.15 K,
σXe = 4.332 Å.

in fluid xenon. The method is about as efficient as PIMC method, and about
200 times more efficient than the basic path-integral molecular dynamics method.
However, usually exchange effects are neglected in PIMD schemes, which is, of
course, a minor inaccuracy when dealing with atoms, see Eq. (1.19).

Furthermore, Tuckerman et al constructed an ab initio path-integral molecular dy-
namics method, where no model potentials, or pseudopotentials, are needed. It
is based on Car–Parrinello type molecular dynamics (Car and Parrinello, 1985),
where the interactions between the nuclei are obtained from electronic structure
calculations carried out as the particles are propagated (Marx and Parrinello,
1996). The quantum nuclei are treated within the path-integral representation,
and the electronic structure governing their interactions is described within den-
sity functional theory, or a similar robust method, see Marx and Parrinello (1996),
Tuckerman et al. (1996) and references therein. Correlations between the electrons
are included in some approximative method, e.g. LDA or GGA.

2.2 MATRIX SQUARING METHOD

The matrix squaring method is based on the convolution theorem of density ma-
trices, see Eq. (1.15). It is easy to apply for pair potentials, and numerically exact
density matrices are rather easy to generate. Those can be exploited when simu-
lating larger systems. The matrix squaring method is a very applicaple method
for generating U for VS from the classical potential V , see Sec. 1.5.

The method is described well in Thirumai et al. (1983) and Whitfield and Straub
(2001), also one of the earliest examples, Storer (1968), should be consulted at least

1Sir Isaac Newton, 4 Jan 1643–31 March 1727 (Woolsthorpe, Lincolnshire–London).
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if working with the hydrogen atom. In addition, Ceperley (1995) shows the use
of it, and Burghard et al. (1998) apply the method for evaluation of coherent-state
path-integrals. We will give a brief summary with some examples.

One-dimensional density matrices ρ(x, y;β), with x, y ∈ R, can be solved numer- Within the asumptions of Trotter expansion.

ically exactly by noting that the product rule of density matrices

ρ(x, y; 2τ) =

∫
ρ(x, x1; τ)ρ(x1, y; τ)dx1

with integration scheme approximated by trapezoid rule with uniform grid is Trapezoid rule:

Z y

x
f(t)dt ≈ h

2
(f(x) + f(y)) + h

n−1X

i=1

f(x+ ih)

with h = |y − x|/n is the size of
discretization.

actually a matrix multiplication of the matrix ρ(xi, yj ; τ) with itself,

ρ(xi, yj ; 2τ) ≈ ∆
∑

k

ρ(xi, xk; τ)ρ(xk , yj ; τ),

with xi being the discretized version of continuous position variable x and ∆ is
the size of discretization. Thus, by squaring the density matrix k times, it will
result in decrease of the temperature by a factor of 2k. The requirement here
is, that the starting temperature must be chosen such that the hermitian high
temperature approximation

ρ(x, x′; τ) = exp[− τ
2V (x)]ρ0(x, x

′; τ) exp[− τ
2V (x′)]

is valid. Thus, the procedure for evaluating one-dimensional density matrices is
rather simple: Choose Trotter number M = 2k, and discretization ∆ such that
the free particle inverse variance m∆2M/(2}2β) is small enough, calculate high
temperature density matrix ρ(x, x′; τ) and rise it to power k to get the final low
temperature density matrix.

Furthermore, because any central potential can be expanded into partial waves For a particle in a central potential, total
energy depends only on `, thus En`m = E`.
Expand the radial density matrix in
spherical harmonics and remember the
addition theorem.

ρ(~x, ~x′;β) =
1

4πrr′

∞∑

`=0

(2`+ 1)ρ̃`(r, r
′;β)Pl(cos θ), (2.1)

the matrix squaring method can be applied to some 3-dimensional problems, too.
Here ρ̃`(r, r

′;β) is the `th partial wave and θ is the angle between ~x and ~x′. The
partial wave is a density matrix for one-dimensional potential V (r) with an ad-
ditional centrifugal term, and it satisfies the Bloch equation (see Eq. (1.10a))

∂ρ̃`(r, r
′;β)

∂β
= −

[
− }2

2m

∂2

∂r2
+ Veff(r)

]
ρ̃`(r, r

′;β),

where

Veff =
}2`(`+ 1)

2mr2
+ V (r).

Thus, in 3D case a similar matrix squaring procedure as in 1-dimensional case can
be used with V (r) replaced by Veff(r). Furthermore, it must be beared in mind,
that in radial problems, the particle is confined to areas where r > 0 only, thus
the correct free-particle propagator is ρb(r, r

′;β), shown in Sec. 1.3.2, in Eq. (1.20),

ρb(r, r
′;β) = ρ0(r, r

′;β)− ρ0(r,−r′;β).
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The number of partial waves, `max, needed is primarily dictated by temperature
and the free-particle part of the system (Ceperley, 1995, p. 319). The higher the
temperature, the more partial waves are needed. Ceperley states that 20–60 par-
tial waves are needed for 40 K 4He, and Thirumai et al. (1983) used `max = 100

for Lennard–Jones 12–6 potential describing Ar2 dimer at T = 20 K; for T = 2 KV (r) = 4ε((σ/r)12 − (σ/r)6), where
ε = 119.8 K and σ = 3.405 Å. only 30 `-waves were needed.

The special case of a normalized radial distribution function ρ(r) is easily ob-
tained by this method. For a diagonal density, or distribution, we have x = x′

giving cos(θ) = 1, and thus

ρ(r) =
4πr2ρ(r, r;β)

Z
=

∑∞
`=0(2`+ 1)ρ̃`(r, r;β)∑∞

`=0(2`+ 1)
∫∞

0
ρ̃`(r, r;β)dr

.

However, a uniform grid with no interpolation, that is trapezoid rule, causes diffi-
culties when high accuracy is needed (Ceperley, 1995). The integrand is Gaussian-
like, and thus Gauss–Hermite2 integration scheme is a natural choice of numeri-
cal integration for gaining more accuracy.

2.2.1 EXAMPLES

The Coulomb density matrix has many interesting properties, see Storer (1968),

T = 524288 K
T = 8192 K

T = 512 K

T = 64 K

The single well from Paper II with effective
mass m? = 0.067me , width W = 12 nm
and potential V = 300 meV. The starting

temperature was 524288 K which results in
the free particle density matrix. At each
iteration the temperature is halved, and

finally at 64 K the NMM yields the
zero-kelvin limit (black dashed line), already.

Hostler and Pratt (1963) or Pollock (1988). The pair density matrix of the Coulomb
potential in any dimensions depends on two scalar spatial variables only, which
may be taken as r1 + r2 and |~r2 − ~r1|, or the combination

x =1
2 (r1 + r2 + |~r2 − ~r1|)

y =1
2 (r1 + r2 − |~r2 − ~r1|),

and with these variables thus a density matrix is given as

ρ(~r1, ~r2;β) = − 1

4π(x− y)

(
∂

∂x
− ∂

∂y

)
ρ̃0(x, y;β)

for the Coulomb potential. In the above expression, ρ̃0(x, y;β) is the density ma-
trix with ` = 0, thus, s-waves only contribute to expansion shown in Eq. (2.1).
The s-wave density matrix is easy to evaluate with the help of numerical ma-Note the more elegant method of Storer

(1968) which takes the integration to infinite
accurately into account.

trix multiplication, and that is demonstrated in Fig. 2.1. Temperature T = 300

K and Trotter number M = 216 are used for each different ρ̃0(r). The singular
Coulomb potential −1/r and the pseudopotential used in Paper V are tested. We
note that the hydrogen radial s-wave distribution, and the pseudopotential in Pa-
per V both give satisfactory results. The Coulomb singularity problem is found,
when the cut-off radius is rcut-off < 0.05 a0. However, as the cut-off radius toOf course, there are many elegant

approaches to solve the hydrogen
singularity problem, see e.g. Kole and Raedt

(2001) or cumulant approximant from
Ceperley (1995) or Thijssen (2000).

avoid Coulomb collapse is very small, this suggests that we could use Coulomb
potential with a small cut-off radius instead of the pseudopotential. This requires,
however, use of approximately M ≈ 214 to get the accurate hydrogen energy.

2Charles Hermite, 24 Dec 1822–14 Jan 1901 (Dieuze, Lorraine, France–Paris)
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Figure 2.1: Coulomb density matrix with the correct free particle propaga-
tor, ρb (solid red) coincides with the square of ψ1s = r exp(−r) wave func-
tion (black dashed). If the ρb is replaced with ρ0 we find the Coulomb sin-
gularity problem (red dashed line). However, if using larger grid spacing,
having a larger cut-off radius, we find that there is no singularity problem
(red dash dotted), but the density at the origin fails. Furthermore, the pseu-
dopotential used in Paper V is drawn in blue, solid is for ρb and dash dotted
is for ρ0. It has minor problems with smaller radius though the energetics is
rather good. The hydrogen potential is also shown (dotted blue).

2.2.2 EFFECTIVE CLASSICAL POTENTIAL

The path-integral method is capable of simulating classical systems, too, when
the Trotter number is set to one, M = 1, thus the density matrix is ρ(x0, x0;β).

If M = 1, the internal energy, or free particle density matrix is just an identity
operator. Thus, the quantum effects are mainly due to this kinetic energy, and
the fully quantum mechanical behavior is obtained as M → ∞ while the kinetic
part dominates the Lagrangian, see Eq. (1.28) However, we may define such The first Hohenberg–Kohn theorem states

that the external potential V (r) is a unique
functional of the electron density n(r).

an effective classical potential Veff that yields the same diagonal density as the
quantum mechanical system ρ(x0, xM ;β),

ρ(x, x;β) ≡ N(β) exp [−βVeff(xi)]

with normalization factor N(β) chosen such that the classical partition function
coincides with the quantum case, also Z = Q (Janke and Kleinert, 1986). Clearly,
the effective classical potential is temperature dependent, and it should contain
the quantum fluctuations (or smearing).

The effective potential arising from Coulomb density matrix is shown in Storer −200 0 200
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0

The effective potential times inverse
temperature, βVeff at T = 1 K, 32 K and 128

K (blue). The lower the temperature, the
smoother potential. The classical potential is
drawn with red line.

(1968). It is amazing that at high temperatures (about 104 K) Veff is almost a
straight line for small radial distances and joins the classical potential over quite
a small range of r, thus the s-wave is important, only. Furthermore, it has been
shown that at low temperatures (2 K), the ground state 1s-wave function contains
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all the information up to r ≈ 3 a0.

In addition, the quantum effective potential obtained by matrix squaring method
can be used to obtain smoother potential terms to use with path-integral Monte
Carlo methods as described in Ceperley (1995, p. 309 and forward).

2.3 METROPOLIS MONTE CARLO METHOD

The traditional quadrature rules are not very efficient for many dimensional inte-
grations, opposed to the previous example with one dimension. E.g. for GaussianLet the quadrature error be e ∝ o(hk) where

h is the step length and k ≥ 1. For the
integration of hypercube, with volume LM ,

there are totally N = (L/h)M integration
points. Thus, the error in integration is

e ∝ o((L/N1/M )k) ∝ o(N−k/M ).

quadrature there is no general rule how to integrate over M -dimensional space.
The simple error estimate gives that the error in integration is e ∝ o(N−k/M ),
where k ≥ 0 is a constant. It can be argued that Monte Carlo methods are bet-
ter than quadratures because the random distribution is more homogeneous than
the regular grid (Thijssen, 2000, p. 273). For Monte Carlo integrations the error
in integration is e ∝ o(N−1/2), independent of the dimensionality of the space.
However, this error estimate requires statistically independent sampling, a re-
quirement which is not fulfilled in the Metropolis3 Monte Carlo method.It was named Monte Carlo because of the element

of chance, the production of random numbers
with which to play suitable games. –Stanislaw

Ulam.
Buffon’s bin (or needle): G. Comte de Buffon,

Essai d’arithmétique morale, Supplément à
l’Histoire Naturelle, Vol. 4, 1777.

This section is comprised of a brief introduction to Markov chain (or Metropolis)

Monte Carlo is common sense applied to
mathematical formulations of physical laws and

processes. –Stanislaw Ulam.

Monte Carlo (Metropolis et al., 1953), a short introduction to improved sampling
methods that are required to find the equilibrium distribution in a reasonable
time and also reliably, and lastly some error estimates are given.

2.3.1 MARKOV CHAIN

Most of the physical systems are continuous, including the Brownian path that
is needed in path-integration, and thus it can be argued that by not using fully
independent Monte Carlo integration schemes we can adopt better convergence.
The Metropolis idea is to abandon the statistical uncorrelation and to generate
the new random configuration Xti

∈ Ω from the old configuration Xti−1
. The

states Xt and the time t are usually discrete, and the configuration space Ω is
usually R

dN but it is easily extended to include e.g. spin dynamics, giving Ω =In pimc scheme Ω = RdNM if spin statistics
is not included. RdN × (Z2)

N .

The dynamics of a stochastic process is understood as a stochastic transition thatThe dynamics is usually governed by a
Newtonian equation F = dp

dt . governs the evolution of the system. Let the conditional probability of being
in state Xtn

= Sj given it was on a previous step at Xtn−1
= Si be P (Xtn

=

Sj |Xtn−1
= Si). This probability is the a transition probability from state i to state

j, which is written as

Wij ≡W (Si → Sj) ≡ P (Xtn
= Sj |Xtn−1

= Si).

3Nicholas Constantine Metropolis, 11 Jun 1915–17 Oct 1999 (Chicago–Los Alamos)
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Because the evolution from state Xtn−1
to Xtn

is dependent only on the previous Wij is a stochastic rule, thus Wij ≥ 0 ∀ i, j
and

P
jWij = 1 ∀ i.step, this is known as a Markov4 process. The corresponding sequence of states

Brownian motion is homogeneous in both
time and space and is an example of
Markovian process.

{Xt} is called Markov Chain, and the process is a random walk. This process can be
applied to many different problems, e.g. solving the Poisson equation.

The states {Xt} generate a distribution πn ≡ π(Xn) at the nth step of the random Let ith element after n step be πin, giving
πjn+1 =

P
j π

i
nWij , and thus

πn+1 = πnW = π1Wn.
walk. The asymptotic distribution gives the unique equilibrium distribution p =

limn πn for arbitrary initial distribution π1 or X1, if the system is ergodic. An
ergodic system is one in which the random walk may return to the neighborhood
ofX but does not do so periodically, see Kalos and Whitlock (1986, p. 77) or Feller
(1950, p. 324).

The Metropolis Monte Carlo method gives the elegant device for that (Kalos and Metropolis Monte Carlo is also called
M(RT)2 algorithm.Whitlock, 1986). Writing the transition probability as a product of the trial move T

and the acceptance A, thus Wij = TijAij , and requiring detailed balance criterion,
p(Xj)Wji = p(Xi)Wij , for the equilibrium distribution p, we find that Detailed balance states ensures the

equilibrium distribution. However, it is not a
necessary condition to achieve correct
distribution π.

Aij

Aji
=
p(Xj)Tji

p(Xi)Tij
≡ qij ≥ 0. (2.2)

Thus we sample the next state Xn+1 with some distribution Tn,n+1 from state Xn

and accept that “move” with a probability An,n+1 = min(1, qn,n+1) or An,n+1 =

1/(1 + qn+1,n).

Now the Metropolis algorithm can be described concretely (Kalos and Whitlock,
1986). Let at step n of the random walk the state be Xn, and

• the possible new value X ′
n+1 is sampled from Xn with the help of Tn,n+1.

Compute the probability of accepting X ′
n+1 from Eq. (2.2). If

– qn,n+1 > 1 then An,n+1 = 1

– qn,n+1 < 1, then An,n+1 = q

• With probability An,n+1 = min(1, qn,n+1) we set Xn+1 = X ′
n+1; otherwise

we set Xn+1 = Xn

– If An,n+1 > ξ, where ξ ∈ [0, 1] is a uniform distribution, the trial move
is accepted.

– Otherwise the trial move is rejected and we set Xn+1 = Xn.

The associated probabilities π1, . . . , πn, . . . of corresponding statesX1, . . . , Xn, . . .

are in a recursive relationship, and asymptotically limn πn = p. We find that the
distribution after j steps is

πj =
∑

i

πiAijTij + πj

∑

i

(1−Aji)Tji

4Andrei Andreyevich Markov, 14 Jun 1856–20 Jul 1922 (Ryazan, Russia – Petrograd (St Petersburg))
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because it may move from any state i to desired state j with probability Aij or
stay at j with probability 1 − Aji. If the random walk converges at some step j

to the equilibrium distribution p, also πj = p, then the distribution at the next
step is clearly given by πj+1 = p because of detailed balance and because of the
normalization condition,

∑
i Tji = 1.

However, as the Metropolis Monte Carlo is a powerful tool and easy to imple-
ment, there are major drawbacks. It samples the distribution p but only asymp-
totically. Thus, one must throw away huge amount of sampled random walks,
or Markov chains, from the beginning of the simulation. There are a few means
to reduce the amount of waste obtained with Monte Carlo methods. First, by se-
lecting the initial distribution π1 that is a good representative of p, and secondly
choosing Tij approximately as p, rapid convergence and a small autocorrelation
is achieved (Kalos and Whitlock, 1986, p. 79). Furthermore, Kalos continues, that
if we were able to sample Tij = pi exactly, then q = 1 by Eq. (2.2) and all moves
are accepted and the samples are independent.

2.3.2 SAMPLING METHODS

The original approach of Metropolis et al. (1953) is to use Tij as trial moves for oneKalos shows the details on M(RT)2

algorithm by fully working out a
one-dimensional example in which
p(x) = 2x on (0, 1) and 0 elsewhere.

particle from a uniform distribution within a cube of side length L and zero oth-
erwise. Thus, they selected one particle xi, and made a trial move xi+1 ← xi +Lξ,
where ξ ∈ U([−1, 1]) is from an uniform probability distribution. Furthermore,
they studied canonical systems, for which

p(Xi) =
1

Q
exp(−βV (Xi)),

and thus when calculating q, Eq. (2.2), the unknown and to-be-solved partition
function Q is cancelled out. The side length L is adjusted to achieve the accep-
tance rate of 50%, approximately. However, there is no certainty in choosing the
acceptance rate, it might be anything between 20% and 80%.

These s.c. Metropolis trial moves are not very efficient in path-integral Monte
Carlo simulations, because of the stiff harmonic forces between adjacent beads in
one necklace. When we move the ith bead, xi, the beads xi−1 and xi+1 remain
unchanged. To achieve approximately 50% acceptance, the side length should be
about L =

√
}2τ/m according to the variance in Eq. (1.19) and equations above.

Therefore, the step length L is dependent on Trotter number M = β/τ , and the
sampling is very inefficient for large M . Furthermore, on the next move, this
bead is inclined to return to the original position because of the harmonic forces
caused by its neighbor beads.

x
i

Metropolis move for the ith particle. In the
next move it is inclining to come closer to the

line between xi−1 and xi+1 due to the
harmonic forces.

The kinetic part of the action dominates at the quantum limit, and thus it is es-
sential to sample that stiff part more efficiently. Because the adjacent beads are
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connected, we should consider to move a chain of beads of length L. Instead of Remember

exp
h
− β

MX

i=1

“ mM

2π}2β2
(xi−1 − xi)2

+VS(xi)/M
”i
.

moving one bead (“single slice”) per each sampling, we randomly choose some
starting point i and move all the beads between i and i+ L. The length of chain,
L, is chosen such that the total probability of accepting the move of the chain is
good, around 50%.

The staging method described in Chapter 1 while evaluating the free particle The Box–Muller algorithm is the standard way
of producing normally distributed random
variables with zero mean and unit variance.
Let x1 and x2 be two independent random
variables that are uniformly distributed in
(0, 1]. Then
z1 = R cos(θ) =

√
−2 ln x1 cos(2πx2) and

z2 = R sin(θ) =
√
−2 ln x1 sin(2πx2) are

independent random variables with a
normal distribution of standard deviation 1.
More efficient method of George Marsaglia’s
ziggurat algorithm can also be used.

density matrix, is one good possibility. In this case, instead of moving all par-
ticles, choose the starting point i and ending point i + L instead of 1 and Trotter
number, M . Because, with the new staging variables x̃j , j = i, . . . , i + L, the po-
sitions are not coupled anymore, the new positions can be sampled exactly by
using normally distributed random numbers with variance

√
}2τ/mj for all x̃j ,

see Sec. 1.3.1.

The other technique for sampling a chain of beads is called bisection, which is

The pseudocode for generating a multilevel
transition is the following:
Choose L = 2k and let x′ ← x. Let
n ∈ U([0,M − 1]) and η ∈ R have standard
normal distribution.

for i← k to 1

s← 2i−1

for j ← 0 to L/(2s)− 1

b← n+ 2js mod M

m← n+ (2j + 1)s mod M

e← n+ 2(j + 1)s mod M

Choose new η

x′m← 1
2
(x′b + x′e) + η

p
sτ}2/(2m)

end j
end i
Calculate the new energy with new x′.

an multilevel method. It is based on the idea that because the imaginary time
between the beads is τ , or the variance is

√
}2τ/m, and sampling with larger

imaginary time Lτ/2 we get larger variance
√
L}2τ/2m. Thus, first fix the beads

i and i+L = i+2k, and then move the bead i+2k−1 with variance
√

2k−1}2τ/m.
Then, hold the beads i and i+2k−1 fixed and move the bead i+2k−2, and similarly
for the beads i+ 2k−1 and i+ 2k. This should be done recursively, as is shown in
Fig. 2.2. It resembles s.c. Brownian bridge process of stochastics, which is a Wiener
process, an example of Lévy5 processes, that is required to satisfy conditions at
both ends of the fixed interval. These methods, staging and multilevel, sample
the free-particle part of density matrix exactly.

Thus, in multilevel sampling the trial moves Tij are more complicated than in the

20 40 60 80 100
0

1

2

3
x 10

−3

E
po

t [m
H

a]

MC steps

The potential energy for HO as a function of
MC steps using multilevel sampling starting
from zero Markov chain. The solid line
represents the exact energy with M = 64

exploiting the convergence. }ω = 0.3 meV is
a typical value for quantum dots, and
m = 0.067me represents GaAs mesa.

original version of Metropolis. However, it should be noted that in principle there
is no difference which trial move Tij is used, but as it was pointed out earlier, by
choosing better trial moves faster convergence is obtained. We have found, that
it was impossible (meaning that the convergence time is weeks or months with
single processor) to sample with the single bead moves when M > 512 or so, see
Paper V. Furthermore, these two methods sample the kinetic part exactly, thus
Metropolis acceptance–rejection scheme needs to be done only for the potential
terms.

2.3.3 ERROR ESTIMATES

The successive steps in the process of generating samples of the random walk
with MC methods appropriate to many-body systems are correlated, and this
gives rise to the main complication in computing the statistical error (Chakravarty
et al., 1998). Thus, we need to think of measuring the statistical dispersion of the
outcome of a property, indicating how its possible values are spread around the

5Paul Pierre Lévy, 15 Sep 1886– 15 Dec 1971 (Paris–Paris)
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Figure 2.2: Bisection move for the chain of beads for L = 23. The upper-
most figure is the original configuration of the beads. Then the middle bead
(shown with gray ×) is moved, and this is repeated recursively. In the next
step, beads i and i + 21 are held fixed and similarly i + 22 and i + 23. The
last figure shows the new trial move, which is to be considered in Metropo-
lis algorithm.
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Figure 2.3: Autocorrelation data with three different lengths of autocor-
relation window is plotted, see text. Dotted is for N = 100, dashed for
N = 1000 and solid line N = 10000 data points. The autocorrelation is
averaged for all data with respective N . The red line is for single bead and
blue for multilevel sampling. The very beginning shows exponential de-
cay, but soon the autocorrelation becomes linear and thus exploiting rather
strong autocorrelation. It should be noted that the all data points in single
bead simulation are correlated, see the inset.

expected value 〈Q〉,

〈Q〉 = 1

N

N∑

k=1

Qk.

The estimate for the deviation from the expectation value given by the unbiased An estimator for a parameter bθ is unbiased if
E(bθ) = θ, thus E(s2N−1) = σ2.sample average formula

s2N−1 =
1

N − 1

N∑

i=1

(Qi − 〈Q〉)2

gives too small error estimates, because the data is correlated. The correlation
between data points reduces the number of uncorrelated data points N , and thus
it should be changed to some effectiveNeff < N . The autocorrelation function for
a quantity Q
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Red Noise

The autocorrelation function for the
realization of a few different random
functions. Note that even though there is full
correlation in the constant case, the
autocorrelation function still decays linearly.

AQ(k) =

∑N−k
i=1 (Qi − 〈Qi〉)(Qi+k − 〈Qi〉)∑N

i=1(Qi − 〈Qi〉)2
=
〈Qi+kQi〉 − 〈Qi〉2
〈Q2

i 〉 − 〈Qi〉2

gives an estimate for the autocorrelation length, also if AQ(`) ≈ 0 for all ` > k, then
the correlation length is k and the data points Qi andQi+k are not correlated. The
effective number of data points isNeff = N/k. To verify the correlation length, one
may use smaller N , e.g. use a window on the data set and find the autocorrelation
only for the data under the window. These should converge. See Fig. 2.3 for an
example.



44 2.3 METROPOLIS MONTE CARLO METHOD
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Figure 2.4: Data binning of multilevel and single bead external energetics.
Here, the length of data is 10000 MC steps, and the size of a bin is 1000 steps.
The 20000 first MC steps are left out to achieve equilibrium. The analytical
energy, 2.6108 mHa, is drawn with black line. The corresponding MC ener-
gies are given in Table 2.1. See kinetic energy. The single bead energy looks
similar to that of pure brownian noise with large a, and multilevel energy
with small a.

Another method to study the effect of statistical correlations is data binning. WhenFor the red (Brownian) noise,
x(t) = ax(t −∆t) + (1− a2)1/2ε(t) where

a ∈ [0, 1] is the degree of memory from
previous states the autocorrelation is of type

r(τ) = exp(−τ/Texp) with
Texp = −∆t/ ln a being the exp -folding

decay time. For the white noise, where a = 0

we have r(τ) = δ(τ).

using data binning the successive measurements are collected into NB bins, giv-
ing m = N/NB measurements per bin. The bins should be selected such that the
successive averages

〈Qk〉 =
1

m

m∑

i=1

Qm(k−1)+i

for kth and (k+1)th bins are not correlated any more. The autocorrelation length
k should be approximately the same as m here. Now the expected value and the
variance are

〈Q〉 = 1

NB

NB∑

k=1

〈Qk〉

s2NB−1 =
1

NB − 1

NB∑

k=1

(〈Qk〉2 − 〈Q〉2).

The data binning of the total energy of harmonic oscillator is shown in Fig. 2.4
with both multilevel and single slice sampling methods. It should be noted that
the successive bins with single slice sampling are still correlated, and that it does
not yield the correct energy. The autocorrelation plots, Fig. 2.3, are generated
from this data. It can be seen that the correlation length is larger for single bead
than for multilevel sampling.

Furthermore, to estimate the standard error of the mean, the standard deviation of
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Multilevel Single bead
E ± S E ± S
2.614± 0.003 2.733± 0.001

N = 10000

m = 100 2.630± 0.042 3.284± 0.034

m = 1000 2.630± 0.034 3.284± 0.041

N = 100000

m = 100 2.610± 0.013 3.300± 0.028

m = 1000 2.610± 0.013 3.300± 0.085

m = 5000 2.610± 0.014 3.300± 0.175

m = 10000 2.610± 0.015 3.300± 0.226

Table 2.1: External (potential) energy for the harmonic oscillator with M =

26 and T = 300 K. Here N refers to the number of data points and m is the
size of the binning box. The first row contains the average of all data points.
The analytic energy is 2.6108 mHa at Trotter number M = 64 and T = 300

K, and the full quantum energy is 2.6205 mHa.

the sampling distribution of the mean can be used,

sE =

√
s2N−1

N
.

The final result for propertyQ is then 〈Q〉± sE with one SEM. Note that the error The central limit theorem guarantees that the
sampling distribution of the mean is
asymptotically normal as the sample size N
tends to infinity.

in estimate is sE ∝ N−1/2 and it can be made as small as needed by using large
enough N while having small correlation. The comparison between multilevel
and single bead energetics is collected in Table 2.1. Note that the single bead
simulation has not yet converged though the simulation is rather long, 4096000
Monte Carlo steps.

2.4 CALCULATION OF PROPERTIES

According to the Postulate 3 shown in Chapter 1, the average value of an ob-
servable Â in the state ρ̂ is given by 〈Â〉 = Tr (ρ̂Â) where Tr (·) is the trace of Note that Tr (bρ bA) =

P
i〈i|bρ bA|i〉 =P

i,n pn〈i|n〉〈n bA|i〉 =
P
n pn〈n| bA|n〉.the operator in the parentheses. In coordinate basis the trace is evaluated as an

integral,

Tr (ρ̂Â) =

∫
ρ(x, x;β)A(x)dx

for diagonal operators A(x). Thus, by introducing the path-integral representa-
tion for density matrix ρ(x, y;β), we get

〈Â〉 = 1

M

∫
exp

[
−

M∑

i=1

S(xi−1, xi; τ)

]
M∑

i=1

A(xi)dx1 · · ·dxM (2.3)
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with periodic boundary conditions in imaginary time, x0 = xM . Here, the sym-
metry of time slices is taken into account. Actually, Eq. (2.3) is only a multidimen-
sional integral of A(x) with the weight function exp

[
−
∑M

i=1 S(xi−1, xi; τ)
]
, and

thus the Monte Carlo integration schemes with importance sampling are very
powerful tools in calculating the quantum properties.

However, for a given property, it is possible to device more than one estimator
such that the Monte Carlo average is the same for each choice (Herman et al.,
1982). An estimator is characterized by its statistical error, efficiency (statisti-
cal error for a given length run), bias (nonlinear distortion), time-step error, and
finite-size error (Ceperley, 1995), and those may be very different for different es-
timators of a given property. In addition, some estimators are easier physically
to interpret or easier to program. The aim is to find an estimator that minizes the
maximum of various errors.

In following subsections, some estimators to frequently used operators with their
efficiencies are given. Of course, there are many other interesting properties that
are not discussed here, e.g. pressure, heat capacity, magnetic susceptibility, ex-
change or correlation energies, position and momentum (Whitfield and Staub,
2001), partition function, Q(β) =

∫
ρ(x, x;β)dx, or free energy (Schweizer et al.,

1981).

2.4.1 DENSITY AND PAIR CORRELATION FUNCTIONS

The diagonal density matrix, ρ(x, x;β), itself is a density function. It is easy toThe density of particle x1 is a function of
x1 − x0 where x0 is the fixed origin; the pair

correlation is a function of |x1 − x2| where
x1 and x2 are the positions of particles 1 and

2.

obtain during the simulation process, simply by collecting the positions of all
beads. Furthermore, because of the symmetry in imaginary time, all beads can be
taken advantage of. The pair correlation function is a special case of density. Its
formal definition is

g(x) =

∫
δ(x− |x1 − x2|)ρ(x, x;β)dx.

The pair correlation function is obtained during the simulation process, too.

2.4.2 POTENTIAL ENERGY

The estimator for potential energy 〈V̂ 〉 in PIMC simulations is easy to obtain dur-
ing the simulation process, because V (x) is needed in the Metropolis acceptance–
rejection scheme. Because the potential energy is diagonal, we find directly by
applying Eq. (2.3) that

EV =
1

M

M∑

i=1

V (xi). (2.4)
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Thus, we find that as the number of beads grows, the potential energy fluctua-
tions becomes smaller and averaged.

Furthermore, the one-particle potential energy is easy to obtain afterwards with
the help of density matrix,

Ev = 〈V (~x)〉ρ (2.5)

with numerical integration schemes. The same integration technique can be ap-
plied to N -particle systems too, but it needs the knowledge of pair correlation
function between particles, see e.g. Harting (2001) or some of his articles, e.g. Hart-
ing et al. (2000).

2.4.3 KINETIC ENERGY

Thermodynamic and virial estimators for the kinetic energy are the most popular
ones. The thermodynamic estimator is the same that is obtained when estimating
the thermodynamic total energy, see Sec. 2.4.4, but it suffers from convergence
problems. The virial estimator is the one that is widely used.

In the following, only the special case of one particle in a confining potential
V (x) is considered, and the primitive approximation to the action is assumed.
However, the generalization is straightforward, but yields rather cumbersome
notation and is thus left out. This is shown in detail in Ceperley (1995, Appendix
A).

The thermodynamic kinetic energy can be defined (Ceperley, 1995) as The thermodynamic kinetic energy (2.6) for
classical harmonic oscillator is as

Ecl
k =

m

βZ

dZ
dm

=
1

2
β−1 =

1

2
kBT.Ek =

m

βQ

dQ
dm

=

∫
m

βQ

∂ρ(x, x;β)

∂m
dx. (2.6)

When the density matrix in the path-integral formalism, Eq. (1.29), is substituted
for ρ, and after differentiation we find that

Ek =

∫
m

βQ

∂ρ(x, x;β)

∂m
dx =

m

βQ

∫
∂

∂m
exp

[
−

M∑

i=1

S(xi−1, xi; τ)

]
dxdx1 · · ·dxM−1

=
1

Q

∫ (
dNM

2β
−

M∑

i=1

T ′
i

)
exp[−S(xi−1, xi, ; τ)]dx0 · · ·dxM−1

with the cyclic condition x0 = xM−1. The first part, dNM/2β, resembles the
classical kinetic energy 1/(2β), and the second part can be thought as a quan-
tum mechanical correction term. It should be noted, that if we were not using
the primitive approximation, also the potential term would give rise to kinetic
energy, as ∂mVS(m). Finally, we have the estimator

Ek =

〈
dNM

2β
− mM

2}2β2

M∑

i=1

(xi−1 − xi)
2

〉

ρ

(2.7)
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for the kinetic energy. Though it is impossible to collect and maintain all the po-
sitions during the simulation process, this kinetic energy estimator can be calcu-
lated after Metropolis acceptance. However, both terms diverge as τ = β/M → 0.
Furthermore, the evaluation of kinetic energy with this estimator is difficult, be-
cause there is a subtraction of two large numbers, dN

2τ and
∑

j
mj

2}2τ2 (xj
i−1 − x

j
i )

2.Monte Carlo can add but not subtract.

The variance of this estimator is badly behaving, as will be demonstrated in the
next subsection with a special case of harmonic oscillator. Thus, a more refined
estimator will be needed.

The average of a virial is defined asThe virial originates from a Latin word vires,
“forces”, and is defined as

P
i ri · pi.

1

M

M∑

i=1

〈xi · ∇V 〉ρ .

Note that by differentiating the density matrix, exp(−S(xi−1, xi; τ)), with respectIt is easy to show that (Euler’s theorem)

MX

i=1

xi ·
∂

∂xi
(xi−1 − xi)2

= 2
MX

i=1

(xi−1 − xi)2.

Consider the equation of motion for the
virial, ı} d

dt
〈r · p〉 = 〈[r · p,H]〉. For the x

component we get

[r · p,H]x = [xpx, H] =

»
xpx,

p2x
2m

+ V

–

= ı}
p2x
m

+ x[px, V ]

if [x, V ] = 0. Thus, because [∇, V ] = ∇V
and by combining these and the

change-of-variable results for y and z
components, we find that

ı}
d

dt
〈r · p〉 = ı}

fi
p2

m

fl
− ı}〈r · ∇V 〉

because p = −ı}∇. This gives for a
stationary state (or for periodic motion, or

for a bounded system)

2

fi
p2

2m

fl
= 〈r · ∇V 〉,

which agrees with the result of path-integral
formulation, Eq. (2.8).

to xi, we get the virial term,

xi · ∇ exp[−
∑

i

Si] = −
M∑

i=1

(
2
mM

2}2τ2
(xi−1 − xi)

2 + τxi · ∇V (xi)

)
exp[−

∑

i

Si]

and thus the average of the virial is given by

1

M

M∑

i=1

〈xi · ∇V (xi)〉ρ =
−1

β

M∑

i=1

〈
2
mM

2}2τ2
(xi−1 − xi)

2 + xi · ∇
〉

ρ

because τ = β/M . The partial derivative can be integrated by parts
∫
xi · ∇e−

P
i
Sdx1 · · ·dxM−1 =−

[
(xx,i + xy,i + xz,i) e−

P
i
S(xi−1,xi;τ)

]xi,end

xi,start

−
∫

e−
P

i
S(xi,1,xi;τ)dx1 · · ·dxM .

The substitution part in the previous differs from case to case, and according to
Tuckerman, there are five different possibilities, if

1. V →∞ when x→ ±∞: a bound system and exp(−S)→ 0,

2. V → 0 when x→ ±∞: an unbound system, and exp(−S)→ 1,

3. V is periodic and the coordinates will take on the same value at the period
boundaries,

4. the particle experience elastic collisions with the walls of the container, then
there is an infinite potential at the walls

and the surface term vanishes. However,

5. if the particle is confined within a volume V with a reflected boundaries,
then the surface contributions actually give rise to an observable pressure.
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Assuming the substitution part to vanish, we find that

∫ M∑

i=1

xi · ∇e−
P

S(xi−1,xi)dx1 · · ·dxM−1 = −dMN.

Thus, we are left with

1

M

M∑

i=1

〈xi · ∇V 〉ρ =
dMN

β
− 2

M∑

i=1

〈
mM

2}2τ2
(xi−1 − xi)

2

〉

ρ

which gives us a hopefully less oscillating definition for the internal energy. After
substituting this into Eq. (2.10), we find for the virial kinetic energy For harmonic oscillator V = 1

2
mω2x2 and

thus 1
2
r · ∇V = 1

2
mω2x2 = V .

Ek =
1

M

M∑

i=1

〈
1
2xi · ∇V

〉
ρ
. (2.8)

The thermodynamic estimator, Eq. (2.7), is called the Barker estimator because
Barker (1978) was one of the first to use it, and the later estimator, Eq. (2.8), is
sometimes called Herman or Berne virial estimator, because of Herman et al. (1982)
which is a continuation to the work of Schweizer et al. (1981). A more general
derivation with N particles and general external potential VS is shown in Ceper-
ley (1995), in Appendix A. The performance of these kinetic energy estimators are
shown below for the case of linear harmonic oscillator.

2.4.4 TOTAL ENERGY

As the total energy is considered to be one of the most important physical quan-
tities, there are various estimators for it. The direct, or Hamiltonian estimator is
obtained directly by calculating the expectation value of the Hamiltonian

〈Ĥ〉 = Tr Ĥρ̂,

but this is rather complicated, because it contains terms with 〈∇2V 〉 etc. More
convenient is the thermodynamic total energy The classical total energy energy for

harmonic oscillator is by (2.9)

Ecl
T = − 1

Z

dZ
dβ

= β−1 = kBT.
ET = − 1

Q

dQ
dβ

= − 1

Q

∫
∂ρ(x, x;β)

∂β
dx. (2.9)

When the density matrix in path-integral formalism, Eq. (1.29), is substituted for∫
ρ(x, x; τ)dx, and after differentiation, we find, similarly as for the kinetic en-

ergy, that

E = −
∫

1

Q

∂ρ(x, x;β)

∂β
dx = − 1

Q

∫
∂

M∂τ
exp

[
−

M∑

i=1

S(xi−1, xi; τ)

]
dx0 · · ·xM−1

=
1

Q

∫ [
dNM

2β
− mM

2}2β2

M∑

i=1

(xi−1 − xi)
2 +

1

M

M∑

i=1

V (xi)

]
×

exp

[
−

M∑

i=1

S(xi−1, xi; τ)

]
dx0 · · ·xM−1
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with cyclic condition in imaginary time x0 = xM . Thus, the thermodynamic
estimator for the total energy can be calculated from

E =

〈
dNM

2β
− mM

2}2β2

M∑

i=1

(xi−1 − xi)
2 +

1

M

M∑

i=1

V (xi)

〉

ρ

(2.10)

However, this is plagued by the same subtraction problem as the kinetic energy;By equipartition theorem in classical system
at temperature T , kinetic and potential

energy terms are equal and
Ecl = kBT = 1/β.

when subtracting mM
2}2β2

∑M
i=1(xi−1 − xi)

2 from dNM/2β we are left only with
random noise giving a large variance while the expectation value is correct, for
this estimator. The very same virial kinetic energy estimator can be used to obtain
better behaving estimator. Thus, by replacing the thermodynamic kinetic part,
Eq. (2.7), in Eq. (2.10) with virial kinetic part, Eq. (2.8), we get a better estimator

Ev =
1

M

M∑

i=1

〈
1
2xi · ∇V (xi) + V (xi)

〉
ρ

(2.11)

which is, again, sometimes called the Hermann estimator.

Furthermore, the total energy can be calculated via the expansion, Eq. (1.27),

E(β) =

∑
i diEi exp(−βEi)∑

i di exp(−βEi)
, (2.12)

which can not be used during the simulation process. Here, di is the degeneracy
of energy Ei at state i.

2.4.5 EXTRAPOLATION TO HIGHER TROTTER NUMBERS

The path-integral density matrix is exact only in the limit M → ∞. However,
the integral that is supposed to be calculated is MNd-dimensional, and thus the
larger M , the greater work need to be done to get a good density matrix or good
enough estimators for different physical properties.

Following the higher order expansion, shown in Sec. 1.4.2, we note that the sec-
ond order correction term is 1

2 [X̂, Ŷ ]/M2, thus it scales asM−2 (Binder and Heer-
mann, 2001). To achieve better approximations, we could compute observables
for several values of M and try an extrapolation of the results as an function of
M−2. This is done in Paper V for the hydrogen atom and hydrogen molecule.

2.5 HARMONIC OSCILLATOR

To get insight into the different estimators of energy, and into the discrete path-
integral scheme with finite Trotter number M , we calculate the expectation val-
ues and variances of different estimators for the harmonic oscillator, V (xi) =
1
2mω

2x2
i , analyzed already in Sec. 1.6. To elucidate the differences betweenThe density matrix for classical oscillator is

ρcl(p, x) = e−βH(p,x), where H(p, x) is the
Hamiltonian, H(p, x) = p2/(2m) + 1

2
kx2.
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Table 2.2: First order differentials needed in linear harmonic oscillator.

1

Q

∂Q

∂f
=

−M
2f

fM + 1

fM − 1

∂f

∂R
=

2f
√
f

f + 1

∂R

∂s
= }

β

M

∂ω(s)

∂s

energy estimators, we apply thermodynamic and virial estimators to this sys-
tem. Furthermore, the effect of using higher order Trotter approximations, see
Sec. 1.4.2, can also be shown by using the effective frequency, ω → ωeff. This is
also shown below.

2.5.1 THERMODYNAMIC ESTIMATOR

The partition function for the harmonic oscillator is Q = fM/2/(fM − 1), see Remember that
f = 1 + 1

2
R2 + 1

2
R(4 + R2)1/2 and

R = }ωβ/M .
Eq. (1.31), and the thermodynamic total energy by applying Eq.(2.9) is

〈ET 〉M = − 1

Q

∂Q

∂β
= − 1

Q

∂Q

∂f

∂f

∂R

∂R

∂β
= }ω

√
f

f + 1

fM/2 + f−M/2

fM/2 − f−M/2
.

The differentials needed here are given in Table 2.2. By taking the limit M → ∞
this finite-M energy reduces to that given by Feynman (1972, p. 52)

〈ET 〉 = 1
2}ω coth

}ωβ

2
. (2.13)

The finite-M approximation to the internal energy of the one-dimensional har-
monic oscillator, for example, loses its ground state energy as T → 0 (Whitfield
and Staub, 2001).

2.5.2 ENERGETICS IN PATH-INTEGRAL SCHEME

To find the correct estimators and error estimates of the path-integral scheme, The potential energy can also be calculated
as 〈bV 〉 =

R
ρbV dx, thus now ρ for ho is given

by Eq. (1.30), and the integral can be
calculated straightforwardly giving
〈bV 〉 = 1

2
〈E〉M with the help of identityR

x2 exp(−ax2)dx =

− d
da

R
exp(−ax2)dx = 1

2a

p
π/a.

more elaborated methods must be employed to find the effect of time slices, or
Trotter number. In probability theory, the characteristic function of any random
variable x,

ϕx(s) = E(exp(ısx)) =

∫
eısxf(x)dx
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completely and uniquely defines its probability distribution f(x). This is almost
the same as Fourier6 transform; the characteristic function of a probability density
function f(x) is the complex conjugate of the continuous Fourier transform of
f(x), according to the usual convention. Provided that nth moment exists, theNote that

ϕx(s) = E(exp(ısx))

= E

 ∞X

n=0

(ısx)n

n!

!

=
∞X

n=0

(ıs)n

n!
E(xn).

characteristic function can be differentiated n times giving

ϕ(n)
x (s) =

∫
(ıx)neısxf(x)dx

and thus
∫
xnf(x)dx = ı−nϕ(n)

x (0).

All the moments of the random variable can be derived from the characteristic
function (Tan et al., 2006). Here we employ Laplace7 transform to find the de-
scribing moments of Gaussian random variable needed for the harmonic oscilla-
tor. In the following, we use the abbreviations given below for internal energy,
external energy and the difference

αM ≡
Mm

2}2β2

M∑

i=1

(xi−1 − xi)
2

λM ≡
1

M

M∑

i=1

V (xi) =
1

2M
mω2

M∑

i=1

x2
i

γM ≡ αM − λM ,

and Laplace transforming each term gives the corresponding characteristic func-

Ecl
k =

1
2m

R
p2 exp

h
−β
“
p2

2m
+ 1

2
kx2

”i
dp

R
exp

h
−β
“
p2

2m
+ 1

2
kx2

”i
dp

=
1

2m

R
p2 exp

`
− 1

2m
βp2

´
dp

R
exp

`
− 1

2m
βp2

´
dp

=
1

2
β−1.

tion

Pα(α) ≡ 〈δ(α − αM )〉M → P̃α(s) = 〈exp(−sαM )〉M ,

Pλ(λ) ≡ 〈δ(λ − λM )〉M → P̃λ(s) = 〈exp(−sλM )〉M ,

Pγ(γ) ≡ 〈δ(γ − γM )〉M → P̃γ(s) = 〈exp(−sγM )〉M .

Thus we find that the transformed density is similar to the old one but with ef-
fective mass and frequency. For the internal energy the characteristic function
becomes

P̃α(s) =

[
2π}

2τ

m

]M/2 ∫
exp

[
−β
(
β + s

β
αM + λM

)]
dx1 · · ·dxM−1

and it is equivalent to the statement that we are using some effective mass mα =

m(β + s)/β and potential ωα = ω(β/(β + s))1/2 instead of the old ones. The
characteristic function can be written with the help of partition function as

P̃α(s) =

(
m

mα

)M/2
Q(M,β,mα(s), ωα(s))

Q(M,β,m, ω)
,

and the characteristic functions for external energy λ and the difference energy γ
can be treated similarly. The frequencies ωi and masses mi are given in Tables 2.3
and 2.4.



2.5 HARMONIC OSCILLATOR 53

Table 2.3: The effective masses for harmonic oscillator energetics and re-
spective differentials.

mi(s)
1

mi

∂mi

∂s

1

mi

∂2mi

∂s2

α :
β + s

β
m

1

β + s
→ 1

β
0

λ :m 0 0

γ :
β + s

β
m

1

β + s
→ 1

β
0

Table 2.4: The effective frequencies and differentials for harmonic oscillator
energetics.

ωi(s)
β

ωi

∂ωi
∂s

β

ωi

∂2ωi
∂s2

α :

s

β

β + s
ω

−β2

2(β + s)2

s

β + s

β
→ −1

2

3β2

4(β + s)3

s

β + s

β
→ 3

4β

λ :

s

β + s

β
ω

1

2

s

β

β + s
→ 1

2

−1

4(β + s)

s

β

β + s
→ −1

4β

γ :

s

β − s

β + s
ω

−β2

(β + s)2

s

β + s

β − s
→ −1

β2(β − 2s)

(β − s)(β + s)3

s

β + s

β − s
→ 1

β
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While we are studying the Gaussian probability distribution, the two first mo-
ments describe it. Thus, for the expectation value and variance of the internal
energy, for example, we haveTo shorten the calculations the logarithmic

differential is used. Remember that

1

Q(s)

∂Q(s)

∂s
=
∂ lnQ(s)

∂s
. 〈αM 〉 = −

(
∂ ln P̃αM

(s)

∂s

)

s→0

〈δα2
M 〉 =

(
∂2 ln P̃αM

(s)

∂s2

)

s→0

.

The expectation value for internal energy, for example, is easily calculated as

−∂ ln P̃αM
(s)

∂s
=
M

2

1

mα(s)

∂mα(s)

∂s
+
β

ω

∂ωα(s)

∂s
〈ET 〉M

by using the properties of logarithm. The differentials are given in Tables 2.2 and
2.3, and the expectation values are below.

Similar approach can be used for the variance, though now more complicated
expression arise. The definition of the heat capacity should be taken into account
to reduce the amount of calculations,

〈δE2
T 〉 =

∂2 lnQ

∂β2
= −∂〈E〉

∂T

∂T

∂β
= kBT

2CV . 〈δE2
T 〉 =

∂2 lnQ(β)

∂β2
= kBT

2CV

and then we find

〈δα2
M 〉 =

M

2

[(
1

mα

∂mα

∂s

)2

− 1

mα

∂2mα

∂s2

]
+ 〈δE2

T 〉M
(
β

ω

∂ω(s)

∂s

)2

− 〈ET 〉M
β

ω

∂2ω(s)

∂s2

with similar expressions to λ and γ. Finally, the expectation values and variances
are (Herman et al., 1982, note the misprints there)

〈αM 〉 =
M

2β
− 1

2 〈ET 〉M 〈δα2
M 〉 =

M

2β2
+ 1

4 〈δE
2
T 〉M −

3

4β
〈ET 〉M

〈λM 〉 = 1
2 〈ET 〉M 〈δλ2

M 〉 = 1
4 〈δE

2
T 〉M +

1

4β
〈ET 〉M

〈γM 〉 =
M

2β
− 〈ET 〉M 〈δγ2

M 〉 =
M

2β2
+ 〈δE2

T 〉M −
1

β
〈ET 〉M .

First we note that 〈ET 〉M = M/(2β) − 〈γM 〉 as required by Eqs. (2.9) and (2.10).
Furthermore, because 〈αM 〉 = M/(2β) − 1

2 〈ET 〉M and 〈λM 〉 = 1
2 〈ET 〉M , this sat-

isfies the virial theorem for the harmonic oscillator, 〈M/(2β)−αM 〉 = 1
2 〈ET 〉M =

〈λM 〉, see Eq. (2.11). Because the total energy estimator, Eq. (2.10), is 〈E〉M =

M/(2β) − 〈γM 〉, its variance is dependent only on the variance of γM , that is
〈δγ2

M 〉. Thus,

〈δE2
T 〉M =

∂2 lnQ

∂f2

„
∂f

∂R

«2 „∂R
∂β

«2

+
∂ lnQ

∂f

„
∂2f

∂R2

«„
∂R

∂β

«2

.

〈δE2〉M =
M

2β2
+ 〈δE2

T 〉M −
〈ET 〉M
β

,

shows that the mean square fluctuation in the energy estimator, Eq. (2.10), as well
as the kinetic energy, Eq. (2.7), increases as o(M). This is because both 〈δET 〉M
and 〈δE2

T 〉M becomes independent of M when M →∞, as indicated in Fig. 2.5.
6Jean Baptiste Joseph Fourier, 21 Mar 1768– 16 May 1830 (Auxerre, Bourgogne, France–Paris).
7Pierre-Simon Laplace, 23 Mar 1749–5 Mar 1827 (Beaumont-en-Auge, Normandy, France–Paris)
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Figure 2.5: The energetics of harmonic oscillator (solid line), T = 300 K
and ω = 0.0104816 Ha/a2

0. For the Trotter number M = 1 we find the
energetics described by the classical equipartition theorem, 〈E〉 = 1/β and
for approximately M = 26 we the fully converged quantum limit, given
by Eq. (2.13). The standard deviation,

p

〈δE2〉M is also drawn. Note that
the standard deviation is increasing as M → ∞. Furthermore, the same
results with effective ωeff are drawn (dashed line). The behavior is similar,
but it reaches the quantum limit faster. The fluctuations of virial estimator
(dotted line), however, seems to be bounded.

For the virial estimator we find that 〈Ev〉M = 2〈λM 〉 and thus the fluctuations are

〈δE2
v 〉M = 4〈λM 〉 = 〈δE2

T 〉M +
1

β
〈ET 〉M .

This estimator is not so sensitive to Trotter number M , as indicated in Fig. 2.5,
because the problem of subtracting two large numbers does not plague here any-
more.

Fig. 2.5 shows also the benefit of using higher order Trotter expansion, as de-
scribed in Sec. 1.4.2. It was shown that higher order expansion affects as a correc-
tion to the frequency in harmonic oscillator,

ωeff =
(
1 + 1

12τ
2ω2
)
ω.

The effect is clearly visible but small.

The efficiency of estimators is widely studied. Giansati and Jacucci (1988) re-
visited the harmonic oscillator specially in Metropolis Monte Carlo scheme and
found out that the correlation length is greatly dependent on the form of the es-
timator chosen. Cao and Berne (1989) studies further the efficiency between the
energy estimators and between the different sampling methods. Chakravarty
et al. (1998) compares the primitive and pair actions for more realistic cluster of
22 H2 molecules, and Whitfield and Staub (2001) studies the uncertainty of path-
integral averages. Thus, one should be careful when choosing the estimators, and
be aware of the different problems that might arise.
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CHAPTER 3

TEMPERATURE EFFECTS IN

FEW-PARTICLE SYSTEMS

· · ·
Minä miekkonen vain sen tiedän

minä vain sekä muuan muu
ja lehdon lempivä kerttu

ja tuoksuva tuomipuu.
— Eino Leino

The last part of this thesis consists of the published papers concerning proper-
ties of electrons in quantum dots, Papers I and II (Sec. 3.1), some applications to
surface physics with hydrogen atoms, Papers III and IV (Sec. 3.2), and molecular
physics including quantum features with both, electrons and protons simultane-
ously, Paper V (Sec. 3.3). We have dealt mostly with temperature and quantum
effects—effects that can be treated with path-integrals and that are hard to con-
sider with other theoretical methods. Furthermore, we have been studied how
the excited states can be extracted from finite temperature density matrix. Finally,
we analyzed the validity of Born1 –Oppenheimer2 and non-adiabatic approxima-
tions.

3.1 DIMENSIONALITY EFFECT

Quantum dots are small man-made artificial atoms made usually from semicon-
ducting materials. The size and shape of the confining potential can be adjusted
to a large extent, and thus they might be important in novel semiconductor tech-
nology, also. Quantum dots consist of 103–109 atoms with possibly only a few
charge carriers. These are subject to strong many-body effects.

1Max Born, Dec 11, 1882–Jan 5, 1970 (Breslau, Germany–Göttingen)
2J. Robert Oppenheimer, April 22, 1904–Feb 18, 1967 (New York–Princeton)
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The two electron system, considered in Papers I and II, is one of the simplest“How many bodies we need to have a
problem? In Newtonian mechanics 3-body

system was insoluble. General relativity and
quantum electrodynamics proved that 2-

and 1-body problems are insoluble. Within
quantum field theories, the problem of

0-body became insoluble.” (Mattuck, 1992,
p. 1)

nontrivial quantum mechanical system. Nevertheless, some analytical results ex-
ist for the electrons in a symmetrical enough quantum dot, see Taut (1993) and
Dineykhan and Nazmitdinov (1997). In addition to analytical results, there are a
number of numerical results for harmonic two-electron quantum dots.

We studied how to extract the pure states from the thermally averaged density
Note the method of Lyubartsev (2005) for the

resolution of excited states.
matrix that is obtained with path-integral method. Also, we studied the effect of
dimensionality, that is how much the third dimension influences to the properties
of quantum dots. This study is extended to the case of surfaces in Papers III and
IV.

In Papers I and II, the quantum dot is assumed to be made of GaAs, with the
electron effective mass m? = 0.067me, with me being the free electron mass, and
the dielectric constant ε = 12.4 everywhere in the structure. Paper I describes a
2-dimensional harmonic quantum dot with confining strength }ω = 1 eV. Thus,
the confinement is very strong corresponding to a QD of a few nanometers and a
few hundreds of atoms, only. This servers, however, as a nice model and might
even be realistic with new fabrication technologies.

In the next paper, Paper II, the 2-dimensional system is enhanced by adding aThe vertical unnormalized wave function for
symmetrical double quantum well is

(Gasiorowicz, 1996)

u(z)=

8
><
>:

cosh kz or sinhkz, if 0 < z < 1
2
b

A sin qz +B cos qz, if 0 < z − 1
2
b < W

Ce−kz , if z > 1
2
b+W

where k2 = |Ez|/λ, q2 = (V − |Ez|)/λ,
λ = }2/2m?, and the constants A, B and C

are chosen to make the wave function and its
derivative continuous and to normalize u(z).

double quantum well structure in the third dimension. The confining potential
in the third dimension consists of two quantum wells of depth 300 meV, width of
W = 12 nm and a barrier in between of width b = 2.4 nm. The confining strength
was }ω = 5 meV, substantially lower than in the first paper. This system is taken
from the experimental work of Pi et al. (2001).

Furthermore, in both cases, the exact Hamiltonian reduces to the center of mass
and relative motion, and the relative motion must be determined numerically.
The motion of CM is of the free-particle type, as usual, and thus the solution is
known analytically.

3.1.1 FINDING PURE STATES

The path-integral density matrix is a finite temperature, mixed state, descrip-

T = 300000 K

p [%]

E [Ha]

65 %0.5

23 %1.5

8 %2.5

3 %3.5

Energy states of harmonic oscillator (m = 1

and k = 1) together with respective
Boltzmann probabilities at very high

temperature.

tion of the quantum system. Thus, the mixed state energy 〈E(β)〉 at tempera-
ture T = 1/(kBβ), Eq. (2.9), is the Boltzmann weighted mean value of pure state
eigenenergies Ei given in Eq. (2.12),

E(β) =

∑
i diEie−βEi

∑
i die−βEi

.

This summation suggests, that the contribution of excited state energiesEi can be
separated from the finite temperature energy, 〈E(β)〉 by some fitting procedure,
assuming that the function 〈E(β)〉 is known.

Only for a few systems is 〈E(β)〉 known analytically; the free particle and har-See Grosche and Steiner (1995) for the list of
systems for which 〈E(β)〉 is known.
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Figure 3.1: Mixed state energy as a function of temperature of the corre-
lated two-electron system, simulated with Trotter numbers 8 (◦), 16 (×),
32 (+), 64 (∗) and 128 (♦). The solid line is a fit to the functional form
of 1

2
}ω coth 1

2
}ωβ and the dashed lines show analytical single electron total

and kinetic (potential) energies, respectively.

monic oscillator are shown in Part I. However, if we are able to simulate 〈E(β)〉
accurately enough, this should give us the pure state energies Ei. In principle, it
should be possible to find the pure state densities ρi(r) independently with the
same procedure, and thus, find a verification of pure state energies Ei obtained
here.

At low enough temperature we get only one or two states that contribute to the One should note that the high temperature
here is a computational tool, only, and have
nothing to do with any realistic temperature
related to quantum dots.

total energy, according to the Boltzmann factor. It implies that the fitting needs
physically too high temperatures to obtain nonzero probabilities for higher states.
However, when extracting more states, the lowest states can be fixed and thus
resulting in a easier optimazion task.

For the fitting procedure, we used Levenberg–Marquardt algorithm, which is ex- The L–M-algorithm is following:
Minimize ||y − g(θ)||2 where y is the g(θ)

is the model function with parameters θ.
First, linearize g(θ) around point θk. Then
1. Choose the initial point θ0

2. Solve dk from
g′(θk)T [y − g(θk)] =

[g′(θk)T g′(θk) + µkI ]dk
3. Set θk+1 = θk + dk

4. If the error is small enough quit, otherwise
goto step 2.

plained in any textbook on optimization, or see Fletcher (1978) or Nash and Sofer
(1996); the Gauss–Newton algorithm was not good enough. It is possible to find
a few first pure states with G–N, but Levenberq–Marquardt was much simpler
to use and more eigenenergies were found. L–M is so called trusted region algo-
rithm, i.e., its trajectory stays in the region where the fit is good, discarding too
long steps. This is achieved by choosing µk such that the coefficient matrix for dk

is positive definite and thus the quadratic approximation to nonlinear residual
vector is valid.

The L–M algorithm is stable with respect to changes in starting point and temper-
ature in the one-electron case. Thus, if the simulated energy 〈E(β)〉 is replaced
by the analytical formula 〈E〉 = 1

2}ω coth( 1
2}ωβ) in optimization procedure, the

pure one-electron eigenstates Ei can be found easily until i ≈ 7. However, the
optimization is sensitive to the accuracy of mixed state energy: if the analytical
energies are rounded to two decimals, the fitting procedure does not work reli-
ably anymore.
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Figure 3.2: Analytical vertical (z) one-particle distribution functions at dif-
ferent temperatures in the confining potential of 300 meV. The probability
distributions ρ(z) are in arbitrary units but normalized to the same constant.
The shown distributions are 10 K (solid) and 300 K (dotted).

The simulated interacting case energies are shown in Fig. 3.1 for different TrotterThe small M energies becomes zero at low
T , thus failing in describing the quantum

(kinetic) energy.
numbers M = 8, . . . , 128 and temperatures. Also the equal contributions from
the kinetic and potential energies are shown. From low-T fitting the ground state

The fitting procedure leads to the two first
excited energies 1.00 eV and 1.9 eV above

the ground state.

energy 1.06 eV is found for 2 interacting electrons in a 2 dimensional harmonic
quantum dot with }ω = 1 eV. The high-T behavior is seen to be similar to the
single electron case, though the analytical single-particle form probably cannot
be assumed. However, a fit to that results in a scaling factor 0.48 for β.

3.1.2 DISTRIBUTIONS AND ENERGETICS

The vertical confining potential together with density distributions are shown inWhile the level spacing in vertical quantum
problem is about 50 meV, in the horizontal

harmonic oscillator it is 5 meV with the
degeneracy increasing linearly in energy.

Fig. 3.2. The confinement is one to two orders in magnitude stronger in vertical
direction, resulting in essential differences in temperature response of the one-
particle density. In Fig. 3.2 it is seen that only at 300 K a small shift of the density
away from the center barrier takes place, resulting in decrease of tunneling there.
The horizontal distribution, on the contrary, shows the strong temperature broad-
ening, as expected.

The classical-to-quantum transition is clearly visible in projected one-particle dis-
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tribution functions in the vertical (z) direction. The simulation is carried out at
fixed temperature T with different Trotter number M , thus using various τ =

β/M . In the limit τ → 0 the path-integral formalism is exact, and when τ = β,
classical description is used, as explained in Part I. The quantum mechanics soft-
ens the external potential, as described in Part II, which is observed as discon-
tinuities in the classical distributions. Similar behavior was observed in studies
related to Paper V.
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Figure 3.3: Projected horizontal (z) and vertical (xy) pair correlation func-
tion at various temperatures.

Turning the electron–electron repulsion on, i.e. adding one additional electron
to the quantum dot, two expected main features emerges. First, the repulsion
decreases the density, where it is high, by shifting it to the less occupied regions
of space. Secondly, the correlation effects are the larger the lower the temperature.

The dimensionality effect or separability of the three dimensional system to one Two effects should be seen. First, the
temperature broadening, and second, the
weak modifications due to the Coulomb
repulsion, which tends to keep the electrons
apart from each other.

and two dimensional subsystems is now considered. The main question is: does
the small but finite vertical extension (z) have an essential effect on the electronic
structure in the lateral (xy) plane (Pi et al., 2001, Rontani et al., 1999). For the
one-particle distribution the answer is obviously "no", because the one-particle
distributions of the two-electron case and the single electron case do not differ
and the latter is analytically separable to three dimensions. However, for the de-
tailed two-electron distribution the answer is different as indicated by the low
temperature pair correlation functions. Clearly, at low temperatures where the
electrons occupy the center of the disc, see Figs. 3.3, the third dimension allows
more freedom for both of the electrons simultaneously. However, increase of tem-
perature allows occupation of lateral space further away, which seems to cover
the quantum and correlation effects.

The same conclusions can be drawn from the correlation holes shown in Paper II,
only, where the case is even more transparent: at temperatures 100 K and 300 K
the presence of the second electron does not essentially effect on the dynamics of
the first one. At lower temperatures (10 K and 30 K), however, a more conven-
tional correlation hole is seen, both vertically and laterally.

ENERGETICS

Though we were able to reach sufficient convergence for the distributions, re- The computational capacity becomes a
limitation, at lower temperatures in
particular.

garding the energetics we are only able to give rough estimates for some contri-
butions.

Within the statistics, we are not able to find differences in the external potential
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Table 3.1: Potential and interaction energetics for two interacting electrons
in a quantum dot.

T [K] Vpot [meV] Vvrk [meV]
3 33.2 4.0

10 31.4 4.4

30 18.0 4.2

100 29.0 4.0

300 59.0 2.5

energies of one of the interacting electrons and one of the two noninteracting, see
Table 3.1. The mutual Coulomb (repulsion) energy of the two electrons is about
4.0 meV independent of temperature. Surprisingly, this very same value is found
for two interacting electrons and two noninteracting, We are not able to obtain
estimates for kinetic energies, the main reason being the discontinuous external
potential function.

3.2 TEMPERATURE AND COVERAGE EFFECTS OF H ATOMS ON

NI SURFACE

Hydrogen motion and interactions on metal surfaces are of interest both tech-
nologically and fundamentally. Hydrogen, being the lightest atom apparently
seems to be simple, but it emphasizes the quantum effects. Furthermore, theE.g. peculiar adsorbate diffusion, EELS,

LEED, photoemission or He scattering. mutual interaction between adsorbed hydrogen atoms may significantly alter the
apparent temperature dependent properties of the system.

Impurities in the lattice, vacancies, other defects, relaxations or reconstructions,
and most importantly at higher temperatures the thermal motion of the surface
need to be taken into account in studies of real surfaces, see Auerbach et al. (1987),
Daw and Baskes (1984), Jena et al. (1985), Puska et al. (1987).

One of the early pioneers in applying PIMC to metals is Gillan (1987). However,
most path-integral studies are formulated differently to study diffusion-related
topics,see e.g. Mattsson and Wahnström (1997), Mattsson et al. (1993), MattssonDiffusion is convenient to study with

path-integrals because the temperature is
easily taken into account. However, this
requires somehow different formulation

than described here.

and Wahnström (1995).

3.2.1 MANY-BODY ALLOY POTENTIAL

The complexity of hydrogen behavior on a nickel surface arises from the explicit
involvement of energy exchange due to phonons and other forms of excitations,
defects, and strong interaction between the hydrogen and metal atoms. Only a
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few theoretical methods are capable of treating these problems.

We adopt the many-body alloy (MBA) potential, see Zhong et al. (1991), derived Other useful methods are ab initio DFT, EAM
and TBTE, (Tersoff).from tight-binding theory of bulk materials as a starting point for the adsorbate–

surface interaction. It offers a possibility for extensions to a description of both
adsorbate–adsorbate interactions and metal surface dynamics at finite tempera-
ture. MBA is well suited for both single component and alloy bulk materials. The MBA has been used for H/Pd systems and

for studies of the electronic and structural
properties of small clusters (Grönbeck et al.,
1997a,b), surfaces of metals, and dilute metal
alloys (Zhong et al., 1992, and references
therein).

needed parameters can be fitted to ab initio or experimental data.

The total (cohesive) energy of a crystal or a cluster is decomposed into individual
atomic contributions Ei as

ET =
∑

i

Ei, (3.1)

where i runs over all atoms in the system and

Ei = Emb
i +Er

i

with Emb
i being the many-body term andEr

i is the (repulsive) pair potential. Sev-
eral parametrizations can be found for the many-body term, see Brenner (1989)
for examples. Zhong et al. (1991) based their expression on a parametrized tight-
binding Hamiltonian: in a one-electron picture, the binding energy of atom i is
given by

Emb
i = −

∫ EF

−∞

(E −E0)Ni(E)dE

where Ni is the local density of states. Higher-order moments cannot be ex-
pressed in analytic form (Cleri and Rosato, 1993), and thus this is usually simpli-
fied by the second-moment approximation. The cohesive properties of transition The experimental binding energies of

transition metals appear to be roughly
proportional to the average width of the
DOS,

√
M2.

metals originate from the d-band density of states, and it is assumed that these
bands can be described by a s.c. hopping or overlap integrals. The hopping inte-
grals are functions of the radial distance between atoms i and j, only, and thus
the same holds for the band energies also. We may write

Emb
i ∝M2(i)

1/2 =


∑

j 6=i

t2ij




1/2

=


∑

j 6=i

ξ2 exp(−2qrij)




1/2

where an exponential distance dependence of screened or effective hopping integral
is assumed. The parameter ξ is an effective hopping integral and q describes its
dependence on the relative interatomic distance. Both parameters are assumed
to depend only on the interacting atomic species α and β.

The pair potential term (repulsive part), Er
i , is parametrized as a pair-wise Born–

Mayer potential Born–Mayer form assumes that the
internuclear potential U is
U(r) = a exp(−br), R1 ≤ r ≤ R2 which is
an experimental observation (Abrahamson,
1969).

Er
i =

∑

j 6=i

ε exp(−prij)
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Table 3.2: Many-body alloy (MBA) potential parameters for all atom pairs
in Eq. (3.2).

Xα–Xβ qαβ pαβ r0,αβ [Å] εαβ [eV] ξαβ [eV]
H–H 3.22 5.28 2.30 0.16 0.91

H–Ni 2.87 5.87 1.44 2.70 5.52

Ni–Ni 3.00 8.62 2.49 0.20 1.97

with an exponential distance dependence. This ensures the stability of the crystal
together with the bonding term, Emb

i . The parameter ε is related to the repulsion
energy between two atoms and p should be related to the compressibility of the
bulk metal, see (Cleri and Rosato, 1993) and Appendix A in Paper III.

Thus, we may conclude that the MBA total cohesive energy to be used in PIMC
simulations as external potential is given byThe MBA cohesive energy resembles the

more popular Sutton–Chen potential

Ei = −εci

vuut
X

j 6=i

„
r0

rij

«m
+ 1

2

X

j 6=i
ε

„
r0

rij

«n

as rij ≈ r0 because
exp[−a(rij/r0 − 1)] ≈ (r0/rij)a.

Ei =−
√∑

j 6=i

ξ2αβ exp
[
−2qαβ

( rij
r0,αβ

− 1
)]

+
∑

j 6=i

εαβ exp
[
−pαβ

( rij
r0,αβ

− 1
)]
. (3.2)

The parameters are defined for atom pairs (i, j) of elements α and β, and are
dependent on the interacting atomic species, only. Five parameters for each dif-The more accurate model, the more

parameters are needed. Groß et al. (1999)
fitted 53 parameters in TBTE potential

function to reproduce the ab initio PES and
the qm nature of bonding properly.

ferent pair are needed. These are the attraction due to overlapping orbitals ξαβ

and the pair-wise repulsion energy εαβ , both given at the equilibrium distance
r0,αβ . The distance dependence of attractive and repulsive parts are scaled by the
parameters pαβ and qαβ , respectively.

MBA PARAMETERS FOR NI–NI, NI–H AND H–H INTERACTIONS

The Ni–Ni fitting can be done to bulk properties, for which we use the data
adopted from Sutton and Chen (1990) with the supplement that the coordina-a = 3.52 Å, r0 = 2.49 Å, Ecoh = −4.44 eV

and B = 1.17 eV/Å3. tion number in the fcc lattice is z = 12. Since this set of data still leaves us with
one free parameter, we utilize the Sutton–Chen parametrization to start with, see
Sutton and Chen (1990) for details. The scaling parameter for attraction is m = 6,
which corresponds to q = 3.0, see Appendix in Paper III. Using this value for q
and bulk fitting, we obtain p, ξ and ε. The values are given in Table 3.2.

We fit the Ni–H MBA potential to the data given by Mattsson et al. (1997), where
adsorption of H on Ni(001) surface has been studied with an EMT-type model
potential whose parameters are fitted to ab initio potential energy surface. The
fitted quantities are the adsorption energy of the hollow site, the equilibrium dis-Eads = 2.8 eV, ra = 0.5 Å, Ebarr = 0.14 eV.

tance from the surface at hollow site and the energy barrier between the hollow
sites through the bridge site.
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Figure 3.4: Simulation supercell of Ni(001) surface (of FCC lattice, a = 3.52

Å) schematically, surface and subsurface layer atoms indicated by black and
grey circles, respectively. One of the 4-fold hollow sites is designated by
the dashed square and the high symmetry directions along the surface are
shown. The three possible hollow site distances (within the “periodical”
simulation cell) are depicted.

The fitted parameters for H–Ni interaction are given in Table 3.2. These give
exact values for the chosen adsorption properties, but rather useless values for the Ed = 5.6390 eV, k = 45.7780 eV/Å2. Ab

initio values are Ed = 3.1 eV, r0 = 1.47 Å
and k = 13.67 eV/Å2.

dissociation energy and the force constant of the free HNi molecule; the ab initio
calculations of Bagus and Björkman (1981) give somehow different results. Thus,
fitting the surface properties leads to a parametrization that does not describe
satisfactorily the HNi molecule.

For the H2 dimer in the MBA scheme we adopt the parameters from Zhong et al. For the free hydrogen molecule
Ebind = −4.747734185194 eV and
r0 = 0.74143 Å (Sims and Hagstrom, 2006).

(1991), giving the binding energy as −4.95 eV at bond length 0.9 Å. We note,
that the parameters are not fitted to describe the free H2 molecule but the one
adsorbing onto on a transition metal surface.

PERFORMANCE OF THE MBA POTENTIAL

First, we used a model consisting of N atoms with one quantum mechanically We take N large enough to give the
hydrogen energetics from Eqs (3.1) and (3.2)
on an infinite Ni substrate.

behaving hydrogen adsorbate on a surface ofN−1 classical nickel atoms at either
zero or at finite temperature, see Paper III. The hydrogen cut-off radius for MBA
potential is essentially 8 Å, corresponding to N ≈ 100. For nickel atom dynamics
some finite-size effects may remain as a compromise with computational labor.

However, for Paper IV, when more hydrogen atoms and thus hydrogen–hydrogen Due to the finite-size supercell, in 〈100〉 and
〈110〉 directions there are only two and one
hollow site distances, respectively. Thus, the
finite simulation cell is different from the
infinite one.

interaction is taken into account, our model was changed to a periodic slab of six
layers of Ni atoms, eight atoms in each layer. The lateral periodicity is two lattice
constants, 2a, see Fig. 3.4 for more details.

Fig. 3.5 shows the classical hydrogen equipotential curves at zero temperature in
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Figure 3.5: Equipotential contour lines of the H atom MBA potential energy
hypersurface in two perpendicular planes of rigid (001) surface of Fig. 3.4.
from the hollow site to (a) the top site direction 〈010〉 and (b) the bridge site
direction 〈110〉. The minimum at z = 0.5 Å corresponds to the adsorption
energy 2.8 eV and line spacing is 25 meV.

two high-symmetry planes perpendicular to the surface. Potential to the 〈110〉
direction is identical with that of Mattsson et al. (1997). We see that the topsite
barrier between hollow sites is about a double (0.3 eV) of that of the bridge site
(0.14 eV). Thus, the H–Ni interaction is described satisfactory.

As a good reference test for the MBA parameters of H–H interactions we consider
the high-symmetry potential-energy hypersurfaces conventionally used to illus-
trate the dissociation dynamics of H2 molecule coming down to the perfect and
rigid surface. Due to their typical shape they are called elbow plots. We choose the
DFT calculations of Kresse and Hafner (2000) to compare with.

We present some of MBA elbow plots in Fig. 3.6. These should be compared to
those of Kresse et al, and also, to the equipotential contour lines of single hy-
drogen atom on Ni surface, Fig. 3.5. We see that MBA surprisingly successfully
transforms the single atom potential energy surface (PES) to the various elbow plots
as a consequence of H–H interaction.

In our case the most important regions of the elbow plots to consider are the hol-
low sites shown in Fig. 3.6, where hydrogen adsorbates almost exclusively dwell
in thermal equilibrium. Fig. 3.6a shows the PES for H2 molecule dissociation
above the bridge site towards the hollow sites (HBH). A small physisorption en-The dissociation energy of free H2 is too

large by about 0.5 eV. Therefore, the
chemisorption energy becomes too small by

about the same amount.

ergy minimum of 20 meV is found in agreement with DFT data of Kresse (2000).
We evaluate for the dissociation barrier a value of 140 meV, as the DFT barrier is
110 meV.
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Figure 3.6: Elbow plots for H2 dissociation to hollow sites from MBA po-
tential. High symmetry cases in planes {110} (on bridge site) and {010} (on
top site) are shown on the left and right, respectively. Line spacing is 100
meV. Note, that the minimum is about 100 meV higher in the former case
due to the difference in remaining indirect H–H interaction, see text.

The elbow plot above the top site towards hollow sites (HTH), Fig. 3.6b, presents The effect of wrong dissociation energy of
H2 molecule is clearly seen in Fig. 3.6b (hth)
where a dissociation barrier of 350 meV
emerges, opposed to DFT data, which shows
a −230 meV dissociation barrier.

the same features as HBH. The only essential difference in these two cases is the
H–H repulsion. H atoms in hollow sites further apart do not essential interact. We
note that the dissociation barrier is not described correctly but it is not relevant
for the equilibrium distribution of H adsorbates at low coverages. For a collection
of H2 molecule physisorption, dissociation barrier and chemisorption energetics
for the elbow plots see Table 3 from Paper III.

It is interesting to test MBA performance in the description of surface relaxation.
By allowing the two uppermost Ni layers to relax, their separation is changed by
∆z12 = −0.120 Å, which is close to the DFT result −0.116 Å (Kresse and Hafner,
2000). Also, for the second layer separation change we get ∆z23 = −0.08 Å,
a negative value indicating a smaller layer separation. The corresponding DFT
value is ∆z23 = 0.04.

As a conclusion, we find MBA with the given parameters capable of describing
a single and two interacting H atoms on a Ni surface. Furthermore, it seems We assume the validity of MBA for higher

coverages.to describe correctly many other features of the system that are not relevant or
needed in the present study.



68 3.2 H ATOMS ON NI(100)

3.2.2 ADSORBATE DISTRIBUTIONS

The hydrogen quantum distribution in the hollow site at low coverages and low
temperatures does not strongly depend on the actual temperature or the cover-
age. It has been found to be rather similar to that at zero Kelvin, see Mattsson
et al. (1997), Puska et al. (1983) or Puska and Nieminen (1985). Indeed, rise of the
temperature just slightly spreads out the distribution and the difference between
the two almost vanishes. Also the isotope effect is studied. Deuterium is clearly
more localized and behaving more “classical”.

a) b)

c)

H distributions at the hollow site of rigid
substrate shown in Fig. 3.4. The contours

present the density projected onto the
surface plane at (a) 100 K, (b) 300 K and (c)

the difference of the two ((b)−(a)). The thin
and thick lines show densities 0.5, 1.0, . . .

and 5, 10, . . . atoms/(surface unit cell); and
the black and grey lines stand for positive

and negative values, respectively.

The classical distribution and its temperature dependence is demonstrated in the

a) b)

c)

The “classical H atom” distributions.

figure. The quantum delocalization is substantial, and relatively the larger the
lower the temperature, as expected. We see that only at 300 K the classical thermal
spreading conceals the quantum delocalization. Furthermore, the classical dis-
tributions are more bridge direction oriented compared with the quantum case,
where tunneling allows more circular shape.

The case of finite temperature substrate in thermal equilibrium with the adsor-

a) b)

c)

The hydrogen atom distributions in thermal
equilibrium with the same finite

temperature Ni surface.

bate is also considered. Though, the RMS displacements of substrate atoms do
not differ too much at 100 K and 300 K temperatures, the resulting adsorbate dis-
tributions do, as is seen by comparison of Figs 3 and 6 in Paper III. At 100 K the
distributions seem to be almost identical, whereas at 300 K they are clearly differ-
ent. This reveals strong temperature dependence of the distribution, that can be
expected to influence the adsorbate diffusion dynamics.

On the rigid surface the temperature dependence is weaker than the isotope ef-
fect, whereas it is strong for the classical adsorbate, but the largest effect on dis-
tributions arises from the finite temperature substrate dynamics in all cases as
can be seen from the vertical distributions, shown in Paper IV. These turn out
to be modified Gaussians with the width of about 0.4 Å and mean values being
equal to the maxima at around 0.5 to 0.65 Å, except for some of the classical cases.
The mean height coincides with the previously reported results, 0.6 Å Puska and
Nieminen (1985) and Mattsson and Wahnström (1995). Furthermore, we obtained
similar results with higher hydrogen coverages, too.

Thus, as a conclusion for one-hydrogen distributions, we might say that we find
a strong quantum delocalization of the adsorbate at 100 K, and that the finite-
temperature surface dynamics effects only little on distribution of the quantum
adsorbate at 100 K. At room temperature the case is totally different. In the fol-
lowing, the quantum case with higher coverages is considered in more detail.
Temperature and quantum effects and also the H–H interactions are considered.
The study for the classical case can be found from Paper IV.

At T = 100 K, the adsorbates are lying in the “circular ground state”, exhibiting
harmonic confinement. It should be noted, that at T = 100 K the distributions
of coverages θ = 2/8 and θ = 3/8 are almost identical. Thus, the adsorbate–
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a) T = 300 K
    1 H

b) T = 300 K
    2 H

c) T = 100 K
    1 H

d) T = 100 K
    2 H

a) T = 300 K
    1 H

b) T = 300 K
    3 H

c) T = 100 K
    1 H

d) T = 100 K
    3 H

a) T = 300 K
    2 H

b) T = 300 K
    3 H

c) T = 100 K
    2 H

d) T = 100 K
    3 H

a) T = 300 K
    3 H

b) T = 300 K
    4 H

Figure 3.7: One-particle quantum distribution in the hollow site in case of
adsorbate coverages θ = 1/8, 2/8, 3/8 and 4/8 in the simulation cell and for
temperatures 100 K and 300K. The equidensity contours present the three
dimensional density projected onto the surface plane. The thin and thick
lines show densities 0.5, 1.0, 1.5, . . . and 5, 10, 15, . . . atoms/(surface) unit
cell.
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adsorbate interaction is rather small in both cases, though the pair correlation
function differs.

Only at coverages θ ≥ 4/8 the lateral distribution of quantum adsorbates is pro-The “classical hydrogen adsorbates” show
more pronounced temperature effect. It is

due to the absence of zero-point vibration.
The lateral distributions of quantum and

classical adsorbates at room temperature are
quite similar, the largest difference being

that the classical distributions are more
bridge-direction oriented.

foundly different from zero-kelvin distributions, see subfigure in low-right cor-
ner in Fig. 3.7, showing more towards bridge-site orientation. This may be a
reflection of attractive interaction, see Wong et al. (1995) of H adsorbates at HTH
configuration, already depicted in Fig. 3.6b.

The pair correlation functions of the distributions, see Paper IV, show that all
The classical hydrogen pair correlation

distributions are similar to those of quantum
adsorbates, the only essential difference

being that classical peaks are broader.

hydrogen adsorbates tend to reside apart from each other which, again, is an
indication of H–H repulsion. There is no molecular adsorption state at T = 300

K or T = 100 K, a result observed for T = 80 K by Mårtensson et al. (1986).
The maximum values of pair correlation functions are obtained at hollow-site
distances, 3.5 Å and 5.0 Å.

a) T = 100 K
    4 H

b) T = 100 K
    5 H

c) T = 100 K
    6 H

d) T = 100 K
    7 H

“Classical hydrogen” distributions of higher
coverages. Here, only temperature T = 100

K is shown, because at higher temperatures
the system becomes unstable. This is the case

for coverage θ = 7/8 even at T = 100 K.

3.2.3 ADSORBATE ENERGETICS

Evaluation of energetics turns out to be a real computational challenge. Although,
the distributions seem to converge faster by visual judgment, those above have
been evaluated from the fully converged equilibrium. For the energetics, below,
with chosen Trotter number M = 64 we were able to acquire data enough to
make the statistical error bars negligible with respect to the convergence in Trot-
ter number.

For the case described in Paper III, that is, with one hydrogen atom only, the
PIMC potential and kinetic energies are relatively close to each other in both cases
pointing to the harmonic oscillator like potential with ~ω = 120 meV. However,This gives energies 180 meV and 183 meV,

with 〈E〉 = 1
2

}ω coth( 1
2

}ωβ), Eq. (2.13). the potential is flat in all directions at its minimum with smaller force constants
where ~ω is below 100 meV, see Fig. 3.6.

Energetics of potential well and harmonic
oscillator compared. For H/Ni system, the

force constant is below }ω = 100 meV in all
directions expressing a potential between

these two.

The interaction energy between hydrogen atoms is more difficult to estimate, be-
cause the MBA potential does not involve pair interactions. To estimate that, we
used the total MBA potential of N hydrogen adsorbates energy obtained directly
from simulations, by Eq. (2.4), and the single-adsorbate potential energy Epot,1 of
the 3-dimensional density function ρ(r) of N hydrogen adsorbates as described
in Eq. (2.5) where V (r) is taken to be single-adsorbate energy term, see Eq. (3.2).
By comparing these two estimates we are able to find an approximation to the
interaction energy between H adsorbates.

The kinetic energy is estimated via virial the theorem, but as a simplification, we
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Figure 3.8: Total interaction energy of the hydrogen adsorbates on Ni sur-
face. The solid line is for T = 100 K and the dashed for T = 300 K. Classical
results are the lower (red), quantum statistical results are the upper (blue).
The statistical error bars are hidden in the line width.

neglected the H–H interaction. Thus, the approximation is written as

Evir,1(β) =
1

2
〈r · ∇V1(r)〉ρ(r).

This gives a good approximation as long as the H–H interaction is small, which is
true for long-distance adsorbates on surface. From the pair correlation function,
we conclude that the energetic estimates here are valid for at least H2 and H3.
The total energy for single-adsorbate system is then Etot,1 = Epot,1 +Evir,1. For the
interacting system, by replacing the kinetic energy term with its single-adsorbate
counterpart, we get the total energy

Etot,N = ET +Evir ≈ ET +Evir,1,

where ET is given in Eq. (3.2), and thus, by writing the total energy in the form
ET = Epot,1 + 1

2 (N−1)NEH–H we get an approximation for the interaction energy
EH–H of hydrogen adsorbates.

The interaction part of the potential term, Fig. 3.8 strongly depends on the num-
ber of adsorbates. The interaction energy increases from a few meV with 2 ad-
sorbates to 22 meV with 3 hydrogen adsorbates in accordance with the above
discussion of pair correlation function and energies in Paper IV. Only a small
temperature dependence can be found. Quantum and classical interaction ener-
gies are rather similar.
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3.3 ELECTRON–PROTON COUPLING

There is a number of phenomena in molecular and chemical physics which are
influenced by the quantum behavior of both nuclei and electrons, rovibrational
dynamics being a good example. In case of light-mass nuclei, protons in particu-
lar, treatment of the quantum nature of the nuclei is essential. The last paper of
this sheaf, Paper V, shows how the quantum mechanics with path-integrals can
be applied to both, nuclei and electrons simultaneously.

The path-integral formalism allows us to evaluate the density matrix of the full
three-body quantum dynamics in a stationary state and finite-temperature. This
is what we call "all-quantum" (AQ) simulation. Furthermore, the electronic part
only is evaluated as a function of internuclear distance in the spirit of BO ap-
proximation, and the adiabatic nuclear dynamics is evaluated in the BO potential
curve. Also, we have demonstrated the use of method of extrapolating the finite
Trotter number M to infinite.

3.3.1 PSEUDOPOTENTIAL OF THE ELECTRON

The attractive Coulomb potential makes some problems in path-integral scheme,Note the remarks in Fig. 2.1. It was shown
that by using high enough Trotter number,
M ≈ 215, the cut-off radius of hydrogen

potential can be made rather small, and the
pseudo-potential can be neglected.

as described earlier, and thus we choose to use a pseudopotential instead of true
Coulombic. The pseudopotential is described in Corso et al. (1996) and is of the
form

VPP(r) = −erf(αcr)

r
+ (a+ br2)e−αr2

. (3.3)

Note that the erf function is the cumulant version of hydrogen atom potential,
see Thijssen (2000) or Ceperley (1995) with proper choice of αc. Here, however,
αc and other parameter are fitted to generate the exact ground state energy of
hydrogen atom and the wave function accurately outside a cut-off radius of about
0.6 a0. The parameters are αc = 3.8638, α = 7.8857, a = 1.6617 and b = −18.2913.
Because the bond length of H+

2 is about 2 a0, it is expected that bonding of the
hydrogen molecule ion becomes properly described.

3.3.2 SPECTROSCOPIC CONSTANTS

The spectroscopic constants of H+
2 and D+

2 are obtained as introduced in Alexan-
der and Coldwell (2005). In atomic units they read

Be =
1

2I
=

1

2µR2
,

ωe =
( 1

µ

d2E

dR2

)1/2

,
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ωexe =
1

48µ

[
5
(d3E/dR3

d2E/dR2

)2

− 3
d4E/dR4

d2E/dR2

]

and

αe = −6B2
e

ωe

[R
3

d3E/dR3

d2E/dR2
+ 1
]
.

Insteadof determining these constants at the equilibrium distance only, as is done Within the BO approximation of diatomic
molecules the corrections to electronic
energies due to rovibrational motion of the
nuclei can be evaluated from a Dunham
polynomial (Dunham, 1932)

EvJ = −De + ωe(v +
1

2
)− ωexe(v +

1

2
)2

+BeJ(J + 1) − αeJ(J + 1)(v +
1

2
) + . . . ,

where v and J are vibrational and rotational
quantum numbers, respectively, and Be, ωe,
ωexe and αe are the spectroscopic constants.

in Alexander and Coldwell (2005), we evaluate expectation values from the dis-
tribution of nuclei, e.g. for the rotational constant,

Be =
1

2µ

∫
g(R)

1

R2
dR,

where the pair correlation function g(R) is normalized to unity. The other spec-
troscopic constants are evaluated similarly.

3.3.3 RESULTS

First, the electronic part only is evaluated as a function of internuclear distance in
the spirit of BO approximation. Secondly, the adiabatic nuclear dynamics is eval-
uated in the BO potential curve. Finally, H+

2 is treated fully non-adiabatically with
the AQ simulation. These allow us to demonstrate the non-adiabatic electron–
nuclei coupling by a projection of the AQ dynamics onto the adiabatic approxi-
mations.

First, we demonstrate that path-integral Monte Carlo method and the pseudopo-
1.5 2.0 2.5 3.0

−0.14

−0.12
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E
 (H
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R (a

0
)
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212

213

∞
FD

PP

exact

H+
2 potential curves with different Trotter

numbers, finite difference calculation with
the pseudopotential and with exact e−–p+

potential. The PP reproduces the hydrogen
atom energy exactly, a small error results in
binding of another proton to form H+

2 .

tential reproduces the potential curve of H+
2 . Thus, the nuclei are held fixed,

i.e. the Born–Oppenheimer approximation, during the simulation process. We
note that the Trotter number has to be at least 213 in order to find the minimum of
the potential curve at the nuclear separation R = 2.0 a0. The extrapolated values
are in good agreement with the potential curve FDPP, and there is almost a perfect
match at R = 2.0 a0, where the value of the extrapolated dissociation energy is
0.1061(2) Ha.

Second, we consider the quantum dynamics of the nuclei only (QN), for which
convergence with respect to Trotter number is found at M ≥ 26. Average nuclear
separation of 2.019(1) a0 for H+

2 and 2.007(2) a0 for the isotope D+
2 is found with

M ≥ 26.

Difference in the bond length of H+
2 between the adiabatic electron and adiabatic By inspecting the extremum values of the

energy of harmonic oscillator
EJ (r) = 1

2
k(r − re)2 + J(J + 1)/2µr2 the

effects of centrifugal distortion can be seen.
Thus, ∆R = 4BeJ(J + 1)/(µω2

e R
2
e ), where

Re is the equilibrium distance. At finite
temperature the rotational energy states
should be weighted by the Boltzmann factor.
Using the spectroscopic constants
(Alexander and Coldwell, 2005) and
temperature of 300 K we obtain
∆R = 0.0043 a0.

nuclei simulations is 0.019 a0. Centrifugal contribution to this, the difference be-
tween one and three dimensional simulations of the nuclei, is 0.009(1) a0, which
unexpectedly is about twice as much as the harmonic approximation. The anhar-
monic contribution, i.e. difference between total and centrifugal distortions, is
0.010(1) a0. Lounila and Rantala (1991) showed that anharmonic effects in the H2

molecule contribute about the same amount to total distortion as the centrifugal
force, which turns out to be the case here, too.
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Figure 3.9: (Color online) Nuclear and electron–nucleus pair correlation
functions: Left: H+

2 AQ (solid), H+
2 QN (dashed) and D+

2 QN (dash-dotted).
Right: AQ (solid, second lowest curve), AQ projection to R ≈ 2.0 a0 (solid)
and BO at R = 2.0 a0 (dashed). The latter two almost coincide. Dashed
vertical line indicates the size of the pseudopotential core, r = 0.6 a0. Cor-
responding pair correlation functions for hydrogen atom (dotted line) and
H+

2 (dotted) obtained by using the analytical ground state wave function of
hydrogen atom are also shown.

A Morse potential, Morse (1929), fitted to the FDPP potential curve is used in the
evaluation of the spectroscopic constants. This is justified because the nuclear
simulations and analytical Morse wave function (ter Haar, 1946) calculations co-
incide. The spectroscopic constants of H+

2 are close to those given by Alexander
and Coldwell (2005), which have been determined at the equilibrium distance
of the nuclei, only. We note that the spectroscopic constant obtained from PIMC
simulations are close to those “exact” values, see Alexander and Coldwell (2005)
for example.

Third, the non-adiabatic “all quantum” dynamics is considered. The finite sizeOne should note that variational and
diffusion Monte Carlo methods are used

when high accuracy in energy is needed, see
Sims and Hagstrom (2006) for example.

of quantum nuclei affects to the dissociation energy; the difference in dissocia-
tion energies of AQ and the 3D QN H+

2 simulations is 0.00097 Ha, which is about
kBT revealing additional electronic energy degrees of freedom in the first. Fur-
thermore, the average nuclear separation is 0.056 a0 larger than that in the QN
simulation.

In Fig. 3.9 BO and AQ electron–nucleus pair correlation functions are compared.
AQ projection onto the BO bond length, R = 2.0 a0, and BO results coincide,
which indicates that the adiabatic BO approach for the electron dynamics is suf-
ficient. Thus, it seems that the electron–nuclei coupling effects are more clearly
seen in the dynamics of the nuclei. As one might expect, there is a noticeable dif-
ference between the AQ and the BO electron–nucleus pair correlation functions
due to varying bond length.

A projection of the AQ simulation to a potential curve of the nuclei is constructed
with the help of the known solutions to the Morse potential. The distribution
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from the Morse wave function is fitted to the pair correlation function of the AQ
simulation. The three-body system is then presented by an effective two-body
potential. The projected potential curve shows clear differences in the dynamics
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H+
2 potential curves: Morse potential fitted

to FDPP (dashed) and the effective Morse
potential obtained from the projection of the
AQ simulation (solid), see the text for
details. Corresponding nuclear pair
correlation functions are shown in Fig. 3.9.
The shift in the bond length is 0.036 a0.

of the nuclei between BO and AQ simulations. The minima of the potentials are
set to zero: the difference in the dissociation energies between BO and the AQ
projection is about 0.036 Ha and the shift in the equilibrium distance is 0.036 a0.
All this indicates that an effective Morse potential is not capable of describing
non-adiabatic effects correctly.
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CONCLUSIONS

The path-integral Monte Carlo method is shown to be applicable to a wide vari-
ety of quantum mechanical problems. The method implicitly includes the Boltz-
mann summation, resulting in a finite temperature density matrix. Furthermore,
the correlation between the particles are readily taken into account. PIMC of-
fers a finite-temperature approach together with a transparent tool to describe
the correlations between the particles involved. This method is applied the to
nanophysics, surface science and molecular physics, and used to extract the finite
temperature behavior and correlation effects between particles in those systems.

First, in the case of quantum dots, an expected temperature broadening of the
one-electron distribution is found, the effect being slightly smaller for correlated
electrons than for the single one. Coulomb correlation of the two electrons is
analyzed in terms of pair correlation functions and correlation holes. A detailed
inspection of these reveals differences in the nature of correlation at different tem-
peratures. Generally, the correlations become more important at lower temper-
atures. At higher temperatures the thermal broadening in the mixed quantum
state description screens the correlation effect efficiently. Furthermore, it is also
demonstrated how (physically unreasonably) high temperature simulations and
the resulting mixed state data can be used to resolve the pure quantum state prop-
erties.

Second, adsorbate distributions and energetics of hydrogen adsorbates at nickel
surface are determined at two temperatures, 100 K and 300 K, to trace the tem-
perature dependencies. To describe the adsorbate–substrate interaction and those
between substrate atoms we use the tight binding derived many-body-alloy po-
tential. The few parameters of the potential are fitted to the adsorption energetics
and geometries from DFT calculations.

On the rigid Ni surface, we find strong quantum delocalization of the adsorbate
at 100 K, the classical adsorbate being significantly more localized in terms of dis-
tribution and energetics. At room temperature the extent of classical distribution
approaches that of the quantum case, but a clear difference in energetics remains.
For low coverages, θ ≤ 3/8, the distributions of classical adsorbates are more
bridge-site oriented, but at coverage θ = 4/8 the lateral distribution of classical
and quantum cases are rather similar. The quantum effect is mainly due to zero
point effects and tunneling towards Ni atoms in 〈100〉 directions.

The finite temperature surface dynamics seems to affect only a little the distri-
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bution of the quantum adsorbate at 100 K. At room temperature the substrate
dynamics has a clear effect on both as compared to the rigid surface case. Fur-
thermore, the substrate atom dynamics seems to make the strongest contribution
to the temperature dependence of the H/Ni(001) system properties and phenom-
ena considered here.

Third, a three-body quantum system, the hydrogen molecule ion, is revisited,
once again. We aim at tracing the electron–nuclei coupling effects in the three-
body all-quantum, i.e. non-adiabatic, molecule. Among others we have evalu-
ated spectroscopic constants and molecular deformation. Quantum dynamics of
the system is well described and distinct features of coupling are observed for
the nuclei: shift in the equilibrium bond length, increase in the width of the pair
correlation function of the nuclei, and non-adiabatic correction to dissociation
energy.

The electronic distribution, however, is less influenced by the coupling, and there-
fore, we could say that the adiabatic approximation is better for the electron than
for the nuclei. Projection of the non-adiabatic three-body system with the help of
Morse wave functions onto two-body nuclei-only subsystem indicates that Morse
potential is not capable of describing non-adiabatic effects accurately.

Finally, though the path-integral Monte Carlo method is straightforward, the sim-
plest approach is not suitable if accurate results is desired. Also, the 0 K quantum
state can be obtained as an extrapolation from finite temperatures, only. On the
other hand, the classical representation can be nicely found within the same for-
malism. We find that computational capacity becomes the limiting factor in sim-
ulations with increasing accuracy or with increasing number of particles. Path
integral Monte Carlo method is shown to be straightforward but computation-
ally intensive approach to find the finite temperature mixed quantum state even
for a single particle.
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Abstract

The path-integral Monte Carlo method is used to examine the two-electron state of
a model quantum dot. Electrons in the two-dimensional quantum dot are confined
by a harmonic oscillator potential of strength �� = 1 eV. Mixed state densities,
energies and pair correlation functions are evaluated at various temperatures, and
their temperature dependencies are analyzed. Also, the two-electron pure state
energetics is resolved and the correlation induced shifts of the first and second
excited states are evaluated.

1. Introduction

Quantum dots are small man-made structures in a solid, typically
with sizes ranging from nanometers to a few micrometers. They
consist of 103–109 atoms with an equivalent number of bound
electrons. Electrons are tightly bound to the atomic cores and
bonds except for a small fraction of free charge carriers [1].
Current nanofabrication technology allows precise control of the
size and shape of these dots. Thus, the size and shape of the
confining potential and the effective mass of charge carriers can
be adjusted to tune the electronic structure and the excitation
spectrum, in particular [2].

Properties of few-electron quantum dots, e.g. at heterojunction
interfaces, are important to understand for the development
of novel semiconductor technology. In semiconductor laser
technology, quantum dots may provide unique opportunities
in developments and advance the applications [3]. Thus, the
quantum dots are convenient for optoelectronic device design and
fascinating for theoretical studies. From the theoretical point of
view the quantum dots are atomic-like systems with localized
electronic states. Thus, atomic physics can be applied here to the
field of semiconductor devices.

The two-electron system is one of the simplest non-trivial
quantum mechanical systems. Nevertheless, some analytical
results exist for two electrons in a symmetrical enough quantum
dot. Taut [4] reduced the problem of solving a six-dimensional
partial differential equation to finding the real roots of a
polynomial, and thus, gave analytic solutions to particular
oscillator frequencies of two interacting electrons in an external
harmonic oscillator potential. Dineykhan and Nazmitdinov [5]
found analytic expressions for the ground state energy for 2D and
3D harmonic oscillators in external magnetic fields.

In addition to analytical results, there are a number of numerical
results for two-electron quantum dots. A numerically exact
calculation for the energy spectra of two electrons in a finite
height cylindrical quantum dot by a coupled-channel method is
presented in details by Lin and Jiang [6]. Harju et al. [7] studied the
ground state of parabolically confined electrons in a quantum dot

*email: Tapio.Rantala@tut.fi

by both direct numerical diagonalization and variational Quantum
Monte Carlo methods. In an older paper Harju et al. [8] applied
the Quantum Monte Carlo technique to a two-electron quantum
dot. Merkt, Huser and Wagner [9] have calculated the discrete
energy spectra for two electrons in a two-dimensional harmonic
well in the effective-mass approximation as a function of the dot
size and the strength of a magnetic field directed perpendicular to
the dot plane using first order perturbation theory. Furthermore,
the states of two-electron paired quantum well quantum dots [10]
were calculated with diagonalization and the variational principle.

More complicated quantumd dots have been studied by many
methods: Perturbation theory [11], numerical diagonalization
[12], density-functional theory [13, 14], unrestricted Hartree-Fock
[15], diffusion Monte Carlo [16] and path-integral Monte Carlo
[17, 18, 19, 20, 21, 22, 23] methods. In these studies electronic
structure, addition spectra, electronic states, Fermi liquid and
Wigner molecule behaviour, ground and excited state energies,
shell effects, electron correlations and low-energy states were
examined.

Even for the correlation energy in a quantum dot a simple
but accurate analytic expression can be found in Wentzel–
Kramers–Brilloun approximation [24]. The behavior of 3D
exchange–correlation energy functional approximation of DFT
in anisotropic systems with 2D character is investigated by Kim
et al. [25]. They pointed out a fundamental limitation of LDA,
due to the nonlocal nature of exchange–correlation hole.

The physics of interactions becomes especially interesting in
zero external magnetic field, when electron spins are not polarized
and are active players in the game [26].

In this study, we apply the path-integral Monte Carlo
simulation method [27] to investigate the properties of a two-
electron quantum dot. We evaluate the one-electron distributions
and two-electron correlation functions, and temperature effects
on both. Furthermore, we resolve the finite-temperature mixed
states to the contributing pure states, and by that, we are able to
consider the transition energies, and thus, the optical response of
charge carriers. Also, the correlation effect on transition energies
is discussed.

In the next chapter we briefly review the theoretical concepts of
Monte Carlo methods and the optimization algorithm needed here.
Then, in chapter 3 we give the simulation results and compare
those to the analytical one-electron results. Chapter 4 is devoted
to the case of two correlated electrons, and conclusions are given
in chapter 5.

2. Method

In this chapter we briefly describe the basic concepts of PIMC
method, the Monte Carlo simulation procedure we used and the

Physica Scripta T114 C© Physica Scripta 2004
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optimization scheme that was used to resolve the pure many-body
eigenstates from the mixed state.

2.1. Path-Integral Monte Carlo method

All stationary properties of a d-dimensional quantum N-body
system with Hamiltonian Ĥ = T̂ + V̂ in thermal equilibrium at
temperature � ≡ 1/kBT are obtained from the density matrix
Z = Tr e�Ĥ [28]. Here, T̂ = ∑N

i=1 p̂ 2
i /2mi is the kinetic energy

operator and V̂ includes the external potential and interactions
between particles.

2.1.1. Path-Integral Formalism. In discrete path-integral repre-
sentation the density matrix is

Z =
(

mM

2��2�

)dN/2 ∫
exp

[
−�

M∑
n=1

(Kn + Un)

]
dr0 · · · drM−1,

(1)

where operators Kn and Un define internal and external energies
of the system. In the primitive approximation [27] they are
written as

Kn = mM

2�2�2
(rn−1 − rn)2, (2a)

Un = 1

2M
(V (rn−1) + V (rn)), (2b)

where m is the effective mass of the electrons and M is called the
Trotter number, and r0 = rM . The primitive approximation, where
the external energy coincides with potential energy, contains all
the physics and converges to the correct limit, given a small
enough �/M [27]. Furthermore, it is simple and well defined,
and at the limit M → ∞ the true many-body description (1) is
exact.

It is straightforward to calculate scalar operators, such as
density, potential energy, and the pair correlation functions; they
are simply averages over the paths [27]. Use can be made of the
symmetry in imaginary time, since all time slices t are equivalent.
Thus, the average density and pair correlation functions are

�(r) = N�

∑
n,t

〈�(r − rnt)〉 (3a)

and

g(r) = Ng

∑
n,i,j,t

〈�(r − (rnit − rnjt))〉, (3b)

where N� and Ng are proper normalization factors, i and j refer
to different particles, and n and t are as above.

The nondiagonal properties in coordinate basis, such as the
energy, free energy, and momentum distribution, are not so
straightforward to calculate. A thermodynamic estimate of the
energy is obtained by differentiating the partition function with
respect to the inverse temperature [27] as

E(�) = − 1

Z

dZ

d�
= M〈dN/(2�) − Kn + Un/M〉. (4)

Path-integral Monte Carlo (PIMC) simulation method is a
“numerically exact” finite-temperature approach, the only limit-
ing factor being computational capacity, for evaluation of the
density matrix (1).

2.1.2. Monte Carlo simulation procedure. The quantum-
mechanical approximation of the finite temperature density matrix

of the N-particle system, Eq (1), is a multidimensional integral
[29, 28], which turns out to be a partition function of a classical
M × N-particle canonical ensemble or NVT-system. This specific
classical system consists of N closed chains or “polymers”
of M knots or “beads” in a necklace with a certain special
description of interactions among the particles and between the
external potential. Thus, quantum-mechanical density matrix can
be evaluated using classical formalism.

We use the Metropolis Monte Carlo scheme to evaluate
the integral (1). With this technique all the approximations
in integration scheme and in path-integral formulation are
controllable. The Metropolis algorithm samples very effectivitely
the correct distribution of beads and thus the correct density matrix
Z using the integrand in (1) as the weight for the importance
sampling process. The main issue is whether the configuration
space is explored thoroughly in a reasonable amount of computer
time. Including many types of Monte Carlo moves makes the
algorithm more robust, since before doing a calculation one does
not necessarily know which type of moves will lead to a balanced
sampling of the phase space and rapid convergence of expectation
values. We used two types of moves: one randomly selected bead
in one random necklace and the center of mass of a random
necklace.

Distribution of steps in the phase space was taken to be
Gaussian such that the total Metropolis acceptance rate is about
70% and the frequency of each move is about the same. This is
called the classic rule [27].

2.2. Finding the pure states

The density matrix (1) is a finite temperature, mixed state,
description of the quantum system. Thus, the mixed state energy
E(�) at temperature T , Eq (4), is the Boltzmann weighted mean
value of pure state eigenenergies Ei

E(�) =
∑

i diEie−�Ei∑
i die−�Ei

, (5)

where the summation is done over all states i weighted by the
degeneracy di. In principle, the contribution of excited state
energies Ei can be separated from equation (5) by fitting, if
the function E(�), Eq (4), is known analytically or can be
simulated accurately enough. In finding the pure states, the
infinite summation (5) is approximated by a function f (�, E) =∑m

i=0 diEi exp(−�Ei)/
∑m

i=0 di exp(−�Ei), where E is a finite
(truncated) vector containing the pure state energies Ei, i =
0, 1, . . . , m. In principle, it should be possible to find the pure
state densities �i(r) independently with the same procedure,
and thus, find a verification of pure state energies Ei obtained
here.

From simulations at various temperatures Tj we sampled the
mean energy function, and found it very similar to the one-
electron mixed state energy function, see below. The differences
in ground state energy E0 and scaling with respect to � were
determined. We found the excited state eigenenergies Ei by
fitting the energy formula (5) in the least squares sense. Two
optimization methods for fitting were tested, Gauss–Newton and
Levenberg–Marquardt algorithms [30, 31]. Both use quadratic
approximations to nonlinear residual vector, but L–M is so called
trusted region algorithm, i.e., it moves only in the region where
the fit is good, discarding too long steps.

Actually, the Gauss–Newton method was not good enough.
It is possible to find a few first pure states with that method,
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but Levenberq–Marquardt was much simpler to use and more
eigenenergies were found, and the algorithm is almost as simple.

The optimization can be simplified because of Boltzmann
distribution: at low enough temperature we get only one or two
states that contribute to the total energy. Thus, we can find easily
a few lowest eigenenergies and when purifying more states, the
lowest states can be fixed.

One should note that the high temperature here is a
computational tool, only, and has nothing to do with any realistic
temperature related to quantum dots.

3. Single electron case

The one-electron harmonic oscillator is analytically solvable in
any dimensions. The eigenenergies of the 2D harmonic oscillator
are Ei = ��(1 + i), where i = 0, 1, . . . . The degeneracy di of the
state i is i + 1 for a 2D harmonic oscillator. The same degeneracy
is assumed for the two-electron case. When all states weighted
by the respective Boltzmannian probality are summed, Eq (5), we
get the temperature dependent energy [28] per dimension

〈E〉 = ��

2
coth

���

2
, (6)

which explicitly shows how the temperature and the confining
potential are related. Similarly, the electron densities of pure states
can be summed up to give the temperature dependent density and
by convolution we obtain the pair correlation function for the
non-interacting particles.

Thus, we can test the path-integral Monte Carlo code and
optimization methods for the single electron case with analytical
energies and electron densities. Both methods turned out to work
fine. In figure 1, the one-electron states (energies, wavefunctions,
occupations and probabilities) are demonstrated. Note that this
one-electron energy diagram is identical with the excited states
diagram of the non-interacting N-electron quantum dot.

The L–M algorithm is stable with respect to changes in starting
point and temperature in the one-electron case. Thus, the pure one-
electron eigenstates Ei can be found until i ≈ 7 easily, if replacing
simulated (4) by the analytical formula (6) in fitting. However, the
optimization is sensitive to the accuracy in mixed state energy: if
the analytical energies are rounded to two decimals, the fitting
procedure does not work reliably.

4. Two-electron correlations

The system we consider is two Coulomb-interacting opposite
spin electrons in a two-dimensional quantum dot. The lateral
confinement is approximated by a harmonic potential assuming

One–electron states

p [%]

E [eV]

0 100

1

2

3

Fig. 1. One-electron states for the 2D harmonic oscillator with �� = 1 eV. The
energy levels, with wavefunctions, densities and probabilities are shown with
Boltzmann distribution for T = 300 K and T = 5700 K.

circular symmetry and “strength” �� = 1 eV. Thus, the confine-
ment is very strong corresponding to a QD of a few nanometers
and a few hundreds atoms, only. This serves, however, as a nice
model and may be realistic with new fabrication technologies.
Assuming GaAs as the material we use the electron effective mass
m = 0.067me and the dielectric constant ε = 12.4.

The two-electron case with Coulomb interaction looses the full
separability, and the Hamiltonian can be reduced to center-of-
mass and relative motion, only. The wave function for the center-
of-mass can be solved analytically, but that describing the relative
motion must be solved using numerical methods. With the PIMC
method we treat the full Hamiltonian numerically, too.

4.1. Distributions

In fig 2 we compare the one-electron densities of the non-
interacting or the single electron case to the case of two interacting
electrons, at two different temperatures. In the upper panel we
see the temperature broadening clearly but hardly any correlation
effects. However, the difference curves in the lower panel reveal
the weak modifications due to the Coulomb repulsion, which tends
to keep the electrons apart from each other. The resulting balance
seems to be: one at the center of QD and the other away, rather
than both slightly off from the center. Surprisingly, the difference
is larger at the higher temperature. We do not expect Wigner
crystallization type of electron localization in our case, because
the effective density parameter here is r∗

s ≈ 0.15, the threshold
being rs ≥ 7.5 [32].

Figure 3 shows the pair correlation functions for these
two cases together with the corresponding non-interacting case
Gaussian reference function. Changes in pair correlation functions
due to the Coulomb interactions are illustrated in Fig 4. In addition
to temperature broadening the correlation effects are clearly seen,
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Fig. 2. One-electron densities for non-interacting or single- (dashed) and two-
electron (solid) systems, upper panel. Also, the differences of correlated and
non-interacting case densities are shown in the lower panel (r in atomic units,
a0 ≈ 0.52 Å).
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Fig. 3. Pair correlation functions g(r) of the two interacting electrons.
Normalization with weight 2�r is adjusted to unity.
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Fig. 4. Difference of pair correlation functions of the interacting and non-
interacting electrons, evaluated from the functions in Fig 3.
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Fig. 5. The average Coulomb correlation hole. Normalization to unity with the
weight factor 2�r.
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Fig. 6. Mixed state energy as a function of temperature of the correlated two-
electron system, simulated with Trotter numbers 8 (◦), 16 (×), 32 (+), 64 (∗)
and 128 (♦). Solid line is a fit with functional form (6) and dashed lines show
analytical single electron total and kinetic (potential) energies, respectively. The
high temperatures are only a computational tool to make the resolution of the
mixed state to pure states and, of course, have nothing to do with any realistic
temperatures of any QDs.

too. The short range repulsive correlation (at a few a.u.) is strong
at room temperature, whereas it becomes weaker further away
(from 10 a.u.), as compared to the 5700 K case. At the r → ∞
limit the behavior is remarkably different. That however, may not
be relevant in any real 2D system, where the third dimension is
inevitably present.

We define the average correlation hole as g(r) − 2g1(r)
where g1(r) is the non-interacting case (Gaussian shaped) pair
correlation function. This is shown in Fig 5. It supports the
conclusions above, except for the range: the room temperature
repulsive Coulomb correlation hole is more pronounced, as
expected.

4.2. Excitation energetics

The analytical average energy of the single electron mixed state
as a function of T , Eq (6), is shown in Fig 6. Also the equal
contributions from the kinetic and potential energies are shown.

The low temperature limit is 1 eV (0.5 eV) and contributions from
lowest excitation appear just below 2000 K.

The simulated interacting case energies are shown for
different Trotter numbers M = 8, . . . , 128 and temperatures. The
asymptotic low temperature limit should be similar to the single-
electron case: contribution from the ground state, only. It is nicely
seen how the small M energies deviate from this at low T ,
thus failing in describing the quantum (kinetic) energy. However,
from low-T fitting the ground state energy 1.06 eV is found.
Contributions from kinetic, external and Coulomb repulsion are
0.48 eV, 0.52 eV and 0.06 eV, respectively.

The Coulomb interaction keeps the electrons more apart
than the noninteracting counterparts, which decreases the kinetic
energy but increases potential energy [25]. In Fig 6, it can be seen
that the kinetic energy decreases some 0.02 eV at low temperature,
that is, in quantum regime, but the effect becomes smaller with
increasing temperature.

The high-T behavior is seen to be similar to the single electron
case, though the analytical form (6) probably cannot be assumed.
However, a fit to (6) results in a scaling factor 0.48 for �.

Resolution of the excited states by fitting f (�, E) to simulated
{E(�j)}, as described above, leads to the two first excited energies
1.00 eV and 1.9 eV above the ground state. Thus, the correlation
has an equal effect on the two lowest state energies but less on
the third, the second excited state. This probably can be related to
decreasing Coulomb energy with increasing excitation energy.

As a QD becomes larger, the energy difference between
single-particle quantum states in the QD becomes smaller
and the single-particle quantum states can mix thoroughly to
construct many-body quantum states at low-T , already. In general,
many-body quantum states are determined by competition
between single-particle energy spacing and Coulomb interaction
[33, 25, 10].

5. Conclusions

We have shown that the path-integral Monte Carlo method is
suitable for the study of two-dimensional two-electron quantum
dot. The temperature effects and role of electron-electron
correlations, in particular, are nicely demonstrated.

An expected temperature broadening of one-electron distri-
bution was found. However, a detailed inspection of correlations
in terms of pair correlation functions and correlation hole
reveales differences in the nature of correlation in two different
temperatures.

It is also demonstrated how (unreasonably) high temperature
simulations and the resulting mixed state data can be used to
resolve the pure quantum state properties. This was applied here to
determine the excited state energetics, but the related densities or
wavefunctions could be found similarly. In the present case, two-
dimensional quantum dot with harmonic (�� = 1 eV) confining
potential, the two lowest two-electron states shift by 0.06 eV,
0.06 eV up and the third 0.1 eV down in energy as a result from
electron-electron Coulomb correlation.
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Abstract. The path-integral Monte Carlo simulation method is used to examine
one and two electrons in a system of two coupled disc-like quantum dots (QD) in
a zero magnetic field. With this approach we are able to evaluate the one-electron
distributions and two-electron correlation functions, and finite temperature
effects on both. Increase of temperature broadens the distributions as expected,
the effect being smaller for correlated electrons than for single ones. The simu-
lated one- and two-particle distributions of a single and two coupled quan-
tum dots are also compared to those from other theoretical methods. For the
one-particle distributions we find a good agreement with those from the DFT
approach. The effect of the third dimension or the thickness of the almost two-
dimensional disc-like QDs is small for the one-particle distributions, but it is
clearly seen in the electron-electron correlation or the two-particle distribution
function at low temperatures. The mutual Coulomb energy of the two electrons is
found to be temperature-independent, and also, independent of the correlation
effects on the dynamics. Computational capacity is found to become the limiting
factor in simulations with increasing accuracy or increasing number of particles,
and in case of fermions in particular. This and other aspects of PIMC and its
capability for this type of calculations are also discussed.

1 Introduction

Special features of the electronic structure of small quantum-confined systems has
drawn much attention during the last years. This is largely a consequence of de-
velopments in semiconductor technology, where it has become possible to devise

� E-mail address: Markku.Leino@tut.fi
�� E-mail address: Tapio.Rantala@tut.fi



nanometer scale confinement in one, two or three dimensions [1–4]. Confinement
in three dimensions leads to smallest systems, quantum dots (QD), containing pos-
sibly only a few charge carriers. The electronic structure of a few-electron system
is subject to strong many-body effects, and therefore makes a distinctive challenge
to the conventional density-functional (DFT) approach, the standard formalism of
theoretical solid-state and semiconductor physics. Emanation of the finite-tempera-
ture effects is another challenge beyond the standard approaches.

Quantum Monte Carlo methods offer a possibility to treat the many-body cor-
relations exactly with an accuracy depending on the available computing power
only. On the other hand, the path-integral formalism of quantum statistics allows
one to include finite temperature using a description with mixed states. The com-
bination of these two, the path-integral Monte Carlo (PIMC) approach, permits
inspection of the interplay of both, i.e., the temperature effects in many-body cor-
relations. Earlier, we have used this approach to study two electrons in a strongly
confining model QD [5]. Mixed state densities, energies and pair correlation func-
tions and their temperature dependencies were evaluated. We also showed how
pure states can be searched using the density matrices from several different tem-
peratures. In this paper we report a PIMC study of a system consisting of two
coupled QDs, a system which has also been studied experimentally [4].

As QDs are sometimes called artificial atoms, the coupled QDs have been con-
sidered as molecules with delocalized electronic states. The electronic properties of
single and coupled QDs created with layer-by-layer semiconductor growth can be
selected with some freedom by tailoring the shape of a lateral confining potential
and the range of vertical confinement [4]. The grown QDs are usually confined
vertically in nanometer scale, but laterally in a one to two orders of magnitude
larger range. Such dots can be approximately treated as two-dimensional disk-like
electronic systems [6]. The ‘‘dimensionality effect’’ or separability of such systems
to one- and two-dimensional subsystems is still considered to be an open question.
Thus, the effect of a small but finite vertical extension on the QD structure is worth
studying [4, 6].

We restrict our present study to systems with one or two electrons, only. By
separating the vertical and lateral electronic wave functions the single electron case
can be treated analytically. It then serves as a reference case to study the dimen-
sionality effect or separability in the two-electron system. On the other hand, the
two-electron system is also the simplest system to study the correlations and its
dependence on temperature. With the two-electron system we do not involve the
exchange interaction by restricting ourselves to two ‘‘spinless electrons’’ only.

The two-electron system is one of the simplest non-trivial quantum mechanical
systems. Nevertheless, some analytical results exist for two electrons in a symmet-
rical enough quantum dot. Taut [7] reduced the problem of solving a six-dimen-
sional partial differential equation to finding the real roots of a polynomial, and
thus gave analytic solutions to particular oscillator frequencies of two interacting
electrons in an external harmonic oscillator potential. Dineykhan and Nazmitdinov
[8] found analytical expressions for the ground-state energy for 2D and 3D har-
monic oscillators in an external magnetic field.

In addition to analytical results, there are a number of numerical results for
(harmonic) two-electron quantum dots. A numerically exact calculation for the
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energy spectra of two electrons in a finite-height cylindrical quantum dot by a
coupled-channel method is presented in details by Lin and Jiang [9]. Harju et al.
[10] studied the ground state of parabolically confined electrons in a quantum dot
by both direct numerical diagonalization and variational quantum Monte Carlo
methods. In an older paper Harju et al. [11] applied the quantum Monte Carlo
technique to a two-electron quantum dot. Merkt, Huser, and Wagner [12] have
calculated the discrete energy spectra for two electrons in a two-dimensional har-
monic well in the effective-mass approximation as a function of the dot size and
the strength of a magnetic field directed perpendicular to the dot plane using the
first-order perturbation theory. Furthermore, the states of two-electron paired quan-
tum-well quantum dots [13, 14] were calculated with diagonalization and the
variational principle. A spin-exchange coupling J between two electrons in tunnel-
coupled quantum dots is determined by Burkard et al. [15] by the Heitler-London
and Hund-Mulliken techniques.

The ground-state behavior of a 3D quantum dot with square well in z-dimen-
sion is studied by Lee et al. [16]. The coupled quantum dots are studied by Partoens
and Peeters [17] and Pi et al. [4] within the spin-density functional theory. The
latter one serves as reference approach to ours as the studied system is similar.
Wensauer et al. [18] present ground-state calculations for laterally coupled quan-
tum dots containing two, four and eight electrons using the spin-density functional
theory. Pi et al. [19] investigate computationally and experimentally the dissocia-
tion of few-electron circular vertical-semiconductor double-quantum-dot artificial
molecules at 0 K as a function of the interdot distance. Excited-state properties of
vertically coupled double quantum dots are studied by Imamura et al. [20] by exact
diagonalization. Tanaka and Akera [21] calculated the exact many-body eigen-
states in a quantum dot formed in double-barrier heterostructures, and they studied
coherent transport through the states.

More complicated quantum dots have been studied by many methods: pertur-
bation theory [22], numerical diagonalization [23], density-functional theory [24,
25], unrestricted Hartree-Fock [26], diffusion Monte Carlo [27] and path-integral
Monte Carlo [3, 28–31] methods. In these studies the electronic structure, addition
spectra, electronic states, Fermi liquid and Wigner molecule behaviour, ground and
excited state energies, shell effects, electron correlations and low-energy states
were examined.

The next section briefly presents the PIMC method and details of our simula-
tion procedure. In Sect. 3 we describe the two-coupled-dots system that we are
interested in, with the relevant analytical one-particle distributions and energetics.
The two last sections report the simulation results and our conclusions for the two-
electron system.

2 Method

2.1 Path-Integral Monte Carlo Method

All stationary properties of a quantum many-body system with Hamiltonian bHH
in thermal equilibrium are obtained from the density matrix [32] �̂� ¼ expð��bHHÞ
as expectation values hbAAi ¼ Z�1 Trð�̂�bAAÞ, where � � ðkBTÞ�1

is the inverse tem-
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perature, bAA is the operator of the property in question and Z ¼ Trð�̂�Þ is the parti-
tion function.

In the position representation the density matrix �̂� reads as

�ðR;R0;�Þ ¼ hRjexpð��bHHÞjR0i; ð1Þ
where R ¼ ðr1; r2; . . . ; rNÞ are the coordinates of the N particles. Thus, the one-
particle distribution is

�ðrÞ ¼
ð
�ðR;R;�Þ dr2 dr3 � � � drN

��
r1¼r

¼
ð
�ðr� r1Þ�ðR;R; �Þ dR ð2Þ

and the simple 1D pair-correlation function for two particles is

gðrÞ ¼
ð
�ðr � jr1 � r2jÞ�ðR;R; �Þ dR; ð3Þ

assuming normalization of the density byð
�ðR;R;�Þ dR ¼ 1: ð4Þ

The path-integral representation of the density matrix discretized in the primi-
tive approximation [33] is a multidimensional integral [34, 35], which turns out to
be a partition function of one specific classical many-particle canonical ensemble
or NVT-system with

Z ¼ NZ

ð
exp

�
� �

XM
n¼1

ðKn þ UnÞ
�
dr1 � � � drM; ð5Þ

where the normalization constant NZ ¼ ðmM=ð2��h2�ÞÞdN=2
and internal and exter-

nal energies of the system are described by Kn and Un, respectively. They are
written as

Kn ¼
mM

2�h2�2
ðrn�1 � rnÞ2; ð6Þ

Un ¼
1

2M
ðVðrn�1Þ þ VðrnÞÞ; ð7Þ

and VðrÞ is a local external potential, and we require periodic boundary conditions
in imaginary time � , i.e., all paths have to be closed, and thus, r0 ¼ rM. The
primitive approximation is exact at the limit � ¼ �=M ! 0, and thus it will con-
verge to the correct description, given small enough � . Furthermore, it ‘‘contains
all the physics’’ and it is simple and well defined [33].

This specific classical system consists of N closed chains or ‘‘polymers’’ or
‘‘necklaces’’ of M knots or ‘‘beads’’ with a certain special description of interac-
tions among the N particles and between the external potential. The Trotter number
M is the degree of discretization. This is the famous mapping from a quantum
system to a classical system [33].

The quantum kinetic energy part corresponds to a classical spring potential
connecting neighbouring beads representing the same particle. The interbead
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potential (spring constant) depends on both M and � ¼ 1=kBT . It is easier to obtain
a good approximation to the high-temperature density matrix with respect to M,
since the high-temperature behavior is more classical-like [36]. The lower the
temperature, the more beads on the necklace are needed for the proper quantum
description. We will demonstrate this below.

In summary, the description of a finite-temperature quantum statistical system
is reduced to that of one specific classical NVT-system. For simulation of this there
is the powerful Metropolis Monte Carlo (MMC) algorithm [37]. Thus, PIMC is a
combined path-integral formalism and MMC, that has shown to be a powerful
computational technique, capable of simulating boson systems exactly and fer-
mions accurately [36]. Furthermore, with this technique all the approximations
are controllable.

It is straightforward to calculate scalar operators, such as density, the potential
energy, and the pair correlation functions as they are simply averages over the paths
[33]. Use can be made of the symmetry in imaginary time, since all time slices are
equivalent. Thus, the average density is

�ðrÞ ¼ N�
X
n;i;t

h�ðr� rnitÞi ð8Þ

where n refers to different beads of particles, i and t to MMC steps. This can be
evaluated directly during the stationary simulation process. Similarly, data for the
3D pair correlation function

gðrÞ ¼ Ng

X
n;i 6¼j;t
h�ðr� ðrnit � rnjtÞi ð9Þ

can be collected from the MMC path.
The nondiagonal properties in coordinate basis, such as the energy, the free

energy, and the momentum distribution, are not so straightforward to calculate. The
thermodynamic estimator of the energy is obtained by differentiating the partition
function with respect to the inverse temperature [33]

ET ¼ �
1

Z

dZ

d�
¼ MhdN=ð2�Þ � Kn þ Vn=Mi: ð10Þ

So, the path-integral Monte Carlo simulation method is a formally exact finite-
temperature approach, where the only limiting factor is the computational capacity
needed for evaluation of the density matrix �ðR;R0;�Þ with large enough Trotter
number M.

2.2 Simulation Procedure and Parameters

We run Metropolis Monte Carlo in its standard form, only searching for the effec-
tive algorithm for random sampling of the configuration space.

In the simplest choice for the transition probability, the classic rule, a single
particle at a single time slice is displaced uniformly inside a cube of side length D,
adjusted to achieve 50% acceptance rate. This is inefficient at very large particle
numbers: Interactions prevent sizeable displacements of a single particle [38]. As
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the main issue is whether the configuration space is explored thoroughly in a rea-
sonable amount of computing time obeying the principle of detailed balance, we do
the following.

We include many types of moves, which makes the algorithm more robust. We
separate the steps in the xy-plane and z-direction. We have two types of steps, one
for a randomly selected bead in one random necklace and another for the centre of
mass of the necklace. We use the classic rule such that the acceptance frequency of
each move is about the same. The step lengths vary from 0.5 to 9 nm in both the z-
direction and the xy-plane for one bead and for the centre of mass from 0.05 to
3 nm in the z-direction and from 10 to 50 nm in the xy-plane.

We choose the Trotter numbers in powers of 2. Using small Trotter numbers,
the stationary state can be achieved more easily. Therefore, we found it useful
to take the initial configuration for the case M ¼ 2n from the M ¼ 2n�1 case by
doubling the number of beads: inserting one more between the existing ones. The
above choice of moves prevents us using too large Trotter numbers (larger than 211)
because the configuration space should be explored thoroughly in a reasonable
amount of computer time.

To check out the choice of parameters and the numerical scheme we have
carried out extensive and systematic tests.

3 Two Coupled Quantum Dots

3.1 Structure Parameters

The system of two vertically coupled QDs is taken from Pi et al. [4]. They have
considered it experimentally and realized by semiconductor technology as a
layered circular mesa with two axially symmetric GaAs QDs with electrodes to
control the number of trapped electrons. Thus, the vertical confining potential
consists of two quantum wells of depth 300 meV and width of W¼ 12 nm and a
barrier in between of width b¼ 2.4 nm. The potential profile is shown in Figs. 1
and 2, below.

In this two-electron problem the exact Hamiltonian reduces to the centre of
mass (CM) and the relative motion [6]. The CM solutions are known analytically,
but the relative motion must be determined numerically.

The two-dimensional lateral confinement is approximated by a harmonic poten-
tial assuming circular symmetry and ‘‘strength’’ �h! ¼ 5 meV. Thus, the system
consists of two disc-like QDs axially on top of each other, with the disc diameter an
order of magnitude larger than the disc thickness.

Assuming GaAs material parameters throughout the structure, we use the elec-
tron effective mass m? ¼ 0:067� free electron mass and the dielectric constant
� ¼ 12:4 everywhere.

3.2 Analytical Distribution Functions

The three-dimensional wavefunction and distributions of a single electron are sep-
arable to three one-dimensional contributions in this geometry. In the present case,
however, we find it more representative to project out the one-dimensional vertical
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and the two-dimensional lateral contributions. Thus, we define the projected one-
particle densities

�zðzÞ ¼
ð
�ðrÞ dx dy ð11Þ

and

�xyðrxyÞ ¼
ð
�ðrÞ dz; ð12Þ

where r2 ¼ r2
xy þ z2 ¼ x2 þ y2 þ z2. Similarly we define for the pair correlation

functions

gzðzÞ ¼
ð
�ðz� jz1 � z2jÞ�ðR;R;�Þ dR ð13Þ

and

gxyðrxyÞ ¼
ð
�ðrxy � jr1xy � r2xyjÞ�ðR;R; �Þ dR: ð14Þ

These can be readily evaluated from the analytical one-electron distributions
for a single electron (or two noninteracting electrons) in our coupled QD model.
The vertical unnormalized wave function for the symmetrical double quantum well
is [39]

uðzÞ ¼
cosh kz or sinh kz; for 0< z< b=2;
A sin qzþ B cos qz; for b=2< z< b=2þW ;
Ce�kz; for z> b=2þW ;

8<
: ð15Þ

where k2 ¼ jEzj=�, q2 ¼ ðV � jEzjÞ=�, � ¼ �h2=2m?, Ez is the (quantized) eigen-
energy and the constants A, B, and C are chosen to make the wave function and its
derivative continuous. The functions coshðkzÞ and sinhðkzÞ are the even and odd
parity solutions, respectively, implying an obvious behavior of uðzÞ at z< 0, not
written in Eq. (15), explicitly.

The finite-temperature density matrix can be written now as

�ðz; z0; �Þ ¼ Nð�Þ
X
i

u�i ðzÞuiðz0Þ exp½��Eiz�; ð16Þ

where at low temperatures we can restrict to the sum over a finite number of lowest
quantum states and Nð�Þ ¼

�P
i exp½��Eiz�

��1
. Similarly the energy expectation

value is obtained from

hEzi ¼
X
i

Eiz exp½��Eiz�; ð17Þ

which should be evaluated numerically as the eigenenergies are solved from impli-
cit equations.

Note that there is only a finite number of bound states in the potential well of
finite depth V , over which the summing is carried out. Omission of the continuum
states introduces an error, which is, however, negligible at such low temperatures
considered here.
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In the horizontal plane the case is a simple two-dimensional harmonic oscilla-
tor, found in good text books of quantum mechanics. The two-dimensional one-
electron finite-temperature electron distribution is

�xyðrxy; r0xyÞ / exp

�
�m!

2�h sinhð�h!�Þ � ððr
2
xy þ r02xyÞ cosh �h!� � 2r0xy � rxyÞ

�
ð18Þ

and the energetics can be summed up, giving

hExyi ¼ 2
�h!

2
coth

�h!�

2
: ð19Þ

While the level spacing in the vertical quantum problem is about 50 meV, in the
horizontal harmonic oscillator it is 5 meV with the degeneracy increasing linearly

Fig. 1. Analytical vertical (z) one-particle distribution functions at different temperatures in the

confining potential of 300 meV. The probability distributions �ðzÞ are in arbitrary units but normal-

ized to the same constant. The shown distributions are 10 K (solid) and 300 K (dotted)

Fig. 2. Analytical horizontal (xy) one-particle distribution functions at different temperatures and

the confining potential with �h! ¼ 5 meV (� 30 meV at 50 nm). The two-dimensional integrals (with

a weight 4�r2) of shown distributions are normalized to the same constant. The distributions are

from 10 K (solid), 30 K (dashed), 100 K (dash-dotted), and 300 K (dotted)
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in energy. The separable energy contributions from the z confinement and xy har-
monic potential simply add up.

The vertical and horizontal confining potentials and distributions are shown in
Figs. 1 and 2, respectively. The confinement is seen to be one to two orders of
magnitudes stronger in the vertical direction, resulting in essential differences in
the temperature response of the one-particle density.

In Fig. 1 it is seen that only at 300 K a small shift of the density away from the
centre barrier takes place, resulting in a decrease of tunneling there. This is prob-
ably a contribution from the continuum states. Fig. 2, on the contrary, shows the
strong temperature broadening, as expected.

Like the energies, the densities of separable dimension simply ‘‘add up’’, too.
From these one-particle densities we have calculated the pair correlation functions
of the two noninteracting electrons, to be used as a reference in search of the two-
electron correlation effects, later. The two-noninteracting-electron pair correlation
function is a simple convolution-like distribution.

4 Simulation Results

4.1 Single Electron Distributions and Energies

Simulations with large enough Trotter numbers accurately reproduce the analytical
one-particle distributions of the single-electron system (or two noninteracting elec-
trons) shown in Figs. 1 and 2 both as vertical (z) and lateral (xy) projections of the
three-dimensional distribution, respectively. Due to the limited computing capacity
we were able to verify this at higher temperatures, T � 10 K, only.

The analytical temperature-dependent energies are easily obtained from Eqs. (17)
and (19). The 2D harmonic oscillator energy raises from the zero-Kelvin quantum
limit 5 meV to about 18 and 52 meV at 100 and 300 K, respectively. The corre-
sponding energies for the 1D ‘‘vertical’’ double QD are about 24, 25, and 30 meV,
in the same order. Whereas the contributions from the kinetic and potential ener-
gies are equal in case of the harmonic oscillator, the 1D ‘‘vertical potential energy’’
is about 6 meV at all temperatures. The sum of the 1D and 2D contributions yields
the total energies 29, 43, and 82 meV, for the zero-Kelvin quantum limit, 100 and
300 K, respectively.

At lower temperatures higher Trotter numbers are required to reach the quan-
tum statistical limit. Below this limit the correct quantum statistical behavior is not
found, but classical-like features emerge. For example, discontinuous distribu-
tions at potential discontinuities are seen. On the other hand, this can be used to
demonstrate the classical-to-quantum transition, see Fig. 3, where for the lowest
temperature T ¼ 3 K the Trotter number M ¼ 2048 is clearly too small, or corre-
spondingly, � ¼ �=M is too large.

Discontinuities in classical distributions emerge, of course, in cases of discontin-
uous confining potentials only. These are more critical at the quantum limit and more
different from the classical system, too. Thus, in our case in the horizontal harmonic
potential the quantum limit is reached already with smaller Trotter numbers.

We should note that these distributions are essentially the same as those of Pi
et al. [4] for the similar system. In their DFT study the number of electrons
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occupying the QDs was not found to essentially effect on the one-electron distribu-
tions, and our results for the two-electron case, below, support this general con-
clusion. However, there are small effects from electron-electron correlations, which
we will analyze in what follows.

4.2 Two Interacting Electrons

Let us consider the system of two correlated electrons next and start by comparing
the ‘‘correlated’’ one-electron distributions to the uncorrelated ones, i.e., to the
single-electron distributions shown in Figs. 1 and 2. As the distributions are rather
similar, we show the differences of those only in Figs. 4 and 5, respectively.

In both cases we see two expected main features. First, turning on electron-
electron repulsion decreases the density where it is high, by shifting it to the less

Fig. 3. Projected one-particle

distribution functions in vertical

(z) direction from simulations of

a single electron with ðkB�Þ�1 ¼
ðT�MÞ ¼ 3 K�2048¼6144 K,

10 K� 2048¼ 20480 K, and

30 K� 2048¼ 61440 K. The

distributions are from 3 K (so-

lid), 10 K (dashed), 30 (dash-

dotted)

Fig. 4. Difference of the vertical (z) one-particle distribution function between the ‘‘correlated’’ two-

electron and single-electron case. Thus, the two-electron distribution is a sum of the contributions

given in Fig. 1 and this one. Note the different scaling of vertical axes in these figures. The notation

for different temperatures is the same as in Fig. 1
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occupied regions of space. Secondly, the correlation effects are the larger the lower
the temperature is.

In Fig. 4 the fine scaling zooms in the small discontinuities, which are visible at
lower temperatures only, revealing that even larger Trotter numbers should be used
to reach the quantum description limit more accurately. Fig. 5 shows that correla-
tion effects are negligible in the horizontal distribution at the two highest tempera-
tures, but essential at the two lower ones.

In Figs. 6 and 7 the two relevant projections of the pair correlation function in
our case are shown, whereas Fig. 8 presents the conventional radial pair correlation
function, good in characterizing isotropic systems. Clearly the vertical and radial
functions reflect the same feature natural for a double QD: The electron correlation
from repulsive interaction favors the case of one electron in each QD. This effect is
stronger at the two lowest temperatures, as is seen in Fig. 6.

Fig. 5. Difference of the horizontal (xy) one-particle distribution function between the ‘‘correlated’’

two-electron and single-electron case. Again, the two-electron distribution is a sum of the contribu-

tions given in Fig. 2 and this one. The notation for different temperatures is the same as in Fig. 2

Fig. 6. Projected vertical (z) pair correlation function at various temperatures. The notation for

different temperatures is the same as in Fig. 4
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The dimensionality effect or separability of the three-dimensional system to the
one- and two-dimensional subsystems can now be considered. The main question
is: Does the small but finite vertical extension (z) have an essential effect on the
electronic structure in the lateral (xy) plane [4, 6]? For the one-particle distribution
the answer is obviously ‘‘no’’, because the one-particle distributions of the two-
electron case and the single-electron case do not essentially differ and the latter is
analytically separable to three dimensions. However, for the detailed two-electron
distribution the answer is different as indicated by the low-temperature pair corre-
lation functions. Clearly, at low temperatures where the electrons occupy the centre
of the disc, see Figs. 7 and 6, the third dimension allows more freedom for this for
both of the electrons simultaneously. However, the increase of temperature allows
an occupation of the lateral space further away, which seems to cover the quantum
and correlation effects.

Fig. 7. Projected horizontal (xy) pair correlation function at various temperatures. The notation for

different temperatures is the same as in Fig. 4

Fig. 8. (Radial) pair correlation function at various temperatures. The notation for different tem-

peratures is the same as in Figs. 6 and 7
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The same conclusions can be drawn from the correlation holes shown in
Figs. 9 and 10. Here, the case is even more clear: At temperatures 100 and 300 K
the presence of the second electron does not essentially effect on the dynamics of
the first one. At lower temperatures 10 and 30 K, however, a more conventional
correlation hole is seen, both vertically and laterally.

Fig. 9. Projected vertical (z) correlation hole at various temperatures

Fig. 10. Projected horizontal (xy) correlation hole at various temperatures

Table 1. Energetics of the two interacting electrons in the double quantum dot

given per one electron. Uncertainty for the potential energy Vpot and mutual

interaction energy Vee are at least 5 and 0.5 meV, respectively

T [K] Vpot [meV] Vee [meV]

3 15 2

10 15 2

30 10 2

100 15 2

300 30 1
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Though we were able to reach a sufficient convergence for the distributions,
regarding the energetics we are able to give rough estimates for some contributions
only. These are presented in Table 1. The computational capacity gets a limitation,
at lower temperatures in particular. Within the statistics, we are not able to find
differences in the external potential energies of one of the interacting electrons
and a single electron (or one of the two noninteracting ones). In both cases this
potential-energy contribution grows from the zero-Kelvin quantum limit of about
15 meV to about 30 meV at 300 K, in fair agreement with the analytical single-
electron case, where the total energies are 29 and 82 eV. The mutual Coulomb
(repulsion) energy of the two electrons is about 1–2.5 meV, see Table 1. Sur-
prisingly, only a small difference is found for two interacting electrons and two
noninteracting ones, the latter one evaluated from the simulated noninteracting
electron ‘‘dynamics’’. We are not able to obtain estimates for kinetic energies, the
main reason being the discontinuous external potential function.

Fig. 11. Single QD case: Projected vertical (z) correlation hole

Fig. 12. Single QD case: Projected horizontal (xy) correlation hole
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Finally, just for comparison, we consider the case of two electrons in a single
QD, one of those coupled ones considered above. The projected correlation holes
for this case are shown in Figs. 11 and 12 to be compared with Figs. 9 and 10. The
stronger confinement in the vertical direction is seen directly in the vertical projec-
tion and indirectly in the horizontal projection. In the horizontal correlation this
implies the temperature dependence even at higher temperatures. This is expected
as there is less spatial freedom for electrons to occupy, unless thermally activated
to higher quantum states.

5 Conclusions

We have shown that path-integral Monte Carlo (PIMC) simulations can be success-
fully carried out for one and two correlated electrons in a model quantum dot (QD).
The case of ‘‘spinless electrons’’ of the two is considered only, and no magnetic
field is applied in the studies reported here, either. We have considered disc-like,
almost two-dimensional ‘‘harmonic confinement QDs’’. The main interest is in two
QDs on top of each other and coupled through a narrow barrier, but a single one is
considered for comparison.

The simulated one-particle distributions are very similar to those from the DFT
calculations for the same system. With PIMC we find that the one-particle distri-
butions for a single electron and for two electrons are almost identical in all cases
independent of the temperature. Increase of temperature just broadens the distribu-
tions as expected, the effect being slightly smaller for correlated electrons than for
the single one.

The Coulomb correlation of the two electrons is analyzed in terms of pair
correlation functions and correlation holes. The perpendicular to the discs (vertical)
and horizontal contributions are projected out from the fully 3D functions. This
allows us to analyze the semiconductor dimensionality effect: Is the third dimen-
sion or the thickness of the almost two-dimensional disc-like QD essential for the
horizontal distribution in the disc plane? The one-particle distributions are trivially
separable to the vertical and horizontal contributions, but this turns out not to be the
case for the two-particle distributions.

Generally, the correlations become more important at lower temperatures (10
and 30 K). At higher temperatures (100 and 300 K) the thermal broadening in the
mixed quantum state description screens the correlation effect efficiently. For this
reason, also the finite thickness of the QD disc is essential at the lower tempera-
tures only, and also for the two-particle distribution only.

Evaluation of accurate energies takes more computational capacity than there is
available today. This is true for the low-temperature quantum statistics in particu-
lar. Therefore, we are able to give rough estimates for some of the energy con-
tributions only. We are able to predict that in case of our double QD structure the
external potential energy is not strongly dependent on the temperature or correla-
tion effects. Similarly, the mutual Coulomb energy seems to be constant throughout
the various conditions of our system that we have considered.

We find that computational capacity becomes the limiting factor in simulations
with increasing accuracy or with an increasing number of particles. In particular,
this is true for fermion systems.

Temperature Effects on Electron Correlations in Two Coupled Quantum Dots 251



References

1. Kouwenhoven, L., Austing, D., Tarucha, S.: Rep. Prog. Phys. 64, 701 (2001)

2. Reimann, S. M., Manninen, M.: Rev. Mod. Phys. 74, 1283 (2002)

3. Harting, J.: PhD Thesis. University of Oldenburg 2001 (unpublished)

4. Pi, M., et al.: Phys. Rev. B63, 115316 (2001)

5. Leino, M., Rantala, T. T.: Physics Scripta T114, 44 (2004)

6. Rontani, M., et al.: Phys. Rev. B59, 10165 (1999)

7. Taut, M.: Phys. Rev. A48, 3561 (1993)

8. Dineykhan, M., Nazmitdinov, R.: Phys. Rev. B55, 13707 (1997)

9. Lin, J. T., Jiang, T. F.: Phys. Rev. B64, 195323 (2001)

10. Harju, A., Sverdlov, V., Nieminen, R.: Phys. Rev. B59, 5622 (1999)

11. Harju, A., et al.: Physica B255, 145 (1998)

12. Merkt, U., Huser, J., Wagner, M.: Phys. Rev. B43, 7320 (1991)

13. Ugajin, R., et al.: J. Appl. Phys. 76, 1041 (1994)

14. Rontani, M., et al.: Solid State Commun. 119, 309 (2001)

15. Burkard, G., Seelig, G., Loss, D.: Phys. Rev. B62, 2581 (2000)

16. Lee, E., et al.: Phys. Rev. B57, 12281 (1998)

17. Partoens, B., Peeters, F. M.: Phys. Rev. Lett. 84, 4433 (2000)

18. Wensauer, A., et al.: Phys. Rev. B62, 2605 (2000)

19. Pi, M., et al.: Phys. Rev. Lett. 87, 066801 (2001)

20. Imamura, H., Maksym, P. A., Aoki, H.: Phys. Rev. B59, 5817 (1999)

21. Tanaka, Y., Akera, H.: Phys. Rev. B53, 3901 (1996)

22. Rontani, M., et al.: Appl. Phys. Lett. 72, 957 (1998)

23. Ezaki, T., Mori, N., Hamaguchi, C.: Phys. Rev. B56, 6428 (1997)

24. Lee, I.-H., et al.: Phys. Rev. B57, 9035 (1998)

25. Hirose, K., Wingreen, N. S.: Phys. Rev. B59, 4604 (1999)

26. Reusch, B., H€aausler, W., Grabert, H.: Phys. Rev. B63, 113313 (2001)

27. Pederiva, F., Umrigar, C. J., Lipparini, E.: Phys. Rev. B62, 8120 (2000)

28. H€aausler, W., et al.: Physica B284, 1772 (2000)

29. Mak, C., Egger, R., Weber-Gottschick, H.: Phys. Rev. Lett. 81, 4533 (1998)

30. Egger, R., et al.: Phys. Rev. Lett. 82, 3320 (1999)

31. Dikovsky, M. V., Mak, C. H.: Phys. Rev. B63, 235105 (2001)

32. Pollock, E. L., Ceperley, D. M.: Phys. Rev. B30, 2555 (1984)

33. Ceperley, D. M.: Rev. Mod. Phys. 67, 279 (1995)

34. Feynman, R. P., Hibbs, A. R.: Quantum Mechanics and Path Integrals. New York: McGraw-Hill

1965

35. Feynman, R. P.: Statistical Mechanics. Reading, MA: Addison-Wesley 1972, 1988

36. Zong, F., Ceperley, D.: Phys. Rev. E58, 5123 (1998)

37. Harting, J., M€uulken, O., Borrman, P.: Phys. Rev. B62, 10207 (2000)

38. Knoll, L., Marx, D.: Eur. Phys. J. D10, 353 (2000)

39. Gasiorowicz, S.: Quantum Physics. New York: Wiley 1996

Verleger: Springer-Verlag GmbH, Sachsenplatz 4–6, 1201 Wien, Austria. – Herausgeber: Prof. Dr. B. L. G. Bakker,
Theoretical Physics Group, Department of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081,
1081 HV Amsterdam, The Netherlands. – Redaktion: De Boelelaan 1081, 1081 HV Amsterdam, The
Netherlands. – Satz und Umbruch: Thomson Press (India) Ltd., Chennai. – Offsetdruck: Krips bv, Kaapweg 6,
7944 HV Meppel, The Netherlands. – Verlagsort: Wien. – Herstellungsort: Meppel. – Printed in The Netherlands.

252 M. Leino and T. T. Rantala



PAPER III

Paper III: Leino et al. (2006)

M. Leino, J. Nieminen, and T. T. Rantala,

Finite temperature quantum distribution of hydrogen adsorbate on nickel (001) surface,

Surface Science, 600, 1860–1869, March 2006.

Copyright Elsevier B.V.



PAPER III



www.elsevier.com/locate/susc

Surface Science 600 (2006) 1860–1869
Finite temperature quantum distribution of hydrogen adsorbate
on nickel (001) surface

Markku Leino *, Jouko Nieminen, Tapio T. Rantala

Institute of Physics, Tampere University of Technology, P.O. Box 692, FI–33101 Tampere, Finland

Received 27 December 2005; accepted for publication 10 February 2006
Available online 3 March 2006
Abstract

Finite temperature quantum behavior of hydrogen and deuterium adsorbates on Ni(001) surface has been simulated using path-inte-
gral Monte Carlo technique. The adsorbate–surface interaction is described by the many-body alloy potential form, fitted to the adsorp-
tion parameters from DFT calculations. This allows consideration of substrate atom dynamics. Temperatures 100 K and 300 K have
been considered and contribution of the thermal motion of Ni surface atoms is analyzed.

At low temperatures the quantum delocalization of the adsorbate is considerable, and therefore, temperature dependence of distri-
butions is weak. In this case, the isotope effect is larger. At higher temperatures, however, the thermal dynamics of the substrate dom-
inates all studied phenomena and classical description may be sufficient. By using a semi-classical description of the hydrogen adsorbate
temperature dependence of the distributions and energetics becomes strong at all temperatures, providing that quantum description is
necessary for the correct picture of H/Ni(00 1) system.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Monte Carlo simulations; Nickel; Hydrogen atom
1. Introduction

Quantum behavior of H adsorbate on Ni and other
metal surfaces has been of interest both experimentally
[1,2] and theoretically [3–13]. It has been used to explain
peculiar adsorbate diffusion [3–10], vibrational observa-
tions [3], electron-energy loss spectra [11,12], low-energy
electron diffraction [11,12], photoemission [12], helium
scattering [13], thermal desorption [4], linear optical diffrac-
tion [2] and field emission [1,2]. Most of the interesting
quantum states relate to Ni(001) surface, where H adsor-
bate is known to delocalize and develop a two-dimensional
band structure.

Quantum mechanical tunneling of a hydrogen atom be-
tween adjacent binding sites dominates diffusion at low
0039-6028/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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temperatures, which is revealed by the fact that the diffu-
sion constant is temperature independent [1–10,14]. The
usual method for considering the temperature dependence
of the diffusion constant from theoretical point of view is
the path-centroid formulation, as proposed by Gillan
[15,16], and further developed by Voth et al. [17,18].
Mattsson et al. has applied it widely [7–9]. Also quantum
mechanical transition state theory [3,13,19] has been in
extensive use in studies of hydrogen diffusion on a nickel
surface.

The impurities of lattice, vacancies, other defects, relax-
ations or reconstructions, and most importantly at higher
temperatures, the thermal motion of the surface need to
be taken into account in studies of real surfaces [20–23].
Thus, for theoretical studies an accurate model for the
interatomic interactions is required. Pair potentials cannot
be expected to be successful. Therefore, several more
sophisticated model potentials have been proposed, includ-
ing semi-empirical potentials, embedded atom model, effec-
tive medium theory but also ab initio calculations for the
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potential energy surfaces have been carried out [6,7,10–
12,15,24,25].

Furthermore, the complexity of hydrogen behavior on
a nickel surface arises from the explicit involvement of
dissipative forces due to phonons and other forms of
excitations, defects, and strong interaction between the
hydrogen and metal atoms. Only a few theoretical methods
are capable of treating these problems.

We adopt the many-body alloy (MBA) potential [26]
derived from tight-binding theory as a starting point for
the adsorbate–surface interaction. It offers a possibility
for extensions to description of both adsorbate–adsorbate
interactions and metal surface dynamics at the finite
temperature. Here, we first make the parametrization and
assess the quality of resulting potential against chemisorp-
tion energies of ab initio DFT calculations and the spectro-
scopic observations mentioned above.

We then report fully quantum mechanical and thermally
averaged constant temperature simulation of hydrogen
atom on a rigid Ni(100) surface using path-integral Monte
Carlo (PIMC) technique [27]. It implicitly includes thermal
averaging over the quantum states of the hydrogen. Thus,
we obtain the equilibrium energetics that is not provided by
the path-centroid method used for evaluation of the diffu-
sion constant. Next, we include the dynamics of the sub-
strate nickel atoms. The thermal dynamics of Ni surface
is taken into account classically and simulated with
Metropolis Monte Carlo method (MMC).

Thus, we combine the PIMC for the H atom and MMC
for Ni atoms into the same simulation to evaluate the finite
temperature density matrix and the related distributions
for the quantum adsorbed hydrogen under the influence
of thermally distributed Ni surface atoms. We compare
the results to the semi-classical ‘‘atoms at the adsorption
sites’’ picture. We assess the quantum nature and tempera-
ture dependencies of the hydrogen distribution and differ-
ences with the semi-classical picture. We also consider the
isotope effect by comparing distributions of hydrogen to
those of deuterium.

This report is organized as follows. Section 2 describes
the many-body alloy potential, in Section 3 is the path-
integral formalism described, and the results are given in
the Section 4. Finally, Section 5 collects the conclusions.

2. Many-body alloy potential

The analytical form of the many-body alloy potential is
based on the tight-binding formalism [26,28] of bulk mate-
rials. The needed parameters can be fitted to ab initio or
experimental data. It suits well for both single component
and alloy bulk materials. It has been used for H/Pd systems
and for studies of the electronic and structural properties of
small clusters [29,30], surfaces of metals, and dilute metal
alloys [28, and references therein]. Whether the same set
of parameters is useful for different configurations—
dimers, surfaces, bulk etc.—must be checked separately
in each case.
The total (cohesive) energy of a crystal or a cluster is
decomposed [26] into individual atomic contributions Ei as

ET ¼
X

i

Ei; ð1Þ

where i runs over all atoms in the system and

Ei ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j 6¼i

n2
ab exp �2qab

rij

r0;ab
� 1

� �� �s

þ
X
j 6¼i

�ab exp �pab

rij

r0;ab
� 1

� �� �
. ð2Þ

The attractive part (first term) is due to the hybridization of
orbitals. It is based on a parameterized tight-binding
Hamiltonian and the second-moment approximation. The
repulsive part (second term) is parameterized as a pair-wise
Born–Mayer potential with an exponential distance depen-
dence [26].

The parameters are defined for atom pairs (i, j) of ele-
ments a and b. Five parameters for each different pair are
needed. These are the attraction due to overlapping orbi-
tals nab and the pair-wise repulsion energy �ab, both given
at the equilibrium distance r0,ab. The distance dependence
of attractive and repulsive parts are scaled by the parame-
ters pab and qab, respectively.

Next, we consider the parameters for hydrogen on nick-
el. The parameters used for Ni–Ni interactions are fitted to
bulk properties, and H–Ni parameters fitted to adsorption
properties. General principles based on atom pair interac-
tions and bulk cohesion are outlined in Appendix A.

2.1. Ni–Ni bulk

First, we discuss the interaction between metal atoms,
since they are needed in fitting the H–Ni parameters to
the adsorption data. The fitting can be done to bulk prop-

erties, for which we use the following data [31]: a = 3.52 Å,
r0 = 2.49 Å, Ecoh = �4.44 eV and B = 1.17 eV/Å3. In addi-
tion, the coordination number in the fcc lattice is z = 12.

Since this set of data still leaves us with one free param-
eter, we utilize the Sutton–Chen parameterization to start
with [31] (see Appendix A). The scaling parameter for
attraction is m = 6, which corresponds to q = 3.0. Using
this value for q and bulk fitting, we obtain p = 8.6197,
n = 1.9659 eV and � = 0.1975 eV.

2.2. Fitting H–Ni

We attempt to fit the H/Ni(0 01) MBA potential to the
data given by Mattsson et al. [10], where adsorption of H
on Ni(001) surface has been studied with an EMT-type
model potential whose parameters are fitted to ab initio
potential energy surface. The fitted quantities are the
adsorption energy of the hollow site, Eads = 2.8 eV, the
equilibrium distance from the surface at hollow site
ra = 0.5 Å and the energy barrier between the hollow sites
through the bridge site, Ebarr = 0.14 eV, see Ref. [10].
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Fig. 1. Nickel (001) surface (of FCC lattice, a = 3.52 Å) schematically,
surface and sub-surface layer atoms indicated by black and grey circles,
respectively. The 4-fold hollow site is designated by the dashed square.
The high-symmetry directions h010i and h110i along the surface are also
shown. The RMS displacements related to the Ni atom thermal motion at
the two temperatures, are also indicated on the left, see text.
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This fitting gives parameters q = 2.8698, p = 5.8659,
r0 = 1.4400 Å, � = 2.7006 eV and n = 5.5201 eV. These give
exact values for the chosen adsorption properties, but
rather useless values for the dissociation energy (Ed =
5.6390 eV) and the force constant of the HNi molecule
(k = 45.7780 eV/Å2); the ab initio calculations [32] give
Ed = 3.1 eV, r0 = 1.47 Å and k = 13.67 eV/Å2. Thus, fitting
the surface properties leads to a parameterization that does
not describe satisfactorily the HNi molecule.

2.3. H/Ni(001) model

The (001) surface of fcc nickel is illustrated in Fig. 1.
The most relevant region for hydrogen adsorption is the
4-fold hollow site and the bridge site that presents the bar-
rier between the adjacent hollow sites. The H and D distri-
butions are given for the region depicted in Fig. 1.

In the present model consisting of N atoms, we have one
quantum mechanically behaving hydrogen adsorbate on a
surface of N � 1 classical nickel atoms at either zero or
at finite temperature. We take N large enough to give the
hydrogen energetics from Eqs. (1) and (2) on an infinite
〈0
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Fig. 2. Equipotential contour lines of the H atom MBA potential energy
hypersurface in two surface perpendicular planes of rigid (001) surface of
Fig. 1 from the hollow site to (a) the top site direction h010i and (b) the
bridge site direction h110i. The minimum at z = 0.5 Å corresponds to the
adsorption energy 2.8 eV and line spacing is 25 meV.
Ni substrate. The hydrogen cut-off radius for MBA
potential is essentially 8 Å, corresponding to N � 100.

It should be noted that the Ni surface seen by the hydro-
gen atom is perfectly periodical in two dimensions, expect
for the thermal motion of Ni atoms. For nickel atom
dynamics some finite-size effects may remain as a compro-
mise with computational labour.

Fig. 2 shows the hydrogen equipotential curves at zero
temperature in two high-symmetry planes perpendicular
to the surface. Potential to the h110i direction is identical
with that of Mattsson et al. [10]. We see that the topsite
barrier between hollow sites is about a double (0.3 eV) of
that of the bridge site (0.14 eV).

3. Path-integral Monte Carlo method

All stationary properties of a quantum system with

Hamiltonian bH ¼ bT þ bV in thermal equilibrium at temper-
ature b � 1/kBT are obtained from the density matrix
Z ¼ TrebĤ [33]. Here, bT ¼PN

i¼1p̂2
i =2mi is the kinetic energy

operator and bV includes the external potential and inter-
actions between the quantum particles.

Obviously, quantum statistics is not important for nickel
atoms at high temperatures. Even at T = 100 K the thermal
wavelength [27] Kb ¼ ð�h2b=mÞ1=2 � 0:01 �A is negligible
compared to the interatomic spacing, 2.4 Å. Thus, the
quantum statistics of nickel atoms becomes important only
at sub-Kelvin temperatures.

3.1. Path-integral formalism

In the discrete path-integral representation partition
function Z is the trace of the density matrix q(r 0, r) of
one quantum particle in a d-dimensional space, given by

Z ¼ mM

2p�h2b

� �d=2 Z
exp �b

XM

n¼1

ðKn þ U nÞ
" #

dr0 � � � drM�1;

ð3Þ

where functions Kn and Un define internal and external
energies of the system. In the primitive approximation
[27] they are written as

Kn ¼
mM

2�h2b2
ðrn�1 � rnÞ2 ð4aÞ

and

Un ¼
1

2M
ðV ðrn�1Þ þ V ðrnÞÞ; ð4bÞ

where m is the mass of the particle and M is called the
Trotter number, and the periodic boundary conditions in
imaginary time are taken into use, i.e. r0 = rM. The primi-
tive approximation, where the external energy coincides
with classical potential energy of the distribution, contains
all the physics and converges to the correct limit, given a
small enough b/M [27]. Furthermore, it is simple and well
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defined, and at the limit M!1 the exact many-body
description of quantum system is obtained.

It is straightforward to calculate scalar operators, such
as density and potential energy; they are simply averages
over the path [27]. Use can be made of the symmetry in
imaginary time, since all time slices n are equivalent. Thus,
the average one-particle density is

qðrÞ ¼ N q

XN

i¼1

XM

n¼1

dðr� ri;nÞ; ð5Þ

where q(r) is the diagonal part of the density matrix,
q(r) = q(r, r), and Nq is a proper normalization factor for
the total number of particles. N should be large enough
for good sampling of the phase space at the temperature
T = 1/kBb.

The nondiagonal properties in coordinate basis, such as
the energy, free energy, and momentum distribution, are
not so straightforward to evaluate. The thermodynamic
estimator of the energy is obtained by differentiating the
partition function with respect to the inverse temperature
[27] as

ETðbÞ ¼ �
1

Z
dZ
db
¼ MhdN=ð2bÞ � Kn þ U n=Mi;

but this is not a useful estimator because of large fluctua-
tions and statistical noise. Total energy can be approxi-
mated more accurately by using the virial theorem for
kinetic energy

T virðbÞ ¼ 1
2
hr � rV ðrÞi ð6Þ

and by calculating the potential energy by a scalar operator

EpotðbÞ ¼ hV ðrÞi; ð7Þ

where the averages hÆi are evaluated with the density q(r) as
a weight function. The total energy is a sum of the two,
Etot(b) = Epot(b) + Tvir(b).

Path-integral Monte Carlo (PIMC) simulation method
is a ‘‘formally exact’’ finite temperature approach for a
quantum particle, the only limiting factor in accuracy being
the computational capacity, for evaluation of the density
matrix (3).

3.2. Monte Carlo simulation procedure

Conventionally, the Metropolis Monte Carlo scheme is
used to evaluate the integral (3). With this technique all
the approximations in the integration scheme and in
path-integral formulation are controllable. The Metropolis
algorithm samples effectively the one-particle distribution,
and thus, the partition function Z using the integrand in
(3) as the weight for the importance sampling process.
The main issue is whether the configuration space is ex-
plored thoroughly in a reasonable amount of computing
time. Inclusion of several types of Monte Carlo moves
makes the algorithm more robust, since before calculation
one does not necessarily know which type of moves will
lead to a balanced sampling of the phase space and rapid
convergence of expectation values. Therefore, we have used
two types of moves: Some for one randomly selected ‘‘knot
of the path’’, and another for the center-of-mass of the
path.

Distribution of steps in the phase space was taken to be
Gaussian such that the total Metropolis acceptance rate is
about 40% and the frequency of each different type of move
is about the same. This is called the classic rule [27] for sam-
pling of the phase space.

Simulation is exact at the limit, where the Trotter num-
ber M!1. However, usually the distributions and expec-
tation values converge at some finite Trotter number,
which depends on temperature and potential. This is
clearly seen from the plots of adsorbate distribution at dif-
ferent Trotter numbers, and by testing the procedure for
analytically solvable systems. We found sufficient conver-
gence in our case with Trotter number M = 64. At 100 K
this can be considered as a compromise with computa-
tional labour. The typical number of sufficient Monte
Carlo steps is about 108.

4. Results

First, we describe the adsorbate distributions for the
rigid and the finite temperature Ni surfaces, and then,
we consider the energetics.

4.1. Adsorbate distributions

The hydrogen quantum distribution in the hollow site at
low temperatures does not strongly depend on the actual
temperature. It has been found to be rather similar to that
at zero Kelvin [10–12]. We confirm the fact and illustrate it
in Fig. 3 with the distributions from 100 K and 300 K.
Indeed, rise of the temperature just slightly spreads out
the distribution and the difference between the shown two
almost vanishes.

The isotope effect in the distribution is more pronounced
as seen in Fig. 4. Deuterium is clearly more localized: with-
in the radius of 0.2 Å the probability density is higher and
outside it is lower than that of hydrogen. A weak top-
bridge direction difference is seen at the lower temperature,
compare Fig. 4a and b, indicating that deuterium distribu-
tion is less circular or more classical, see below. Stensgaard
and Jakobsen, cited in Ref. [10], have measured the spatial
width d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2 þ y2i

p
of deuterium on Ni(001) and found

0.20 Å in a nice agreement with our simulation.
It should be noted that the isotope effect is of quantum

nature, as ‘‘classical’’ hydrogen and deuterium present
identical distributions. The classical distribution and its
temperature dependence is demonstrated in Fig. 5. It shows,
first, the development of classical distribution from a delta
function (a point) at 0 K to the extensive thermal distribu-
tion at 300 K, which is quite similar to that of quantum
case. Second, comparison of Figs. 3 and 5 shows that the
quantum delocalization is substantial, and relatively the
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Fig. 4. Isotope effect at (a) 100 K and (b) 300 K. Differences between the
deuterium and hydrogen distributions are shown, black and gray lines for
positive and negative values, respectively. The equidensity curves are as
defined in Fig. 3.
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Fig. 5. The ‘‘classical hydrogen atom’’ distributions presented the same
way as in the quantum case in Fig. 3, (a) 100 K, (b) 300 K and (c) the
difference of the two ((b) � (a)).
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c

Fig. 6. The hydrogen atom distributions as in Fig. 3 but in thermal
equilibrium with the same finite temperature Ni surface. Again, (a) 100 K,
(b) 300 K and (c) the difference of the two ((b) � (a)).
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Fig. 3. Hydrogen adsorbate distributions at the hollow site of rigid
substrate depicted in Fig. 1 (1.76 Å · 1.76 Å square). The equidensity
contours present the three-dimensional density projected onto the surface
plane, i.e., integrated over z-direction, at (a) 100 K, (b) 300 K and (c) the
difference of the two ((b) � (a)). The thin and thick lines show densities
0.5,1.0,1.5, . . . and 5,10,15, . . . atoms/(surface unit cell); and the black and
grey lines in (c) stand for positive and negative values, respectively. Here,
the positive density difference is everywhere less than 0.5 atoms/(surface
unit cell).
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larger the lower the temperature. We see that only at 300 K
the classical thermal spreading conceals the quantum delo-
calization. Instead, the thermal effect on quantum delocal-
ization in the studies of hydrogen diffusion dynamics on
Ni(001) [7,8] turns on at about 40 K, already. Third, the
classical distributions are more bridge direction oriented
compared with the quantum case, where tunneling allows
more circular shape.

Next, we consider the case of finite temperature sub-
strate in thermal equilibrium with the adsorbate. The sub-
strate Ni atoms are found to have thermal fluctuation
around their equilibrium positions with RMS displace-
ments 0.05 Å and 0.08 Å at the temperatures 100 K and
300 K, respectively, shown in Fig. 1. In Fig. 6 we present
the consequent adsorbed hydrogen atom distributions.
Though, the RMS displacements of substrate atoms do
not differ too much at these temperatures, the resulting
adsorbate distributions do, as seen by comparison of Figs.
3 and 6. At 100 K the distributions seem to be almost iden-
tical (Figs. a), whereas at 300 K they look clearly different
(Figs. b).

Fig. 6c reveals strong temperature dependence of the dis-
tribution, that can be expected to influence on the adsor-
bate diffusion dynamics. Although, we have not evaluated
the diffusion constants, this leads us to suggest that the tem-
perature dependence in hydrogen diffusion on Ni(001)
surface is a consequence of substrate dynamics, above
100 K. This can be contrasted with the suggestion of
temperature independence arising from quantum delocali-
zation or tunneling, below 100 K [7].

The vertical adsorbate distributions shown in Fig. 7 sup-
port the ideas and conclusions, above: On the rigid surface
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Fig. 7. Hydrogen atom distributions perpendicular to the surface, (a) quantum hydrogen (solid line) and deuterium (dashed), (b) classical hydrogen (dash-
dotted) and (c) with substrate at finite temperature, hydrogen (solid line) and ‘‘classical hydrogen’’ (dash-dotted). All distributions are evaluated at 300 K
(the one with maximum at higher z) and at 100 K (the one with maximum at lower z) temperatures.

Table 1
Hydrogen atom energy ‘‘levels’’ on Ni(001) surface from the band
structure calculations of Puska et al. [12] and Mattsson et al. [8] referred to
the ground state

A0
1 A1

1 E1 E2 A2
1 100 K 300 K

Puska et al. (band center) 0 62 45 80 95 0.6 27
Mattsson et al. (C) 0 68 86 0.06 11

The energies are given in meV. The energy difference between potential
minimum and ground state is 121 meV for Mattsson’s data. The thermal
averages, two last columns, for Puska et al. are estimated from the full
data given in Ref. [12], including levels of B1 and B2 symmetry below
100 meV, whereas for Mattsson et al. only the data given in this table is
used.

Table 2
Energetics for hydrogen on a rigid Ni(001) surface

T = 100 K T = 300 K

Classical Quantum Classical Quantum

Mattsson et al. [8] 121 132 Etot

PIMC 25 85 49 91 Epot

24 95 48 102 Tvir

49 179 97 193 Etot

3
2 kBT 12.9 38.8

All energies are given in meV.
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the temperature dependence is weaker than the isotope ef-
fect, whereas it is strong for the classical adsorbate, but the
largest effect on distributions arises from the finite temper-
ature substrate dynamics in all cases. All of the vertical dis-
tributions turn out to be modified Gaussians with the width
of about 0.4 Å and mean values being equal to the maxima
at around 0.5–0.65 Å, except for some of the classical cases.
The mean height coincides with the previously reported re-
sults, 0.6 Å [12,8].

4.2. Adsorbate energetics

Evaluation of energetics turns out to be a real computa-
tional challenge even in our case of a single quantum par-
ticle. This is due to the extremely slow convergence of
statistics, although the distributions presented above have
reached convergence by visual judgement. In the present
case, we are able to present reliable estimates to the energy
contributions in case of the rigid substrate, only.

Puska et al. [11,12] used the effective medium theory for
interaction of the adsorbed hydrogen atom on Ni(001) and
numerical solutions for the band structure was calculated.
Mattsson et al. [8] solved the hydrogen energy levels in
the ab initio DFT potential. In Table 1, a summary of these
results is given. As the common basic features we can point
out the lowest excited state at about 45–70 meV above the
ground state and several below 100 meV.

We give the hydrogen and deuterium energetics from
our PIMC simulations in Tables 2 and 3. The potential
energies are referred to the bottom of the hollow site min-
imum. The standard error of mean is about 5 meV in all
cases. Let us consider the hydrogen adsorbate first.

The potential energies are found to be about 85 meV
and 90 meV for the two temperatures 100 K and 300 K,
respectively. The corresponding kinetic energies evaluated
from the virial formula are given as 95 meV and
100 meV, yielding the total energies as 180 meV and
190 meV. We find that our mixed state total energies are
higher than those evaluated from the data in Table 1, prop-
erly weighting with the temperature. Thus, we note that the
energies found here are higher than the barrier 140 meV at
the bridge site between two adjacent hollow sites. But this
is true for the quantum hydrogen, only, as the classical
hydrogen energies, see Table 2, are 50 meV and 100 meV
at 100 K and 300 K, respectively.



Table 3
Energetics for deuterium

T = 100 K T = 300 K

Classical Quantum Classical Quantum

Mattsson et al. [8] 84 99 Etot

PIMC 22 60 48 69 Epot

23 70 49 76 Ekin

45 130 97 145 Etot

HO-energetics at x ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
, thus

ffiffiffi
2
p

xD ¼ xH. All energies are given in
meV.

Table 4
Energetics of hydrogen on thermally vibrating Ni surface

T = 100 K T = 300 K

Classical Quantum Classical Quantum

PIMC 116 160 330 276 Epot

208 207 578 524 Ekin

324 367 908 800 Etot

All energies are given in meV.
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The PIMC potential and kinetic energies are relatively
close to each other in both cases pointing to the harmonic
oscillator like potential. The energies we obtain are close to
those of a simple three-dimensional harmonic oscillator
with ⁄x = 120 meV. The quantum mechanical total energy
of harmonic oscillator is hEi ¼ 3�hx

2
coth 1

2
�hxb, giving ener-

gies of 180 meV and 183 meV at temperatures 100 K and
300 K, respectively, when applied to this system. However,
the potential is flat in all directions at its minimum with
smaller force constants, �hx below 100 meV.

The shape of the hollow potential and the excited state
structure can be further analyzed by noting that we find
the difference in the total energies in the two temperatures
to be about 10 meV. This is what can be estimated from the
data of Mattsson et al., as well, indicating that our poten-
tial function produce similar level structure. The absolute
values, however, differ significantly, theirs being closer to
the average of our classical and quantum energies. Overall,
our potential is more confined at the hollow site than
the one in Ref. [8]. This explains the difference of about
50 meV in the absolute values in Table 2. This also explains
the difference between the classical and quantum case in
Table 2: The confinement pushes the quantum hydrogen
to higher potential energy region, see Fig. 7.

At this point, it is also instructive to remind about the
classical simple harmonic oscillator energetics that is given
independent of harmonic force constant by 3

2
kBT þ 3

2
kBT ¼

3kBT ¼ 26 meV and 78 meV for the considered tempera-
tures 100 K and 300 K, respectively.

For the deuterium we obtain 60 meV and 70 meV for
potential energies, 70 meV and 75 meV for kinetic energies,
and finally, 130 meV and 145 meV for the total energies in
the two temperatures 100 K and 300 K, respectively. Thus,
we nicely find the scaling down of energies in the quantum
case by a factor

ffiffiffi
2
p

. The difference in classical H and D re-
flect the statistical error, as these should be equal with large
enough statistics.

Finally, we can briefly consider the energetics of hydro-
gen adsorbate on thermally fluctuating Ni surface. There,
from the adsorbate-contribution-only calculation for the
expression Epot + Ekin = Etot we find 0.15 eV + 0.2 eV =
0.35 eV and 0.3 eV + 0.5 eV = 0.8 eV for the quantum
hydrogen at 100 K and 300 K, respectively. In these cases,
the classical hydrogen adsorbate takes on essentially the
same energetics. This gives further support to our sugges-
tion of the role of substrate dynamics in the temperature
dependence of the adsorbate diffusion, and also, the classi-
cal nature of adsorbate properties at room temperature
(Table 4).
5. Conclusions

We have carried out a study of hydrogen quantum delo-
calization on Ni(00 1) surface at finite temperatures.
Adsorbate distributions and energetics were determined
in two temperatures, 100 K and 300 K, to trace the temper-
ature dependencies, and deuterium was considered to find
the isotope effect. The finite temperature quantum and
classical hydrogen adsorbates were considered both on a
rigid substrate and one in thermal equilibrium with the
adsorbate.

To flexibly describe the adsorbate–substrate interaction
and those between substrate atoms we use the tight binding
derived many-body alloy (MBA) potential, which contains
only a few parameters. The parameters were fitted to the
adsorption energetics and geometries from DFT calcula-
tions. The fit was shown to be perfect for the considered
H/Ni(0 01) case, but lacking the universality to describe
the extreme case of HNi molecule.

By comparing MBA to Sutton–Chen potential, we find
that the two potentials have a one-to-one correspondence.
The terms of the potentials can be attributed to different
functional forms of hopping integrals in tight-binding
formalism and it is possible to derive a unique connection
between the parameter sets of these two.

Path-integral Monte Carlo method is shown to be
straightforward but computationally intensive approach
to find the finite temperature mixed quantum state even
for a single particle. Also, the 0 K quantum state can be
obtained as an extrapolation from finite temperatures,
only, and time dependent dynamics cannot be assessed,
either. On the other hand, the classical limit can be nicely
found within the same formalism.

On the rigid Ni surface, we find strong quantum delocal-
ization of the adsorbate at 100 K, the classical adsorbate
being significantly more localized in terms of distribution
and energetics. The 100 K mixed state energy turns out
be larger than the bridge site barrier between the hollow
sites. As this is obviously true down to 0 K, as well, it
can be expected to be an important factor in surface diffu-
sion dynamics.
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At room temperature the extent of classical distribution
approaches to that of quantum case, but a clear difference
in energetics remains, 100 meV compared to 190 meV. The
corresponding simple harmonic oscillator energy is 78 meV
indicating the difference (or similarity) of the adsorbate po-
tential and harmonic potential.

The isotope effect is, as expected, localization of the dis-
tributions and scaling down the energetics by a factor offfiffiffi

2
p

.
The finite temperature surface dynamics seems to effect

only little on distribution of the quantum adsorbate at
100 K. The energies increase somewhat, however. At room
temperature the case is different, the substrate dynamics
has a clear effect on both as compared to the rigid surface
case. Furthermore, the substrate atom dynamics seems to
make the strongest contribution to the temperature depen-
dence of the H/Ni(001) system properties and phenomena
considered here.
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Appendix A. General aspects in MBA potential parameter

fitting

Let us consider a cluster with N atoms, each of which
with a coordination number z. If the equilibrium distance
of the nearest neighbours is r0, the total cohesive energy
of the N-cluster from the MBA potential (1) and (2) is

EN ¼ Nð�
ffiffi
z
p

nþ z�Þ. ðA:1Þ

If we remove one atom and assume no relaxation of the
cluster, there is one atom without neighbours, z atoms with
a coordination number z � 1, and N � (z + 1) atoms with a
coordination number z. Thus, the energy of a (N � 1)-clus-
ter is

EN�1 ¼ ðN � ðzþ 1ÞÞð�
ffiffi
z
p

nþ z�Þ þ zð�
ffiffiffiffiffiffiffiffiffiffi
z� 1
p

nþ ðz� 1Þ�Þ.
ðA:2Þ

Thus, by neglecting the lattice relaxation the defect forma-

tion energy is

DE ¼ EN � EN�1 ¼ �ðð1þ zÞ
ffiffi
z
p
� z

ffiffiffiffiffiffiffiffiffiffiffi
z� 1
p

Þnþ 2z�. ðA:3Þ

It is useful to consider the limits of this result. For a pair of
atoms, the defect formation energy is the same as the disso-
ciation energy. In this case, z = 1 and DE =�2n + 2�.

In the limit of large coordination, i.e., z� 1, we find
that ðz� 1Þ1=2 �

ffiffi
z
p
ð1� 1=ð2zÞÞ and after some algebra

we find DE � � 3
2

ffiffi
z
p

nþ 2z�.
In order to obtain the cohesion energy, we must allow

relaxations, and assume that after removing one atom, all
the remaining atoms in the (N � 1)-cluster have a coordi-
nation number z. Hence the energy is

EN�1 ¼ ðN � 1Þð�
ffiffi
z
p

nþ z�Þ ðA:4Þ

and the cohesion energy is

DE ¼ EN � EN�1 ¼ �
ffiffi
z
p

nþ z�; ðA:5Þ

and this is the formula to be used in fitting parameters to
the cohesion energy.

A.1. Fitting to dimer properties

Let us consider a pair of atoms with an equilibrium dis-
tance r0. The total binding energy from (1) and (2) for the
pair is

ETðrÞ ¼ �2n exp �q
r
r0

� 1

� �� �
þ 2� exp �p

r
r0

� 1

� �� �
.

ðA:6Þ

This couples the two energy parameters to the dissociation
energy:

ETðr0Þ ¼ �Ed ¼ �2nþ 2�. ðA:7Þ

The first derivative of the energy ET at r0 gives the condi-
tion for the equilibrium distance. This yields

qn ¼ p�. ðA:8Þ

The second derivative at the r0 is the harmonic force
constant

k ¼ o2ET

or2

����
r0

¼ �2
q
r0

� �2

nþ 2
p
r0

� �2

�. ðA:9Þ

Thus, given the equilibrium bond length r0, dissociation en-
ergy Ed and harmonic force constant k, the four parame-
ters are bound by three equations

pq ¼ kr2
0

Ed

;

n ¼ Ed

2ðp � qÞ p;

� ¼ Ed

2ðp � qÞ q;

ðA:10Þ

leaving one of the parameters free. Obviously, one free
parameter cannot be expected to be sufficient to fit the
adsorption data.

A.2. Fitting parameters to bulk properties

For bulk fitting, it is useful to scale the bond lengths as
rij = xr0, or V = x3V0. This transforms the equation for the
energy to a form which is independent from the equilib-
rium bond length:

ET ¼ N �
ffiffi
z
p

n expð�qðx� 1ÞÞ þ z� expð�pðx� 1ÞÞ
� 	

.
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Since the equilibrium is obtained at x = 1, the total energy
is

ET ¼ Nð�
ffiffi
z
p

nþ z�Þ. ðA:11Þ
Naturally, the cohesion energy is

Ecoh ¼ ET=N ¼ �
ffiffi
z
p

nþ z�.

Now the equilibrium condition is obtained from the deriv-
ative with respect to the scaling factor x, and it gives a
condition

qn ¼
ffiffi
z
p

p�. ðA:12Þ
A third condition is obtained from the bulk modulus

B ¼ V
o2ET

oV 2

����
r0

.

We will need the following three results:

oET

ox

����
r0

¼ 0;
o2ET

ox2

����
r0

¼ Nð�
ffiffi
z
p

q2nþ zp2�Þ; and

oV
ox
¼ 3x2V 0.

Those results are used in the following lines

oET

oV
¼ ox

oV
oET

ox
¼ 1

3x2V 0

oET

ox

and

o
2ET

oV 2

����
r0

¼ 1

3x2V 0

� �2
o

2ET

ox2
.

Thus the bulk modulus is

B ¼ N
9V
ð�

ffiffi
z
p

q2nþ zp2�Þ.

This can be further simplified for fcc-crystals which have a
density N/V = a3/4 and thus

B ¼ 4

9a3
ð�

ffiffi
z
p

q2nþ zp2�Þ. ðA:13Þ

In the same way as for the pair, we obtain conditions:

pq ¼ � 9Ba3

4Ecoh

;

n ¼ � Ecohffiffi
z
p ðp � qÞ p;

� ¼ � Ecoh

zðp � qÞ q.

ðA:14Þ
A.3. Comparison to Sutton–Chen potential

Sutton–Chen potential (SCP) is of the Finnis–Sinclair
family, and also derived using tight-binding arguments. It
can be written as a sum of cohesion energies of single
atoms:

ET ¼
X

i

Ei;
where

Ei ¼ ��ci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j 6¼i

r0

rij

� �m
s

þ 1

2

X
j 6¼i

�
r0

rij

� �n

.

Thus there is an apparent resemblance between MBA and
SCP.

It is easy to show that at the limit rij! r0, there exists a
more definite correspondence. Noticing that

exp �a
rij

r0

� 1

� �� �
¼ exp

rij

r0

� 1

� �� ��a

� r0

rij

� �a

;

as rij � r0, MBA has an approximate form

EcðiÞ � �n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j 6¼i

r0

rij

� �2q
vuut þ

X
j 6¼i

�
r0

rij

� �p

.

Thus there we have a correspondence
p! n

2q! m

n2r2q
0 ! ð�ciÞ2am

2�rp
0 ! �an
For Ni, the SCP-parameters are m = 6, n = 9, � =
1.5707 · 10�2 eV, ci = 39.432 and a = 3.52 Å. In terms of
MBA, this would correspond to q = 3.0 and p = 9.0. If
we choose the nearest neighbour distance for r0 = 2.49 Å,
the remaining parameters would be � = 0.1771 eV and
n = 1.752 eV. As is shown in the text, the choice q = 3.0
and bulk fitting for MBA gives the parameters: q = 3.0
and p = 8.6197, r0 = 2.49 Å, � = 0.1975 eV and n =
1.9659 eV. The difference between the two sets of parame-
ters is due to different second derivative of the potential at
the equilibrium position. In simulations, we utilize the lat-
ter set of parameters.
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[29] H. Grönbeck, D. Tománek, S.G. Kim, A. Rosén, Chem. Phys. Lett.

264 (1997) 39.
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Abstract

Finite temperature quantum behavior of hydrogen adsorbates on Ni(001) surface is simulated using path-integral Monte Carlo tech-
nique. The adsorbate–surface and adsorbate–adsorbate interactions are described by the many-body alloy potential form, fitted to the
adsorption parameters from DFT calculations. Temperatures 100 K and 300 K and coverages from 1/8 to 7/8 are considered. Also quan-
tum and classical adsorbate behavior is compared.

At low temperatures, the quantum delocalization of the adsorbates is considerable with all studied coverages, and therefore, temper-
ature dependence of distributions is weak. At T = 300 K, however, the H–H interaction energy has a considerable effect on distributions
and energetics. By using a semi-classical description of the hydrogen adsorbates both temperature and coverage dependencies become
strong at both temperatures.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Monte Carlo simulations; Nickel; Construction and use of effective interatomic interactions; Equilibrium thermodynamics and statistical
mechanics; Quantum effects; Hydrogen molecule
1. Introduction

Hydrogen motion and interactions on metal surfaces are
of interest both technologically and fundamentally. Hydro-
gen interactions are considered to be simple and therefore
well suited for fundamental research [1]. In particular, the
light mass of hydrogen emphasizes quantum effects [2–5],
which are used to explain peculiar adsorbate diffusion
[6–12], vibrational observations [6], electron-energy loss
spectra [13,14], low-energy electron diffraction [13,14], pho-
toemission [14], helium scattering [15], thermal desorption
[7], linear optical diffraction [16] and field emission
[16,17]. Furthermore, it has been shown that quantum
effects are essential in understanding the phenomena of
H interactions on Ni surface [11,13,18], and, H on metal
surfaces provides a unique opportunity to observe the
0039-6028/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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crossover from quantum to classical dynamics at elevated
temperatures [5]. Finally, combination of the many-body
aspect of the interactions and the quantum nature of
hydrogen dynamics at low temperatures [2] makes this sys-
tem even more interesting.

Many of the interesting quantum states relate to
Ni(001) surface, where H adsorbate is known to delocalize
and develop a two-dimensional band structure. Thus, the
protonic band structure may be important [4,19] in order
to understand hydrogen reactions on metal surfaces. Many
questions are still open, e.g., to what extent the electronic
structure of the surface influences the reaction of atomic
H (D) with adsorbed H or D [20]. Also, it is known, that
presence of an adsorbate on a surface can profoundly
change the surface reactivity [21]. The dissociative adsorp-
tion of molecules on surfaces of solids is of central impor-
tance in surface catalysis and has been extensively studied
both experimentally and theoretically [22].

At low temperatures, the quantum delocalization of the
hydrogen adsorbate on a Ni(10 0) surface is considerable,

mailto:Markku.Leino@tut.fi
mailto:Tapio.Rantala@ tut.fi
mailto:Tapio.Rantala@ tut.fi


Table 1
Many-body alloy (MBA) potential parameters for all atom pairs in Eq. (2)

Xa–Xb qab pab r0,ab [Å] �ab [eV] nab [eV]

H–H 3.22 5.28 2.30 0.16 0.91
H–Ni 2.87 5.87 1.44 2.70 5.52
Ni–Ni 3.00 8.62 2.49 0.20 1.97

M. Leino et al. / Surface Science 601 (2007) 1246–1254 1247
as we have shown earlier, see Ref. [18], and therefore, tem-
perature dependence of distributions is weak. By using a
classical description of the hydrogen adsorbate tempera-
ture dependence of the distributions and energetics be-
comes strong at all temperatures, proving that quantum
description is necessary for the correct picture of H/
Ni(00 1) system. At room temperature, T = 300 K, the
extensive classical distribution is quite similar to that of
quantum case and the classical thermal spreading conceals
the quantum delocalization. It was found that the classical
distributions are more bridge-direction oriented compared
with the quantum case, where tunneling allows more circu-
lar shape.

Mutual interaction between adsorbed hydrogen atoms
may significantly alter the apparent temperature depen-
dence of the diffusion [23], and thus, other properties of
the system. Two of the interaction mechanisms are direct,
through space, and two are indirect, through substrate
[24]: dipole–dipole interaction, direct overlap between
adsorbate electronic levels, indirect interaction mediated
by the non-rigid substrate ion cores and indirect interaction
mediated by the metal electrons. The electrostatic interac-
tion is assumed to be repulsive between hydrogen adatoms
at Ni surface [25].

Some Ni surfaces exhibit ordered superstructures for Hn

[26], but none is found for (100) surface [1,25]. On some
surfaces, a molecular adsorbate is observed, e.g., Ni(510)
surface covered with a dense atomic-hydrogen layer [27],
but as Mårtensson et al. [27] pointed out, EELS studies
of hydrogen adsorption on the flat Ni(100) surface shows
that there is no molecular adsorption state populated at
80 K substrate temperature.

We report here fully quantum mechanical and thermally
averaged constant temperature path-integral Monte Carlo
simulation (PIMC) of hydrogen atoms on a rigid Ni(10 0)
surface. The method is described in detail in Ref. [18] for
the case of single H atom. Here we consider the coverages
from 1/8 to 7/8. By employing PIMC method, we evaluate
the finite temperature many-body density distributions and
related energetics for quantum mechanical and classical
cases. We compare the results to the semi-classical ‘‘atoms
at the adsorption sites’’ picture. We assess the quantum
nature and temperature dependencies of the hydrogen dis-
tribution and differences with the semi-classical picture. In
particular, hydrogen–hydrogen interactions are considered
in terms of pair correlation functions and energetics.

In the next chapter, the many-body alloy potential and
PIMC are briefly described, chapter 3 gathers the results
together and, finally, the last chapter presents the
conclusions.

2. Computational methods

For the simulation, we need the full many-dimensional
potential-energy hypersurface for several interacting H
atoms at the surface. Therefore, we have chosen MBA po-
tential, reviewed in Subsection 2.1, to describe Ni–Ni, Ni–
H and H–H interactions. In Subsection 2.2 the path-inte-
gral method is described.

2.1. Many-body alloy potential

MBA has been succesfully used for H/Pd systems and
for studies of the electronic and structural properties of
small clusters [28,29], surfaces of metals, dilute metal al-
loys, see Ref. [30] and references therein, and the finite tem-
perature quantum distribution of H adsorbate on Ni(001)
surface [18].

The total (cohesive) energy of a crystal or a cluster in
MBA description is decomposed [30,31] into individual
atomic contributions Ei as

ET ¼
X

i

Ei; ð1Þ

where i runs over all atoms in the system and

Ei ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j 6¼i

n2
ab exp �2qab

rij

r0;ab
� 1

� �� �s

þ
X
j 6¼i

�ab exp �pab

rij

r0;ab
� 1

� �� �
: ð2Þ

The attractive part (first term) is due to the hybridization of
orbitals. It is based on a parametrized tight-binding Ham-
iltonian and the second-moment approximation. The
repulsive part (second term) is parametrized as a pair-wise
Born–Mayer potential with an exponential distance depen-
dence [31].

We have fitted MBA potential to describe interactions
between H adsorbate and Ni atoms [18]. The bulk Ni–Ni
parameters were fitted to the lattice constant a = 3.52 Å,
the nearest neighbour distance r0 = 2.49 Å, cohesive energy
Ecoh = �4.44 eV and bulk modulus B = 1.17 eV/Å3. The
H–Ni parameters of MBA potential were fitted to the
DFT data given by Mattsson et al. [12]. The fitted quanti-
ties are the adsorption energy of the hollow site,
Eads = 2.8 eV, the equilibrium distance from the surface
at hollow site ra = 0.5 Å and the energy barrier between
the hollow sites through the bridge site, Ebarr = 0.14 eV.
For DFT details, see Ref. [12].

For the H2 dimer in MBA scheme we adopt the param-
eters from Ref. [31], giving the binding energy as �4.95 eV
at bond length 0.9 Å. We note that the parameters are not
fitted to describe the free H2 molecule but the one adsorb-
ing onto on a transition metal surface.

All of the MBA parameters that are used in simulations
of this paper are given in Table 1.



〈 010 〉

〈 110 〉

3.52 Å

2.49 Å

4.98 Å

Fig. 1. Simulation supercell of Ni(001) surface (of FCC lattice,
a = 3.52 Å) schematically, surface and subsurface layer atoms indicated
by black and grey circles, respectively. One of the four-fold hollow sites is
designated by the dashed square and the high symmetry directions along
the surface are shown. The three possible hollow site distances (within the
‘‘periodical’’ simulation cell) are depicted.

Table 2
Comparison of hollow site pairs defined in Fig. 1

R [a] R [Å] Nfcc Nsim DE [meV]

HBH h110i
ffiffiffiffiffiffiffiffi
1=2

p
2.49 4 4 199

HTH h100i 1 3.52 4 2 99
h110i

ffiffiffi
2
p

4.98 4 1 1

Nsim and Nfcc give the statistical weight of the pairs in case of our periodic
model and real (001) surface of FCC lattice, respectively, as seen in the
pair correlation function of H atoms in hollow sites. HBH and HTH refer
to the related elbow plots in Fig. 2.
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2.2. Path-integral Monte Carlo method

Quantum treatment at the finite temperature is included
by using path-integral formalism for hydrogen atoms with
Monte Carlo scheme, and by calculating the trace of finite
temperature quantum density matrix

Z ¼ mM

2p�h2b

� �d=2 Z
exp �b

XM

n¼1

Kðrn�1; rnÞ þ Uðrn�1; rnÞð Þ
" #

dr0 . . . drM�1;

ð3Þ

where functions K and U define internal and external ener-
gies of the system. In the primitive approximation [32,33]
they are written as

Kðrn�1; rnÞ ¼
mM

2�h2b2
ðrn�1 � rnÞ2 ð4aÞ

and

Uðrn�1; rnÞ ¼
1

2M
V ðrn�1Þ þ V ðrnÞð Þ; ð4bÞ

where m is the mass of the particle and M, large enough
integer, is called the Trotter number. The periodic bound-
ary conditions in imaginary time are taken into use, i.e.,
r0 = rM [18].

Quantum description is complete at the limit, where the
Trotter number M!1. However, the distributions and
expectation values converge at some finite Trotter number,
which depends on the temperature and external potential.
This is clearly seen from the quantum distributions at dif-
ferent Trotter numbers, and by testing the procedure for
analytically solvable systems. We found sufficient conver-
gence in our case with Trotter number M = 64. At
100 K, this can be considered as a compromise with com-
putational labour, but shows good convergence at 300 K.
The typical number of sufficient Monte Carlo steps is about
108 for classical simulations and 2 · 109 for T = 100 and
4 · 108 for T = 300 K quantum simulations. Also, a similar
sampling is needed in quantum cases to reach the equilib-
rium states. For higher H coverages, we are not able to
use high enough Trotter numbers. Therefore, we choose
M = 1 that returns the PIMC to classical Metropolis
Monte Carlo approach. On the other hand, this allows us
to compare classical and quantum hydrogen adsorbates.

Our surface model is a periodic slab of six layers of Ni
atoms, eight atoms in each layer, including total of 48
atoms. The lateral periodicity is two lattice constants, 2a.
See Fig. 1. Some structure related data of the model is col-
lected into Table 2.

3. Results

First, we test the performance of MBA potential in the
present case, which now involves H–H interaction at the
surface, in addition to previously reported H–Ni and Ni–
Ni parametrizations [18]. This is done by considering the
s.c. H2 molecule dissociation elbow plots. Also, surface
relaxation is considered, though computing capacity does
not allow us to include Ni atom dynamics here, as was
done in our previous study with the single hydrogen atom
[18]. Then, we consider the equilibrium distributions and
pair correlation functions of hydrogen atoms as a function
of coverage. For lower coverages, we are able to consider
both quantum and classical hydrogen and compare these,
whereas, for higher coverages, we simulate the classical
hydrogen only. Finally, we discuss the energetics in the
above cases.
3.1. H–H interaction in MBA

The MBA parameters for H–Ni were fitted to the case of
single hydrogen atom adsorption in our previous study [18]
using the DFT data of Mattson et al. [12], while the H–H
parameters are taken directly from Ref. [31]. Thus, the
combination should be tested against a good reference be-
fore use. For this purpose, we consider the high-symmetry
potential-energy hypersurfaces conventionally used to illus-
trate the dissociation dynamics of H2 molecule coming
down to the perfect and rigid surface. Due to their typical
shape, they are called ‘‘elbow plots’’. We choose the DFT
calculations of Kresse et al. [25] to compare with.

It should be pointed out that description of such indirect
interactions are not straightforward, as H–H interactions
may be sensitive to the character of the H-induced surface
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electronic structure involving the transition-metal d states
[24]. On the other hand, the detailed form of the metal
DOS was shown to be not important for a description of
adsorbate photoemission [34]. However, different binding
energies of H atoms at different sites on the surface due
to the H–H interactions [26] put forward a challenge for
MBA.

We present a set of MBA elbow plots in Figs. 2–4. These
should be compared to those of Kresse et al., and also, to
the equipotential contour lines of single hydrogen atom on
Ni surface [18]. We see that MBA surprisingly successfully
transforms the single atom PES to the various elbow plots
as a consequence of H–H interaction.

In our case, the most important regions of the elbow
plots to consider are the hollow sites shown in Fig. 2, where
d 〈 110 〉 [Å]

〈 0
01
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Fig. 2. Elbow plots for H2 dissociation to hollow sites from MBA potential. Hi
are shown on the left and right, respectively. Line spacing is 100 meV. Note
difference in remaining indirect H–H interation; see text.
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Fig. 3. Elbow plots for H2 dissociation to bridge sites from MBA potential. Hi
are shown on the left and right, respectively. Line spacing is 100 meV. Again, th
hydrogen adsorbates almost exclusively dwell in thermal
equilibrium. Fig. 2a shows the PES for H2 molecule disso-
ciation above the bridge site towards the hollow sites
(HBH). A small physisorption energy minimum of
20 meV is found in agreement with DFT data of Kresse
[35]. We evaluate for the dissociation barrier a value of
140 meV, as the DFT barrier is 110 meV.

The chemisorption minimum is at 0.5 Å, the same as in
the single-adsorbate case. The distance between adsorbed
hydrogen atoms at the chemisorption minimum is 2.7 Å,
expressing a repulsion between adjacent adsorbates. This
repulsion is about 200 meV, see Table 3, and it is not pres-
ent in DFT results.

The H–H MBA parameters are not intended for descrip-
tion of free H2 molecule: the dissociation energy is too large
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Fig. 4. Elbow plots for H2 dissociation to top sites from MBA potential. High symmetry cases in planes {110} (on bridge site) and {100} (on hollow site)
are shown on the left and right, respectively. Line spacing is 100 meV.

Table 3
MBA H2 molecule physisorption, dissociation barrier and chemisorption
energetics for the elbow plots in Fig. 2, compared to the DFT energetics
from Ref. [35]

Physisorption Chemisorption

(d, z) [Å] E [meV] Edis [meV] (d, z) [Å] E [eV]

MBA hbh (0.9,–) 25 140 (2.8,0.5) 0.5
hth (0.9,–) 50 350 0.6

DFT hbh (0.8,–) 20 110 (2.5,0.5) 1.1
hth 20 0
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by about 0.5 eV. Therefore, the chemisorption energy be-
comes too small by about the same amount.

The elbow plot above the top site towards hollow sites
(HTH), Fig. 2b, presents the same features as HBH. The
only essentially difference in these two cases is the H–H
repulsion, see Table 3. H atoms in hollow sites further
apart do not essential interact, see DE in Table 3. We note
that the dissociation barrier is not described correctly, but
it is not relevant for the equilibrium distribution of H
adsorbates at low coverages.

The four elbow plots in Figs. 3 and 4 are shown to illus-
trate performance of MBA, though they are not essential in
our room temperature equilibrium simulations.

It is interesting to test MBA performance in description
of surface relaxation. By allowing two uppermost Ni layers
to relax, their separation is changed by Dz12 = �0.120 Å,
which is close to the DFT result [25] �0.116 Å. Also, for
the second layer separation change we get Dz23 = �0.08 Å,
a negative value indicating a smaller layer separation. The
corresponding DFT value is Dz23 = 0.04 Å.

As a conclusion, we find MBA with the given parame-
ters capable of describing a single and two interacting H
atoms on a Ni surface, and assume its validity for higher
coverages too. Furthermore, it seems to describe correctly
many other features of the system that are not relevant
or needed in the present study.
3.2. Hydrogen adsorbates on nickel surface

First, we describe the adsorbate distributions for hydro-
gen coverages from 1/8 to 7/8 on Ni(100) surface. Temper-
ature and quantum effects and also the H–H interactions
are considered. The adsorbate energetics are estimated in
the next section.

As was pointed out earlier, the simulation cell is of finite
size and periodic, with periodicity of 2a, see Fig. 1. Due to
this, in h100i and h110i directions there are only two and
one hollow site distances, respectively, see Fig. 1. Thus, the
finite simulation cell is different from the infinite one, as
indicated in Table 2.

The hydrogen quantum distribution in the hollow site at
low coverages and low temperatures does not strongly de-
pend on the coverage nor on the actual temperature. It is
rather similar to that at zero Kelvin [12–14]. We confirm
this fact and illustrate it in Fig. 5 with the distributions
from 100 K and 300 K with hydrogen adsorbate coverages
varying from 1/8 to 4/8. Indeed, only a slight spreading of
the distributions can be observed when increasing the tem-
perature, and thus, the difference between the shown two is
almost insignificant.

At T = 100 K, the adsorbates are lying in the ‘‘circular
ground state’’, exhibiting harmonic confinement. It should
be noted that at T = 100 K, the distributions of coverages
h = 2/8 and h = 3/8 are almost identical. Thus, the adsor-
bate–adsorbate interaction is rather small in both cases,
though the pair correlation function differs, see below. At
coverage h = 2/8, the spatial width of distribution is small-
est; the hydrogen is most localized.

Only at coverages h P 4/8 the lateral distribution of
quantum adsorbates is profoundly different from zero-
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Fig. 5. One-particle quantum distribution in the hollow site, see Fig. 1, in
case of adsorbate covarages h = 1/8, 2/8, 3/8, and 4/8 in the simulation cell
and for temperatures 100 K and 300 K. The equidensity contours present
the three-dimensional density projected onto the surface plane, i.e.,
integrated over z-direction. The thin and thick lines show densities 0.5, 1.0,
1.5, . . . and 5, 10, 15, . . . atoms/(surface) unit cell.
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Fig. 6. ‘‘Classical hydrogen’’ distributions corresponding to those of
quantum hydrogen in Fig. 5. Notations are the same as in Fig. 5.
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Fig. 7. Pair correlation function of H adsorbates corresponding to the
one-particle distributions in Figs. 5 and 6, quantum case to the left and
classical to the right. The two temperatures T = 100 K (solid line) and at
T = 300 K (dashed line) are shown. Vertical dashed lines indicate the three
hollow site distances, shown in Fig. 1.
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Kelvin distributions, see subfigure in low-right corner in
Fig. 5, showing more towards bridge-site orientation. This
may be a reflection of attractive interaction [23] of H adsor-
bates at HTH configuration, see Fig. 2b. We have not been
conducted the simulations at T = 100 K for coverages
h > 3/8 due to the required computer capacity.

The ‘‘classical hydrogen adsorbates’’ show more pro-
nounced temperature effect, see Fig. 6. It is due to the
absence of zero-point vibration at T = 100 K, the distribu-
tion is spherical (harmonic confinement) and at room tem-
perature, it is oriented towards bridge site. At T = 300 K,
the thermal spreading conceals the classical in all studied
coverages. Here too, the coverage h = 2/8 exhibits mini-
mum in spatial width, following from the repulsive inter-
action of the H adsorbates. The lateral distributions of
quantum and classical adsorbates at room temperature
are quite similar, the largest difference being that the clas-
sical distributions are more bridge-direction oriented.

The pair correlation functions of the distributions, (see
Fig. 7), show that all hydrogen adsorbates tend to reside
apart from each other, which, again, is an indication of
H–H repulsion. Thus, there is no molecular adsorption
state at T = 300 K or T = 100 K, a result observed for
T = 80 K by Mårtensson et al. [27]. The maximum values
of pair correlation functions are obtained at hollow-site
distances, 3.5 Å and 5.0 Å.

At higher coverages, h P 3/8, the hydrogen adsorbates
are compelled to be closer to others, leading to a large peak
at the distance of 3.5 Å. The difference on the quantum pair
correlation functions for h = 2/8 and h = 3/8 in Fig. 7 re-
veals the origin of stronger localization of lateral distribu-
tions (Fig. 5). In comparison of h = 3/8 and h = 4/8 the
statistical factor, Nsim/Nfcc in Table 2 should be taken into
account. At coverage h = 3/8, the temperature dependence
is relatively small.

The pair correlation function in the non-periodic z-
direction shows only Gaussian type behavior, similar to
that of the case of single-adsorbate [18].

The classical hydrogen pair correlation distributions
are similar to those of quantum adsorbates, the only
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Fig. 8. ‘‘Classical hydrogen’’ distributions of higher coverages. Here, only
temperature T = 100 K is shown, because at higher temperatures, the
system becomes unstable. This is the case for coverage h = 7/8 even at
T = 100 K.
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essential difference being that quantum peaks are broader
than classical peaks, see Fig. 7, revealing the quantum
delocalization.

The hydrogen lateral distributions of higher coverages,
h = 4/8–7/8, are shown in Fig. 8. We considered these with
classical adsorbates only. For coverages h > 4/8, the hydro-
gen adsorbates are recombined and desorption of H2 mol-
ecule occurs at T = 300 K. This may be an artifact of too
small chemisorption energy of MBA, as higher coverages
of quantum adsorbates are observed [1,16,17,36] and used
in DFT calculations [12,25]. At T = 100 K, the coverages
h < 7/8 are stable. The pair correlation functions of higher
coverages (Fig. 7) show that adsorbates start to occupy the
nearest hollow sites too.

Here, the location of maximum in z-distribution gets
higher from 0.47 Å for 2 H atoms via 0.58 Å for 5 H adsor-
bates to 0.64 Å for 6 and 7 adsorbates. The z-distribution is
not Gaussian for high coverages, as for the lower cover-
ages, but reveals also another peak at a potential-energy
minimum, z = 1.1 Å, which can be identified in the elbow
plots in Fig. 3.
3.3. Energetics

Evaluation of energetics turns out to be a real computa-
tional challenge. This is due to extremely slow convergence
to equilibrium with stationary energetics. Although, the
distributions seem to converge faster by visual judgement,
those above have been evaluated from the fully converged
equilibrium. For the energetics below, with chosen Trotter
number M = 64, we were able to acquire data, enough to
make the statistical error bars negligible with respect to
the convergence in Trotter number. In case of several H
adsorbates, we are not able to evaluate the latter, but from
the case of a single adsorbate [18], we estimate this ‘‘sys-
tematic error’’ to be of the order of a few meV.

As the MBA potential does not involve pair interac-
tions, the interaction energy between two atoms, e.g., H–
H interaction, cannot be evaluated directly. To estimate
that, we used the total MBA potential of N hydrogen
adsorbates energy
Epot;N ðbÞ ¼ ET ð5aÞ

obtained directly from simulations, by Eq. (1), and the sin-
gle-adsorbate potential energy Epot,1 of the three-dimen-
sional density function q(r) of N hydrogen adsorbates as

Epot; 1ðbÞ ¼ hV 1ðrÞiqðrÞ; ð5bÞ

where V1(r) is taken to be single-adsorbate energy term, see
Eq. (1). By comparing these two Eqs. (5a) and (5b), we are
able to find an approximation to the interaction energy be-
tween H adsorbates.

We evaluated the kinetic energy via virial theorem, and
only an approximation to that is used by assuming only
single-hydrogen adsorbate, thus

Evir;1ðbÞ ¼
1

2
hr � rV 1ðrÞiqðrÞ:

This gives a good approximation as long as the H–H inter-
action is small, which is true for long-distance adsorbates
on surface. From the pair correlation function, we con-
clude that the energetic estimates here are valid for at least
H2 and H3. The total energy for single-adsorbate system is
then

Etot;1 ¼ Epot;1 þ Evir;1:

For the interacting system, by replacing the kinetic energy
term with its single-adsorbate counterpart, we get the total
energy

Etot;N ¼ ET þ Evir � ET þ Evir;1;

where ET is given in Eq. (1), and thus, by writing the total
energy in the form ET = Epot,1 + EH–H, we get an approxi-
mation for the interaction energy EH–H of hydrogen
adsorbates.

Next, we consider the energetics of hydrogen adsorbates
on nickel surface.

Fig. 9a shows the variation of one-hydrogen potential
energy Epot,1 as a function of coverage h. The potential
energies for the quantum distributions are larger and the
temperature effect is smaller compared to classical, as was
pointed out earlier in discussion about the distributions.
The maximum value is 90 meV at coverage 1/8. As was ear-
lier pointed out, the H–H interaction pushes the lateral dis-
tributions smaller resulting in a smaller potential energy.
The minimum potential energy of 75 meV is reached at
coverage h = 4/8 for T = 300 K and 65 meV at h = 3/8
for T = 100 K.

The classical simulation shows considerable temperature
effect. The single-particle potential energy of classical sim-
ulations with coverage 4/8 gives almost the same result
than the quantum case. Here, it should be noticed that
the lateral distributions of those two cases are very similar.

The single-adsorbate kinetic energy estimator is shown
in Fig. 9b. The maximum value 100 meV is obtained at
h = 1/8 and the energy is getting lower as the coverage is
increasing. The minimum value is 60 meV for T = 300 K
at h = 4/8. The quantum effect is rather large for kinetic
energy also. At coverage of 4/8, the classical kinetic energy
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is near to the quantum kinetic energy, when both are eval-
uated as a single-adsorbate approximation.

The interaction part of the potential term, Fig. 10
strongly depends on the number of adsorbates. The inter-
action energy increases from a few meV with two adsor-
bates to 100 meV with four hydrogen adsorbates in
accordance with the above discussion of pair correlation
function in Fig. 7 and energies given in Table 2. Only a
small temperature dependence can be found. Quantum
and classical interaction energies are rather similar.
4. Conclusions

We have carried out a study of quantum delocalization
of hydrogen adsorbates on rigid Ni(001) surface at finite
temperatures. Adsorbate distributions and energetics were
determined at two temperatures, 100 K and 300 K, to trace
the temperature dependencies.

To flexibly describe the adsorbate–substrate interaction
and those between substrate and adsorbate atoms, we use
the tight-binding derived MBA potential, which contains
only a few parameters for atom pairs. The parameters were
fitted to the adsorption energetics and geometries from
DFT calculations. Path-integral Monte Carlo method is
used, as it is a straightforward but computationally inten-
sive approach to find the finite temperature mixed quantum
state. The classical limit can be nicely found within the
same formalism too.

We find strong quantum delocalization of the adsor-
bates at 100 K, the classical adsorbate being significantly
more localized in terms of distribution and energetics. At
this low temperature, the adsorbates are residing in the lat-
eral ‘‘circular ground state’’, thus, showing harmonic con-
finement. For low coverages, h 6 3/8, the distributions of
classical adsorbates are more bridge-site oriented but for
the coverage h = 4/8, the lateral distribution of classical
and quantum cases are rather similar.

The hydrogen adsorbates have a repulsive interaction as
they tend to reside apart from each other. No molecular H2

state was found with the considered coverages. The quan-
tum effect is mainly due to zero-point effects and tunneling
towards Ni atoms in h1 00i directions.

The single-adsorbate potential and kinetic energies are
not very sensitive to the hydrogen adsorbate coverage.
Opposed to quantum case, the energetics of classical adsor-
bates have a considerable temperature effect, as is pre-
sumed from the distributions, already. The interaction
energy of adsorbates has a strong dependence on hydrogen
coverage. The interaction energy is independent of tem-
perature and the type of the adsorbates, quantum or
classical.
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Path integral Monte Carlo approach is used to study the coupled quantum dynamics of the electron
and nuclei in hydrogen molecule ion. The coupling effects are demonstrated by comparing differences
in adiabatic Born–Oppenheimer and non-adiabatic simulations, and inspecting projections of the full
three-body dynamics onto adiabatic Born–Oppenheimer approximation. Coupling of electron and
nuclear quantum dynamics is clearly seen. Nuclear pair correlation function is found to broaden by
0.040 a0 and average bond length is larger by 0.056 a0. Also, non-adiabatic correction to the binding
energy is found. Electronic distribution is affected less than the nuclear one upon the inclusion of
non-adiabatic effects.

I. INTRODUCTION

There is a number of phenomena in molecular and
chemical physics which are influenced by the quantum
behavior of both nuclei and electrons, rovibrational dy-
namics being a good example, see Refs. [1–3] and ref-
erences therein. In case of light-mass nuclei, protons in
particular, treatment of the quantum nature of the nuclei
is essential [4–6]. This has proven to be important in the
description of hydrogen bond, for example [7].

Hydrogen molecule ion (H+
2 ), being the simplest

molecule, has been studied extensively [8] and it has of-
ten been used as an example or a test case for an im-
proved method or accuracy [9–14]. In addition to the
free molecule, H+

2 influenced by an electric or magnetic
field is a well-studied subject [15–21]. Furthermore, there
is interest in descriptions that do not restrict to Born–
Oppenheimer (BO) or other adiabatic approximations
[22–28]. Such extensions can be easily realized by us-
ing quantum Monte Carlo (QMC) methods [29, 30], for
example.

Among the QMC methods the path integral formal-
ism (PIMC) offers a finite temperature approach together
with a transparent tool to trace the correlations be-
tween the particles involved. Though computationally
extremely demanding, with some approximations it is ca-
pable of treating low-dimensional systems, such as small
molecules or clusters accurately enough. Some examples
found in literature are H [31], HD+ and H+

3 [32], H2 clus-
ters [33–37] with special attention laid on 4He [38–42].
The approximations in these approaches relate to the ad

hoc type potentials describing the interactions between
particles.

In this work we evaluate the density matrix of the full
three-body quantum dynamics in a stationary state and
finite temperature. This is what we call ”all-quantum”
(AQ) simulation. Secondly, the electronic part only
is evaluated as a function of internuclear distance in
the spirit of BO approximation, and thirdly, the adia-
batic nuclear dynamics is evaluated in the BO potential
curve. These allow us to demonstrate the non-adiabatic
electron–nuclei coupling by a projection of the AQ dy-
namics onto the adiabatic approximations.

We need to approximate the −1/r Coulomb poten-

tial of electron–nucleus interaction at short range to
make calculations feasible. We realize this with a care-
fully tested pseudopotential (PP). Also, the absent (or-
tho) or negligible (para) exchange interaction of nuclei
is not taken into account. Finally, we want to empha-
size that our purpose is to simulate a finite tempera-
ture mixed state including correlations exactly, which
is a challenging task for other methods. However, if
high-accuracy zero–Kelvin computations are preferred
one should turn to other methods such as Variational
Monte Carlo (VMC), for example. For convenience, we
have chosen 300 K, which essentially, but not exactly,
restricts the system to its electronic ground state.

We begin with a brief introduction to the theory and
methods in the next section. This includes description
of the PP, and tools and concepts for the analysis in the
following section. Then we carry on to the results.

II. THEORY AND METHODS

For a quantum many-body system in thermal equilib-
rium the partition function contains all the information
of the system [43]. The local thermodynamical proper-
ties, however, are included in the density matrix from
which all the properties of the quantum system may be
derived [44]. The non-adiabatic effects are directly taken
into account in PIMC. In addition, finite temperature
and correlation effects are exactly included.

A. Path integral Monte Carlo approach

According to the Feynman formulation of the statis-
tical quantum mechanics [45] the partition function for
interacting distinguishable particles is given by the trace
of the density matrix,

Z = Tr ρ̂(β)

= lim
M→∞

∫
dR0dR1dR2 . . .dRM−1

M−1∏

i=0

e−S(Ri,Ri+1;τ),

(1)
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where ρ̂(β) = e−βĤ , S is the action, β = 1/kBT ,
τ = β/M and RM = R0. M is called the Trotter num-
ber and it characterizes the accuracy of the discretized
path. In the limit M → ∞ we are ensured to get the
correct partition function Z, but in practice sufficient
convergence at some finite M is found, depending on the
steepness of the Hamiltonian Ĥ .

In the primitive approximation scheme of the PIMC
formalism the action is written as [46]

S(Ri, Ri+1; τ) =
3N

2
ln(4πλτ) +

(Ri − Ri+1)
2

4λτ
+ U(Ri, Ri+1; τ), (2)

where U(Ri, Ri+1; τ) = τ
2 [V (Ri) + V (Ri+1)] and λ =

~2/2m.
Sampling of the configuration space is carried out using

the Metropolis procedure [47] with the bisection moves
[48]. This way the kinetic part of the action is sampled
exactly and only the interaction part is needed in the
Metropolis algorithm. Level of the bisection sampling
ranges from 3 to 6 in our simulations, respectively with
the increase in the Trotter number. The bisection sam-
pling turns out to be essential with large Trotter numbers
to achieve feasible convergence, for nuclei in particular.
Total energy is calculated using the virial estimator [49].

B. Extrapolation of expectation values

The Trotter scaling procedure [32] for expectation val-
ues is used to obtain estimates for energetics in the limit
M → ∞. To use this procedure one needs expectation
values with several different Trotter numbers. For the
Trotter number M the scaling scheme is

〈Â〉∞ = 〈Â〉M +

N∑

i=1

c2i

M2i
, (3)

where coefficients c2i are constants for a given tempera-
ture and N represents the order of extrapolation. In this
paper N = 2 has been used for the energies of H+

2 , and
N = 3 for hydrogen atom energies, see Figs. 1 and 2.

C. Pseudopotential of the electron

For the hydrogen molecule ion the potential energy is

V (r1, r2,R) = −
1

r1
−

1

r2
+

1

R
, (4)

where ri = |r − Ri|, R = |R1 − R2|, r being the coor-
dinates of the electron and R the internuclear distance.
Eq. (4) sets challenges for PIMC arising from the sin-
gularity of the attractive Coulomb interaction [50, 51],
which in this work is replaced by a PP of the form [52]

VPP(r) = −
erf(αcr)

r
+ (a + br2)e−αr2

. (5)
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Figure 1: (Color online) Hydrogen atom total energies with
different Trotter numbers: infinite nuclear mass (triangle)
and AQ (circle). Extrapolated ground state energies are
−0.4947(1) Ha and −0.4938(3) Ha for infinite nuclear mass
and AQ simulations, respectively.

The parametres αc = 3.8638, α = 7.8857, a = 1.6617
and b = −18.2913 were fitted using direct numerical so-
lution to give the exact ground state energy of hydrogen
atom and the wave function accurately outside a cut-off
radius of about 0.6 a0. Also, a number of lowest energy
orbitals of the hydrogen atom are obtained accurately
outside the same cut-off radius [53]. Because the bond
length of H+

2 is about 2 a0, it is expected that bonding of
the hydrogen molecule ion becomes properly described.

Hydrogen atom reference energies for different Trot-
ter numbers are shown in Fig 1, where triangles are ob-
tained from infinite nuclear mass and circles are from
AQ simulations. Extrapolated ground state values are
−0.4947(1) Ha and −0.4938(3) Ha for infinite nuclear
mass and AQ simulations, respectively, statistical stan-
dard error of mean (SEM) given as uncertainty in paren-
thesis. We can note that within 2SEM limits proportion
of these energies 0.9982 reproduces that of Rydberg con-
stants, RH/R∞ = 0.9995.

D. Spectroscopic constants

Within the BO approximation of diatomic molecules
the corrections to electronic energies due to rovibrational
motion of the nuclei can be evaluated from a Dunham
polynomial [54]

EvJ = − De + ωe(v +
1

2
) − ωexe(v +

1

2
)2

+ BeJ(J + 1) − αeJ(J + 1)(v +
1

2
) + . . . , (6)
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where v and J are vibrational and rotational quantum
numbers, respectively, and Be, ωe, ωexe and αe are the
spectroscopic constants.

The spectroscopic constants of H+
2 and D+

2 are ob-
tained as introduced in Ref. [54]. In atomic units

Be =
1

2I
=

1

2µR2
, (7)

ωe =
( 1

µ

d2E

dR2

)1/2

, (8)

ωexe =
1

48µ

[
5
(d3E/dR3

d2E/dR2

)2

− 3
d4E/dR4

d2E/dR2

]
(9)

and

αe = −
6B2

e

ωe

[R

3

d3E/dR3

d2E/dR2
+ 1

]
. (10)

Instead of determining these constants at the equilibrium
distance only, as in Ref. [54], we evaluate expectation val-
ues from the distribution of nuclei, e.g. for the rotational
constant,

Be =
1

2µ

∫
g(R)

1

R2
dR, (11)

where the pair correlation function g(R) is normalized to
unity. The other constants, Eqs. (8)–(10), are evaluated
similarly.

E. Centrifugal distortion

Effects caused by the centrifugal distortion, arising
from rotational motion of the nuclei, on the equilibrium
distance can be assessed by inspecting the extremum val-
ues of the energy of harmonic oscillator in rotational mo-
tion: EJ(r) = 1

2k(r − re)
2 + J(J + 1)/2µr2. We find an

approximate equation

∆R =
4Be

µω2
eR

2
e

J(J + 1), (12)

where Re is the equilibrium distance. Eq. (12), however,
does not include the anharmonic effects shown in Eq. (6),
which evidently increase the bond length.

At finite temperature the rotational energy states
should be weighted by the Boltzmann factor, which leads
to

∆R =
4Be

µω2
eR

2
e

∑
J J(J + 1) exp(−βBeJ(J + 1))∑

J exp(−βBeJ(J + 1))
, (13)

where J = 0, 1, 2, . . .. Using the spectroscopic constants
from Ref. [54], see Table I, and temperature of 300 K
we obtain ∆R = 0.0043 a0. This approximation will be
compared to our direct evaluation, below.

1.5 2.0 2.5 3.0

−0.14

−0.12

−0.10

−0.08

E
 (

H
a)

R (a
0
)

211

212

213

∞
FD

PP

exact

Figure 2: (Color online) H+

2 potential curves with different
Trotter numbers: M = 211 (square), M = 212 (triangle),
M = 213 (circle), extrapolated values (dot), finite difference
calculation with the pseudopotential (dashed) and with exact
e−–p+ potential (solid).

III. RESULTS

We consider three different cases separately in order
to demonstrate the non-adiabatic effects. First, the elec-
tronic part only is evaluated as a function of internuclear
distance in the spirit of BO approximation. Secondly, the
adiabatic nuclear dynamics is evaluated in the BO poten-
tial curve. Finally, H+

2 is treated fully non-adiabatically
with the AQ simulation. These allow us to demonstrate
the non-adiabatic electron–nuclei coupling by a projec-
tion of the AQ dynamics onto the adiabatic approxima-
tions. In addition, spectroscopic constants and isotope
effects are looked into.

A. Adiabatic electron dynamics

Though the PP, Eq. (5), reproduces the hydrogen atom
energy exactly, an error of −0.00342 Ha from the exact
value −0.10263 Ha results in binding of another proton to
form H+

2 . This is demonstrated in Fig. 2, where potential
curves of H+

2 from finite difference calculations with VPP

from Eq. (5) and exact V (r) = −r−1 are shown.
Our PIMC energies with increasing Trotter number M

and the extrapolation to M = ∞ using Eq. (3) are shown
in the same figure. These indicate clearly that the Trot-
ter number has to be at least 213 in order to find the
minimum of the potential curve at the nuclear separa-
tion R = 2.0 a0. The extrapolated values are in good
agreement with the potential curve FDPP, and there is
almost a perfect match at R = 2.0 a0, where the value of
the extrapolated dissociation energy is 0.1061(2) Ha.

For larger nuclear separations than 3.5 a0, however, we
are not able to reproduce the potential curve with these
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Table I: Expectation values of spectroscopic constants,
Eqs. (7)–(11). A Morse potential [55] fitted to the FDPP

potential curve is used in the evaluation of the energy deriva-
tives. Corresponding pair correlation functions are shown in
Fig. 3. First two columns are adiabatic nuclear dynamics re-
sults and AQ results are in the third column.

H+
2 D+

2 H+
2 (AQ)

Ha cm−1 cm−1 cm−1

Be
0.0001366 30.35 15.24 29.26 This work

0.0001344 29.85705 Ref. [54]

ωe
0.0104816 2328.96 1668.25 2229.77 This work

0.0104201 2315.3 (2232)a Ref. [54]

ωexe

0.0003552 78.92 35.33 90.73 This work

0.0003029 67.3 Ref. [54]

αe

6.445 × 10−6 1.432 0.45 1.636 This work

7.201 × 10−6 1.600 Ref. [54]

aMCDFT, non-adiabatic [28]

Trotter numbers: we get too weakly binding molecule.
This is assumed to be a consequence of the electronic
wave function becoming more delocalized as the inter-
nuclear distance increases, and thus the ”polymer ring”
representing the electron is not capable of sufficient sam-
pling of configuration space. This error should diminish
with increasing M .

The electron–nucleus pair correlation function is shown
in Fig. 4 and will be discussed below.

B. Adiabatic nuclear dynamics

For the quantum dynamics of the nuclei only (QN) we
consider both H+

2 and D+
2 to see the isotope effect, too.

The FDPP potential curve in Fig. 2 is used, for which
convergence with respect to Trotter number is found at
M ≥ 26 for both isotopes. Resulting pair correlation
functions are shown in Fig. 3.

Average nuclear separation of 2.019(1) a0 for H+
2 and

2.007(2) a0 for the isotope D+
2 is found with M ≥ 26.

The full width at half maximum (FWHM) of the pair
correlation functions are 0.539(1) a0 and 0.454(1) a0 for
these isotopes, respectively.

Difference in the bond length of H+
2 between the adia-

batic electron and adiabatic nuclei simulations, i.e total
distortion, is 0.019 a0. Centrifugal contribution to this,
the difference between one and three dimensional simu-
lations of the nuclei, is 0.009(1) a0, which unexpectedly
is about twice as much as the value 0.0043 a0 evalu-
ated from the approximate Eq. (13). The anharmonic
contribution, i.e. difference between total and centrifu-
gal distortions, is 0.010(1) a0. In Ref. [56] it was shown
that anharmonic effects in H2 molecule contribute about
the same amount to total distortion as centrifugal force,
which turns out to be the case here, too.

Difference between the total energies of the previous
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0.0
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1.0

1.5

2.0

g(
R

)

R (a
0
)

Figure 3: (Color online) Nuclear pair correlation functions:
H+

2 AQ (solid), H+

2 QN (dashed) and D+

2 QN (dash-dotted).
The difference in the average nuclear separation between QN
and AQ H+

2 is 0.056(3) a0.

simulations (3D vs. 1D) is 0.0009383(2) Ha, which is
close to kBT ≈ 0.00095 Ha as expected due to the pres-
ence of the two rotational degrees of freedom in 3D.
Difference between the dissociation energies of adiabatic
electron and nuclear simulations, i.e. the zero-point vi-
brational energy, is 0.0064(2) Ha.

A Morse potential [55] fitted to the FDPP potential
curve is used in the evaluation of the spectroscopic con-
stants, see Table I. This is justified because the nuclear
simulations and analytical Morse wave function [57] cal-
culations coincide. The spectroscopic constants of H+

2

are close to those given in Ref. [54], which have been de-
termined at the equilibrium distance of the nuclei, only.
Same procedure is used for the spectroscopic constants
of the other isotope. In Table I the same constants evalu-
ated using the AQ instead of BO nuclear pair correlation
function are also shown.

C. Non-adiabatic ”all-quantum” dynamics

For H+
2 the total energy of AQ simulation with the

Trotter number M = 213 is −0.60159(3) Ha. The extrap-
olation procedure yields total energy −0.59872(3) Ha,
which is only 0.0016 Ha more binding than the value
−0.5971 Ha from VMC simulation [30]. The zero-point
energy obtained from simulations is De − D0

0 = 0.0074
Ha, see Table II. It should be pointed out that the error
due to the pseudopotential in the AQ total energy is only
about half of that found for the BO total energies.

Difference in dissociation energies of AQ and the 3D
QN H+

2 simulations is 0.00097 Ha, which is about kBT
revealing additional electronic energy degrees of freedom
in the first. AQ simulation for H+

2 gives for the average
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Table II: H+
2 energetics (atomic units). First three are BO and

the next three are non-adiabatic values. For high-accuracy
energetics see for example Ref. [14].

Method Etot De D0
0 R

HFa
−0.6026 0.1026 2.000

VMCb
−0.6026 0.1026 2.000

PIMCe
−0.6061(2) 0.1061(2) 0.0997(1) 2.0

VMCc
−0.5971 0.0971 2.064

MCDFTd
−0.581 0.081 2.08

PIMCe
−0.59872(3) 0.09872(3) 2.075(2)

aHartree–Fock [58]
bVMC, Born–Oppenheimer [54]
cVMC, non-adiabatic[30]
dMCDFT, non-adiabatic (SAO) [28]
eThis work

nuclear separation R = 2.075(2) a0, which is 0.056 a0

larger than that in the QN simulation. The AQ FWHM
of the nuclear pair correlation function is 0.5785(2) a0,
which shows a spreading of 0.040 a0 compared to the QN
results, see Fig. 3. With the Trotter number M = 213 we
find the AQ nuclear pair correlation function sufficiently
converged.

In Fig. 4 BO and AQ electron–nucleus pair correla-
tion functions are compared. AQ projection onto the
BO bond length, R = 2.0 a0, and BO results coincide,
which indicates that the adiabatic BO approach for the
electron dynamics is sufficient. Thus, it seems that the
electron–nuclei coupling effects are more clearly seen in
the dynamics of the nuclei, see Fig. 3. As one might ex-
pect, there is a noticeable difference between the AQ and
the BO electron–nucleus pair correlation functions due
to varying bond length, see Fig. 4.

The AQ average nuclear separation is close to the value
2.064 a0 obtained by a non-adiabatic VMC simulation
[30]. The AQ pair correlation function of the nuclei, see
Fig. 3, coincides with the SAO (Scaled Atomic Orbital)
one in Ref. [28] computed within the Multicomponent
Density Functional Theory (MCDFT) scheme, not shown
here.

All the spectroscopic constants in Table I are defined
using the derivatives from a fitted Morse potential, i.e.
BO potential energy surface. Thus, the ”AQ spectro-
scopic constants” should be interpreted mainly as the di-
rection of change in the values, except for Be. The expec-
tation values of the spectroscopic constants are obtained
by weighting the equations by the nuclear pair correlation
function from the corresponding simulation.

A projection of the AQ simulation to a potential curve
of the nuclei is constructed with the help of the known
solutions to the Morse potential. Distribution from the
Morse wave function is fitted to the pair correlation
function of the AQ simulation. The three-body sys-
tem is then presented by an effective two-body poten-
tial. The projected potential curve shows clear differ-

0.0 1.0 2.0 3.0 4.0 5.0 6.0
0.0

0.1

0.2
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0.5

r (a
0
)

g(
r)

Figure 4: (Color online) H+

2 electron–nucleus pair correlation
functions: AQ (solid, second lowest curve), AQ projection to
R ≈ 2.0 a0 (solid) and BO at R = 2.0 a0 (dashed). The
latter two almost coincide. Dashed vertical line indicates the
size of the pseudopotential core, r = 0.6 a0. For comparison
corresponding pair correlation functions for hydrogen atom
(dotted line) and H+

2 (dotted) obtained by using the analytical
ground state wave function of hydrogen atom are also shown.
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Figure 5: (Color online) H+

2 potential curves: Morse potential
fitted to FDPP (dashed) and the effective Morse potential ob-
tained from the projection of the AQ simulation (solid), see
the text for details. Corresponding nuclear pair correlation
functions are shown in Fig. 3. The shift in the bond length is
0.036 a0.

ences in the dynamics of the nuclei between BO and AQ
simulations, see Fig. 5. The minima of the potentials
are set to zero: the difference in the dissociation ener-
gies between BO and the AQ projection is about 0.036
Ha and the shift in the equilibrium distance is 0.036 a0.
The spectroscopic constants with the projected poten-
tial curve are Be = 29.26 cm−1, ωe = 2047.94 cm−1,
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Figure 6: (Color online) xy-plane (z-projection) snapshot
from AQ simulation with Trotter number 213 for all particles.
”Polymer ring” describing the electron is in the background
and those of the nuclei are placed on top.

ωexe = 78.12 cm−1 and αe = 2.110 cm−1. All this indi-
cates that an effective Morse potential is not capable of
describing non-adiabatic effects correctly.

Finally, it may be of interest to see a visualization of
the ”polymer rings” representing the quantum particles
in the PIMC simulation. So, Fig. 6 presents the xy-plane
(z-projection) snapshot from AQ simulation with Trot-
ter number 213 for all three particles. ”Polymer ring”
describing the electron is in the background and those of
the nuclei are placed on top.

IV. CONCLUSIONS

The three-body quantum system, hydrogen molecule
ion (H+

2 ), is revisited, once again. Path integral Monte
Carlo (PIMC) method is used for evaluation of the sta-
tionary state quantum dynamics. PIMC offers a finite
temperature approach together with a transparent tool to
describe the correlations between the particles involved.
We aim at tracing the electron–nuclei coupling effects
in the three-body all-quantum (AQ), i.e. non-adiabatic,
molecule. This is carried out by comparing the differ-

ences in adiabatic Born–Oppenheimer (BO) and AQ sim-
ulations, and inspecting the projections from the AQ sim-
ulation onto the BO description of the electron-only and
nuclear-only subsystems.

The approach turns out to be computationally de-
manding, but with the chosen pseudopotential for the at-
tractive Coulomb potential and extrapolation to infinite
Trotter number the task becomes feasible. By choosing
low enough temperature, 300 K, we are able to compare
our data to those from zero–Kelvin quantum methods
available in literature. Among others we have evaluated
spectroscopic constants and molecular deformation, also
considering the isotope effects.

With our fully basis set free, trial wave function free
and model free approach we are not able to compete in
accuracy with the zero–Kelvin benchmark values. How-
ever, due to the mixed state density matrix formalism
of PIMC we are able to present the most transparent
description of the particle–particle correlations.

Total energies from our simulations are more binding
in nature compared to the benchmark values, see Ta-
ble II. This is an expected effect of the pseudopotential
in use, see Fig. 2 and FDPP therein. Quantum dynamics
of the system is well described and distinct features of
coupling are observed for the nuclei: shift of 0.056 a0 in
the equilibrium bond length, increase of 0.040 a0 in the
width of the pair correlation function of the nuclei and
non-adiabatic correction of about 0.00097 Ha to dissoci-
ation energy. Electronic distribution is less influenced by
the coupling than the nuclear one upon the inclusion of
non-adiabatic effects, see Figs. 3 and 4.

Projection of the non-adiabatic three-body system
with the help of Morse wave functions onto two-body
nuclei-only subsystem indicates that Morse potential is
not capable of describing non-adiabatic effects correctly,
see Fig. 5.
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[6] M. Leino, I. Kylänpää, and T. T. Rantala, Surface Sci-

ence 601, 1246 (2007).
[7] M. E. Tuckerman, D. Marx, M. L. Klein, and M. Par-

rinello, Science 275, 817 (1997).
[8] B. N. Dickinson, J. Chem. Phys. 1, 317 (1933).
[9] J. N. Silverman, D. M. Bishop, and J. Pipin,

Phys. Rev. Lett. 56, 1358 (1986).
[10] L. Adamowicz and R. J. Bartlett, J. Chem. Phys. 84,



7

4988 (1986).
[11] H. W. Jones and B. Etemadi, Phys. Rev. A 47, 3430

(1993).
[12] J. H. Macek and S. Y. Ovchinnikov, Phys. Rev. A 49,

R4273 (1994).
[13] V. V. Serov, B. B. Joulakian, D. V. Pavlov, I. V. Puzynin,

and S. I. Vinitsky, Phys. Rev. A 65, 062708(7) (2002).
[14] V. I. Korobov, Phys. Rev. A 74, 052506 (2006).
[15] M. Vincke and D. Baye, J. Phys. B.: At. Mol. Opt. Phys.

18, 167 (1985).
[16] J. F. Babb and A. Dalgarno, Phys. Rev. Lett. 66, 880

(1991).
[17] K. T. Tang, J. P. Toennies, and C. L. Yiu, J. Chem. Phys.

94, 7266 (1991).
[18] U. Kappes and P. Schmelcher, Phys. Rev. A 53, 3869

(1996).
[19] A. Bouferguene, C. A. Weatherford, and H. W. Jones,

Phys. Rev. E 59, 2412 (1999).
[20] R. E. Moss, Phys. Rev. A 61, 040501(R) (2000).
[21] C. Amovilli and N. H. March, Int. J. Quantum Chem.

106, 533 (2006).
[22] A. K. Bhatia and R. J. Drachman, Phys. Rev. A 59, 205

(1999).
[23] J. M. Taylor, A. Dalgarno, and J. F. Babb, Phys. Rev. A

60, R2630 (1999).
[24] V. I. Korobov, Phys. Rev. A 63, 044501(3) (2001).
[25] R. E. Moss and L. Valenzano, Mol. Phys. 64, 649 (2002).
[26] Y. Ohta, J. Maki, H. Nagao, H. Kono, and Y. Fujimura,

Int. J. Quantum Chem. 91, 105 (2003).
[27] T. Kreibich and E. K. U. Gross, Phys. Rev. Lett. 86,

2984 (2001).
[28] T. Kreibich, R. van Leeuwen, and E. K. U. Gross, Multi-

component density-functional theory for electrons and nu-

clei (2006), URL http://www.citebase.org/abstract?

id=oai:arXiv.org:cond-mat/0609697.
[29] C. A. Traynor, J. B. Anderson, and B. M. Boghosian, J.

Chem. Phys. 94, 3657 (1991).
[30] D. Bressanini, M. Mella, and G. Morosi,

Chem. Phys. Lett. 272, 370 (1997).
[31] X.-P. Li and J. Q. Broughton, J. Chem. Phys 86, 5094

(1987).
[32] L. Knoll and D. Marx, Europ. Phys J. D 10, 353 (2000).
[33] M. P. Surh, K. J. Runge, T. W. Barbee, E. L. Pollock,

and C. Mailhiot, Phys. Rev. B 55, 11330(12) (1997).
[34] M. C. Gordillo, Phys. Rev. B 60, 6790 (1999).
[35] M. C. Gordillo and D. M. Ceperley, Phys. Rev. B 65,

174527 (2002).

[36] M. Boninsegni, Phys. Rev. B 70, 125405 (2004).
[37] J. E. Cuervo and P.-N. Roy, J. Chem. Phys. 125, 124314

(2006).
[38] F. F. Abraham and J. Q. Broughton, Phys. Rev. Lett.

59, 64 (1987).
[39] D. M. Ceperley, Rev. Mod. Phys 67, 279 (1995).
[40] M. Pierce and E. Manousakis, Phys. Rev. Lett. 81, 156

(1998).
[41] M. Pierce and E. Manousakis, Phys. Rev. B 59, 3802

(1999).
[42] Y. Kwon and K. B. Whaley, Phys. Rev. Lett. 83, 4108(4)

(1999).
[43] H. Kleinert, Path Integrals in Quantum Mechanics,

Statistics, Polymer Physics, and Financial Markets

(World Scientific Publishing Co. Pte. Ltd, Singapore,
2004), 3rd Edition.

[44] E. L. Pollock and D. M. Ceperley, Phys. Rev. B 36, 8343
(1987).

[45] R. P. Feynman, Statistical Mechanics (Perseus Books,
1998).

[46] D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).
[47] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,

A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087
(1953).

[48] C. Chakravarty, M. C. Gordillo, and D. M. Ceperley, J.
Chem. Phys. 109, 2123 (1998).

[49] M. F. Herman, E. J. Bruskin, and B. J. Berne,
J. Chem. Phys. 76, 5150 (1982).

[50] J. M. Thijssen, Computational Physics (Cambridge,
2000).

[51] S. D. Ivanov, A. P. Lyubartsev, and A. Laaksonen, Phys.
Rev. E 67, 066710 (2003).

[52] A. Dal Corso, A. Pasquarello, A. Baldereschi, and R. Car,
Phys. Rev. B 53, 1180 (1996).
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