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Abstract. The path-integral Monte Carlo simulation method is used to examine
one and two electrons in a system of two coupled disc-like quantum dots (QD) in
a zero magnetic field. With this approach we are able to evaluate the one-electron
distributions and two-electron correlation functions, and finite temperature
effects on both. Increase of temperature broadens the distributions as expected,
the effect being smaller for correlated electrons than for single ones. The simu-
lated one- and two-particle distributions of a single and two coupled quan-
tum dots are also compared to those from other theoretical methods. For the
one-particle distributions we find a good agreement with those from the DFT
approach. The effect of the third dimension or the thickness of the almost two-
dimensional disc-like QDs is small for the one-particle distributions, but it is
clearly seen in the electron-electron correlation or the two-particle distribution
function at low temperatures. The mutual Coulomb energy of the two electrons is
found to be temperature-independent, and also, independent of the correlation
effects on the dynamics. Computational capacity is found to become the limiting
factor in simulations with increasing accuracy or increasing number of particles,
and in case of fermions in particular. This and other aspects of PIMC and its
capability for this type of calculations are also discussed.

1 Introduction

Special features of the electronic structure of small quantum-confined systems has
drawn much attention during the last years. This is largely a consequence of de-
velopments in semiconductor technology, where it has become possible to devise
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nanometer scale confinement in one, two or three dimensions [1–4]. Confinement
in three dimensions leads to smallest systems, quantum dots (QD), containing pos-
sibly only a few charge carriers. The electronic structure of a few-electron system
is subject to strong many-body effects, and therefore makes a distinctive challenge
to the conventional density-functional (DFT) approach, the standard formalism of
theoretical solid-state and semiconductor physics. Emanation of the finite-tempera-
ture effects is another challenge beyond the standard approaches.

Quantum Monte Carlo methods offer a possibility to treat the many-body cor-
relations exactly with an accuracy depending on the available computing power
only. On the other hand, the path-integral formalism of quantum statistics allows
one to include finite temperature using a description with mixed states. The com-
bination of these two, the path-integral Monte Carlo (PIMC) approach, permits
inspection of the interplay of both, i.e., the temperature effects in many-body cor-
relations. Earlier, we have used this approach to study two electrons in a strongly
confining model QD [5]. Mixed state densities, energies and pair correlation func-
tions and their temperature dependencies were evaluated. We also showed how
pure states can be searched using the density matrices from several different tem-
peratures. In this paper we report a PIMC study of a system consisting of two
coupled QDs, a system which has also been studied experimentally [4].

As QDs are sometimes called artificial atoms, the coupled QDs have been con-
sidered as molecules with delocalized electronic states. The electronic properties of
single and coupled QDs created with layer-by-layer semiconductor growth can be
selected with some freedom by tailoring the shape of a lateral confining potential
and the range of vertical confinement [4]. The grown QDs are usually confined
vertically in nanometer scale, but laterally in a one to two orders of magnitude
larger range. Such dots can be approximately treated as two-dimensional disk-like
electronic systems [6]. The ‘‘dimensionality effect’’ or separability of such systems
to one- and two-dimensional subsystems is still considered to be an open question.
Thus, the effect of a small but finite vertical extension on the QD structure is worth
studying [4, 6].

We restrict our present study to systems with one or two electrons, only. By
separating the vertical and lateral electronic wave functions the single electron case
can be treated analytically. It then serves as a reference case to study the dimen-
sionality effect or separability in the two-electron system. On the other hand, the
two-electron system is also the simplest system to study the correlations and its
dependence on temperature. With the two-electron system we do not involve the
exchange interaction by restricting ourselves to two ‘‘spinless electrons’’ only.

The two-electron system is one of the simplest non-trivial quantum mechanical
systems. Nevertheless, some analytical results exist for two electrons in a symmet-
rical enough quantum dot. Taut [7] reduced the problem of solving a six-dimen-
sional partial differential equation to finding the real roots of a polynomial, and
thus gave analytic solutions to particular oscillator frequencies of two interacting
electrons in an external harmonic oscillator potential. Dineykhan and Nazmitdinov
[8] found analytical expressions for the ground-state energy for 2D and 3D har-
monic oscillators in an external magnetic field.

In addition to analytical results, there are a number of numerical results for
(harmonic) two-electron quantum dots. A numerically exact calculation for the
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energy spectra of two electrons in a finite-height cylindrical quantum dot by a
coupled-channel method is presented in details by Lin and Jiang [9]. Harju et al.
[10] studied the ground state of parabolically confined electrons in a quantum dot
by both direct numerical diagonalization and variational quantum Monte Carlo
methods. In an older paper Harju et al. [11] applied the quantum Monte Carlo
technique to a two-electron quantum dot. Merkt, Huser, and Wagner [12] have
calculated the discrete energy spectra for two electrons in a two-dimensional har-
monic well in the effective-mass approximation as a function of the dot size and
the strength of a magnetic field directed perpendicular to the dot plane using the
first-order perturbation theory. Furthermore, the states of two-electron paired quan-
tum-well quantum dots [13, 14] were calculated with diagonalization and the
variational principle. A spin-exchange coupling J between two electrons in tunnel-
coupled quantum dots is determined by Burkard et al. [15] by the Heitler-London
and Hund-Mulliken techniques.

The ground-state behavior of a 3D quantum dot with square well in z-dimen-
sion is studied by Lee et al. [16]. The coupled quantum dots are studied by Partoens
and Peeters [17] and Pi et al. [4] within the spin-density functional theory. The
latter one serves as reference approach to ours as the studied system is similar.
Wensauer et al. [18] present ground-state calculations for laterally coupled quan-
tum dots containing two, four and eight electrons using the spin-density functional
theory. Pi et al. [19] investigate computationally and experimentally the dissocia-
tion of few-electron circular vertical-semiconductor double-quantum-dot artificial
molecules at 0 K as a function of the interdot distance. Excited-state properties of
vertically coupled double quantum dots are studied by Imamura et al. [20] by exact
diagonalization. Tanaka and Akera [21] calculated the exact many-body eigen-
states in a quantum dot formed in double-barrier heterostructures, and they studied
coherent transport through the states.

More complicated quantum dots have been studied by many methods: pertur-
bation theory [22], numerical diagonalization [23], density-functional theory [24,
25], unrestricted Hartree-Fock [26], diffusion Monte Carlo [27] and path-integral
Monte Carlo [3, 28–31] methods. In these studies the electronic structure, addition
spectra, electronic states, Fermi liquid and Wigner molecule behaviour, ground and
excited state energies, shell effects, electron correlations and low-energy states
were examined.

The next section briefly presents the PIMC method and details of our simula-
tion procedure. In Sect. 3 we describe the two-coupled-dots system that we are
interested in, with the relevant analytical one-particle distributions and energetics.
The two last sections report the simulation results and our conclusions for the two-
electron system.

2 Method

2.1 Path-Integral Monte Carlo Method

All stationary properties of a quantum many-body system with Hamiltonian bHH
in thermal equilibrium are obtained from the density matrix [32] �̂� ¼ expð��bHHÞ
as expectation values hbAAi ¼ Z�1 Trð�̂�bAAÞ, where � � ðkBTÞ�1

is the inverse tem-
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perature, bAA is the operator of the property in question and Z ¼ Trð�̂�Þ is the parti-
tion function.

In the position representation the density matrix �̂� reads as

�ðR;R0;�Þ ¼ hRjexpð��bHHÞjR0i; ð1Þ
where R ¼ ðr1; r2; . . . ; rNÞ are the coordinates of the N particles. Thus, the one-
particle distribution is

�ðrÞ ¼
ð
�ðR;R;�Þ dr2 dr3 � � � drN

��
r1¼r

¼
ð
�ðr� r1Þ�ðR;R; �Þ dR ð2Þ

and the simple 1D pair-correlation function for two particles is

gðrÞ ¼
ð
�ðr � jr1 � r2jÞ�ðR;R; �Þ dR; ð3Þ

assuming normalization of the density byð
�ðR;R;�Þ dR ¼ 1: ð4Þ

The path-integral representation of the density matrix discretized in the primi-
tive approximation [33] is a multidimensional integral [34, 35], which turns out to
be a partition function of one specific classical many-particle canonical ensemble
or NVT-system with

Z ¼ NZ

ð
exp

�
� �

XM
n¼1

ðKn þ UnÞ
�
dr1 � � � drM; ð5Þ

where the normalization constant NZ ¼ ðmM=ð2��h2�ÞÞdN=2
and internal and exter-

nal energies of the system are described by Kn and Un, respectively. They are
written as

Kn ¼
mM

2�h2�2
ðrn�1 � rnÞ2; ð6Þ

Un ¼
1

2M
ðVðrn�1Þ þ VðrnÞÞ; ð7Þ

and VðrÞ is a local external potential, and we require periodic boundary conditions
in imaginary time � , i.e., all paths have to be closed, and thus, r0 ¼ rM. The
primitive approximation is exact at the limit � ¼ �=M ! 0, and thus it will con-
verge to the correct description, given small enough � . Furthermore, it ‘‘contains
all the physics’’ and it is simple and well defined [33].

This specific classical system consists of N closed chains or ‘‘polymers’’ or
‘‘necklaces’’ of M knots or ‘‘beads’’ with a certain special description of interac-
tions among the N particles and between the external potential. The Trotter number
M is the degree of discretization. This is the famous mapping from a quantum
system to a classical system [33].

The quantum kinetic energy part corresponds to a classical spring potential
connecting neighbouring beads representing the same particle. The interbead
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potential (spring constant) depends on both M and � ¼ 1=kBT . It is easier to obtain
a good approximation to the high-temperature density matrix with respect to M,
since the high-temperature behavior is more classical-like [36]. The lower the
temperature, the more beads on the necklace are needed for the proper quantum
description. We will demonstrate this below.

In summary, the description of a finite-temperature quantum statistical system
is reduced to that of one specific classical NVT-system. For simulation of this there
is the powerful Metropolis Monte Carlo (MMC) algorithm [37]. Thus, PIMC is a
combined path-integral formalism and MMC, that has shown to be a powerful
computational technique, capable of simulating boson systems exactly and fer-
mions accurately [36]. Furthermore, with this technique all the approximations
are controllable.

It is straightforward to calculate scalar operators, such as density, the potential
energy, and the pair correlation functions as they are simply averages over the paths
[33]. Use can be made of the symmetry in imaginary time, since all time slices are
equivalent. Thus, the average density is

�ðrÞ ¼ N�

X
n;i;t

h�ðr� rnitÞi ð8Þ

where n refers to different beads of particles, i and t to MMC steps. This can be
evaluated directly during the stationary simulation process. Similarly, data for the
3D pair correlation function

gðrÞ ¼ Ng

X
n;i 6¼j;t

h�ðr� ðrnit � rnjtÞi ð9Þ

can be collected from the MMC path.
The nondiagonal properties in coordinate basis, such as the energy, the free

energy, and the momentum distribution, are not so straightforward to calculate. The
thermodynamic estimator of the energy is obtained by differentiating the partition
function with respect to the inverse temperature [33]

ET ¼ � 1

Z

dZ

d�
¼ MhdN=ð2�Þ � Kn þ Vn=Mi: ð10Þ

So, the path-integral Monte Carlo simulation method is a formally exact finite-
temperature approach, where the only limiting factor is the computational capacity
needed for evaluation of the density matrix �ðR;R0;�Þ with large enough Trotter
number M.

2.2 Simulation Procedure and Parameters

We run Metropolis Monte Carlo in its standard form, only searching for the effec-
tive algorithm for random sampling of the configuration space.

In the simplest choice for the transition probability, the classic rule, a single
particle at a single time slice is displaced uniformly inside a cube of side length D,
adjusted to achieve 50% acceptance rate. This is inefficient at very large particle
numbers: Interactions prevent sizeable displacements of a single particle [38]. As
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the main issue is whether the configuration space is explored thoroughly in a rea-
sonable amount of computing time obeying the principle of detailed balance, we do
the following.

We include many types of moves, which makes the algorithm more robust. We
separate the steps in the xy-plane and z-direction. We have two types of steps, one
for a randomly selected bead in one random necklace and another for the centre of
mass of the necklace. We use the classic rule such that the acceptance frequency of
each move is about the same. The step lengths vary from 0.5 to 9 nm in both the z-
direction and the xy-plane for one bead and for the centre of mass from 0.05 to
3 nm in the z-direction and from 10 to 50 nm in the xy-plane.

We choose the Trotter numbers in powers of 2. Using small Trotter numbers,
the stationary state can be achieved more easily. Therefore, we found it useful
to take the initial configuration for the case M ¼ 2n from the M ¼ 2n�1 case by
doubling the number of beads: inserting one more between the existing ones. The
above choice of moves prevents us using too large Trotter numbers (larger than 211)
because the configuration space should be explored thoroughly in a reasonable
amount of computer time.

To check out the choice of parameters and the numerical scheme we have
carried out extensive and systematic tests.

3 Two Coupled Quantum Dots

3.1 Structure Parameters

The system of two vertically coupled QDs is taken from Pi et al. [4]. They have
considered it experimentally and realized by semiconductor technology as a
layered circular mesa with two axially symmetric GaAs QDs with electrodes to
control the number of trapped electrons. Thus, the vertical confining potential
consists of two quantum wells of depth 300 meV and width of W¼ 12 nm and a
barrier in between of width b¼ 2.4 nm. The potential profile is shown in Figs. 1
and 2, below.

In this two-electron problem the exact Hamiltonian reduces to the centre of
mass (CM) and the relative motion [6]. The CM solutions are known analytically,
but the relative motion must be determined numerically.

The two-dimensional lateral confinement is approximated by a harmonic poten-
tial assuming circular symmetry and ‘‘strength’’ �h! ¼ 5 meV. Thus, the system
consists of two disc-like QDs axially on top of each other, with the disc diameter an
order of magnitude larger than the disc thickness.

Assuming GaAs material parameters throughout the structure, we use the elec-
tron effective mass m? ¼ 0:067� free electron mass and the dielectric constant
� ¼ 12:4 everywhere.

3.2 Analytical Distribution Functions

The three-dimensional wavefunction and distributions of a single electron are sep-
arable to three one-dimensional contributions in this geometry. In the present case,
however, we find it more representative to project out the one-dimensional vertical
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and the two-dimensional lateral contributions. Thus, we define the projected one-
particle densities

�zðzÞ ¼
ð
�ðrÞ dx dy ð11Þ

and

�xyðrxyÞ ¼
ð
�ðrÞ dz; ð12Þ

where r2 ¼ r2
xy þ z2 ¼ x2 þ y2 þ z2. Similarly we define for the pair correlation

functions

gzðzÞ ¼
ð
�ðz� jz1 � z2jÞ�ðR;R;�Þ dR ð13Þ

and

gxyðrxyÞ ¼
ð
�ðrxy � jr1xy � r2xyjÞ�ðR;R; �Þ dR: ð14Þ

These can be readily evaluated from the analytical one-electron distributions
for a single electron (or two noninteracting electrons) in our coupled QD model.
The vertical unnormalized wave function for the symmetrical double quantum well
is [39]

uðzÞ ¼
cosh kz or sinh kz; for 0< z< b=2;
A sin qzþ B cos qz; for b=2< z< b=2 þW ;
Ce�kz; for z> b=2 þW ;

8<
: ð15Þ

where k2 ¼ jEzj=�, q2 ¼ ðV � jEzjÞ=�, � ¼ �h2=2m?, Ez is the (quantized) eigen-
energy and the constants A, B, and C are chosen to make the wave function and its
derivative continuous. The functions coshðkzÞ and sinhðkzÞ are the even and odd
parity solutions, respectively, implying an obvious behavior of uðzÞ at z< 0, not
written in Eq. (15), explicitly.

The finite-temperature density matrix can be written now as

�ðz; z0; �Þ ¼ Nð�Þ
X
i

u�i ðzÞuiðz0Þ exp½��Eiz�; ð16Þ

where at low temperatures we can restrict to the sum over a finite number of lowest
quantum states and Nð�Þ ¼

�P
i exp½��Eiz�

��1
. Similarly the energy expectation

value is obtained from

hEzi ¼
X
i

Eiz exp½��Eiz�; ð17Þ

which should be evaluated numerically as the eigenenergies are solved from impli-
cit equations.

Note that there is only a finite number of bound states in the potential well of
finite depth V , over which the summing is carried out. Omission of the continuum
states introduces an error, which is, however, negligible at such low temperatures
considered here.
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In the horizontal plane the case is a simple two-dimensional harmonic oscilla-
tor, found in good text books of quantum mechanics. The two-dimensional one-
electron finite-temperature electron distribution is

�xyðrxy; r0xyÞ / exp

�
�m!

2�h sinhð�h!�Þ � ððr2
xy þ r02xyÞ cosh �h!� � 2r0xy � rxyÞ

�
ð18Þ

and the energetics can be summed up, giving

hExyi ¼ 2
�h!

2
coth

�h!�

2
: ð19Þ

While the level spacing in the vertical quantum problem is about 50 meV, in the
horizontal harmonic oscillator it is 5 meV with the degeneracy increasing linearly

Fig. 1. Analytical vertical (z) one-particle distribution functions at different temperatures in the

confining potential of 300 meV. The probability distributions �ðzÞ are in arbitrary units but normal-

ized to the same constant. The shown distributions are 10 K (solid) and 300 K (dotted)

Fig. 2. Analytical horizontal (xy) one-particle distribution functions at different temperatures and

the confining potential with �h! ¼ 5 meV (� 30 meV at 50 nm). The two-dimensional integrals (with

a weight 4�r2) of shown distributions are normalized to the same constant. The distributions are

from 10 K (solid), 30 K (dashed), 100 K (dash-dotted), and 300 K (dotted)
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in energy. The separable energy contributions from the z confinement and xy har-
monic potential simply add up.

The vertical and horizontal confining potentials and distributions are shown in
Figs. 1 and 2, respectively. The confinement is seen to be one to two orders of
magnitudes stronger in the vertical direction, resulting in essential differences in
the temperature response of the one-particle density.

In Fig. 1 it is seen that only at 300 K a small shift of the density away from the
centre barrier takes place, resulting in a decrease of tunneling there. This is prob-
ably a contribution from the continuum states. Fig. 2, on the contrary, shows the
strong temperature broadening, as expected.

Like the energies, the densities of separable dimension simply ‘‘add up’’, too.
From these one-particle densities we have calculated the pair correlation functions
of the two noninteracting electrons, to be used as a reference in search of the two-
electron correlation effects, later. The two-noninteracting-electron pair correlation
function is a simple convolution-like distribution.

4 Simulation Results

4.1 Single Electron Distributions and Energies

Simulations with large enough Trotter numbers accurately reproduce the analytical
one-particle distributions of the single-electron system (or two noninteracting elec-
trons) shown in Figs. 1 and 2 both as vertical (z) and lateral (xy) projections of the
three-dimensional distribution, respectively. Due to the limited computing capacity
we were able to verify this at higher temperatures, T � 10 K, only.

The analytical temperature-dependent energies are easily obtained from Eqs. (17)
and (19). The 2D harmonic oscillator energy raises from the zero-Kelvin quantum
limit 5 meV to about 18 and 52 meV at 100 and 300 K, respectively. The corre-
sponding energies for the 1D ‘‘vertical’’ double QD are about 24, 25, and 30 meV,
in the same order. Whereas the contributions from the kinetic and potential ener-
gies are equal in case of the harmonic oscillator, the 1D ‘‘vertical potential energy’’
is about 6 meV at all temperatures. The sum of the 1D and 2D contributions yields
the total energies 29, 43, and 82 meV, for the zero-Kelvin quantum limit, 100 and
300 K, respectively.

At lower temperatures higher Trotter numbers are required to reach the quan-
tum statistical limit. Below this limit the correct quantum statistical behavior is not
found, but classical-like features emerge. For example, discontinuous distribu-
tions at potential discontinuities are seen. On the other hand, this can be used to
demonstrate the classical-to-quantum transition, see Fig. 3, where for the lowest
temperature T ¼ 3 K the Trotter number M ¼ 2048 is clearly too small, or corre-
spondingly, � ¼ �=M is too large.

Discontinuities in classical distributions emerge, of course, in cases of discontin-
uous confining potentials only. These are more critical at the quantum limit and more
different from the classical system, too. Thus, in our case in the horizontal harmonic
potential the quantum limit is reached already with smaller Trotter numbers.

We should note that these distributions are essentially the same as those of Pi
et al. [4] for the similar system. In their DFT study the number of electrons
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occupying the QDs was not found to essentially effect on the one-electron distribu-
tions, and our results for the two-electron case, below, support this general con-
clusion. However, there are small effects from electron-electron correlations, which
we will analyze in what follows.

4.2 Two Interacting Electrons

Let us consider the system of two correlated electrons next and start by comparing
the ‘‘correlated’’ one-electron distributions to the uncorrelated ones, i.e., to the
single-electron distributions shown in Figs. 1 and 2. As the distributions are rather
similar, we show the differences of those only in Figs. 4 and 5, respectively.

In both cases we see two expected main features. First, turning on electron-
electron repulsion decreases the density where it is high, by shifting it to the less

Fig. 3. Projected one-particle

distribution functions in vertical

(z) direction from simulations of

a single electron with ðkB�Þ�1 ¼
ðT�MÞ ¼ 3 K�2048¼6144 K,

10 K � 2048¼ 20480 K, and

30 K � 2048¼ 61440 K. The

distributions are from 3 K (so-

lid), 10 K (dashed), 30 (dash-

dotted)

Fig. 4. Difference of the vertical (z) one-particle distribution function between the ‘‘correlated’’ two-

electron and single-electron case. Thus, the two-electron distribution is a sum of the contributions

given in Fig. 1 and this one. Note the different scaling of vertical axes in these figures. The notation

for different temperatures is the same as in Fig. 1
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occupied regions of space. Secondly, the correlation effects are the larger the lower
the temperature is.

In Fig. 4 the fine scaling zooms in the small discontinuities, which are visible at
lower temperatures only, revealing that even larger Trotter numbers should be used
to reach the quantum description limit more accurately. Fig. 5 shows that correla-
tion effects are negligible in the horizontal distribution at the two highest tempera-
tures, but essential at the two lower ones.

In Figs. 6 and 7 the two relevant projections of the pair correlation function in
our case are shown, whereas Fig. 8 presents the conventional radial pair correlation
function, good in characterizing isotropic systems. Clearly the vertical and radial
functions reflect the same feature natural for a double QD: The electron correlation
from repulsive interaction favors the case of one electron in each QD. This effect is
stronger at the two lowest temperatures, as is seen in Fig. 6.

Fig. 5. Difference of the horizontal (xy) one-particle distribution function between the ‘‘correlated’’

two-electron and single-electron case. Again, the two-electron distribution is a sum of the contribu-

tions given in Fig. 2 and this one. The notation for different temperatures is the same as in Fig. 2

Fig. 6. Projected vertical (z) pair correlation function at various temperatures. The notation for

different temperatures is the same as in Fig. 4
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The dimensionality effect or separability of the three-dimensional system to the
one- and two-dimensional subsystems can now be considered. The main question
is: Does the small but finite vertical extension (z) have an essential effect on the
electronic structure in the lateral (xy) plane [4, 6]? For the one-particle distribution
the answer is obviously ‘‘no’’, because the one-particle distributions of the two-
electron case and the single-electron case do not essentially differ and the latter is
analytically separable to three dimensions. However, for the detailed two-electron
distribution the answer is different as indicated by the low-temperature pair corre-
lation functions. Clearly, at low temperatures where the electrons occupy the centre
of the disc, see Figs. 7 and 6, the third dimension allows more freedom for this for
both of the electrons simultaneously. However, the increase of temperature allows
an occupation of the lateral space further away, which seems to cover the quantum
and correlation effects.

Fig. 7. Projected horizontal (xy) pair correlation function at various temperatures. The notation for

different temperatures is the same as in Fig. 4

Fig. 8. (Radial) pair correlation function at various temperatures. The notation for different tem-

peratures is the same as in Figs. 6 and 7
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The same conclusions can be drawn from the correlation holes shown in
Figs. 9 and 10. Here, the case is even more clear: At temperatures 100 and 300 K
the presence of the second electron does not essentially effect on the dynamics of
the first one. At lower temperatures 10 and 30 K, however, a more conventional
correlation hole is seen, both vertically and laterally.

Fig. 9. Projected vertical (z) correlation hole at various temperatures

Fig. 10. Projected horizontal (xy) correlation hole at various temperatures

Table 1. Energetics of the two interacting electrons in the double quantum dot

given per one electron. Uncertainty for the potential energy Vpot and mutual

interaction energy Vee are at least 5 and 0.5 meV, respectively

T [K] Vpot [meV] Vee [meV]

3 15 2

10 15 2

30 10 2

100 15 2

300 30 1
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Though we were able to reach a sufficient convergence for the distributions,
regarding the energetics we are able to give rough estimates for some contributions
only. These are presented in Table 1. The computational capacity gets a limitation,
at lower temperatures in particular. Within the statistics, we are not able to find
differences in the external potential energies of one of the interacting electrons
and a single electron (or one of the two noninteracting ones). In both cases this
potential-energy contribution grows from the zero-Kelvin quantum limit of about
15 meV to about 30 meV at 300 K, in fair agreement with the analytical single-
electron case, where the total energies are 29 and 82 eV. The mutual Coulomb
(repulsion) energy of the two electrons is about 1–2.5 meV, see Table 1. Sur-
prisingly, only a small difference is found for two interacting electrons and two
noninteracting ones, the latter one evaluated from the simulated noninteracting
electron ‘‘dynamics’’. We are not able to obtain estimates for kinetic energies, the
main reason being the discontinuous external potential function.

Fig. 11. Single QD case: Projected vertical (z) correlation hole

Fig. 12. Single QD case: Projected horizontal (xy) correlation hole
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Finally, just for comparison, we consider the case of two electrons in a single
QD, one of those coupled ones considered above. The projected correlation holes
for this case are shown in Figs. 11 and 12 to be compared with Figs. 9 and 10. The
stronger confinement in the vertical direction is seen directly in the vertical projec-
tion and indirectly in the horizontal projection. In the horizontal correlation this
implies the temperature dependence even at higher temperatures. This is expected
as there is less spatial freedom for electrons to occupy, unless thermally activated
to higher quantum states.

5 Conclusions

We have shown that path-integral Monte Carlo (PIMC) simulations can be success-
fully carried out for one and two correlated electrons in a model quantum dot (QD).
The case of ‘‘spinless electrons’’ of the two is considered only, and no magnetic
field is applied in the studies reported here, either. We have considered disc-like,
almost two-dimensional ‘‘harmonic confinement QDs’’. The main interest is in two
QDs on top of each other and coupled through a narrow barrier, but a single one is
considered for comparison.

The simulated one-particle distributions are very similar to those from the DFT
calculations for the same system. With PIMC we find that the one-particle distri-
butions for a single electron and for two electrons are almost identical in all cases
independent of the temperature. Increase of temperature just broadens the distribu-
tions as expected, the effect being slightly smaller for correlated electrons than for
the single one.

The Coulomb correlation of the two electrons is analyzed in terms of pair
correlation functions and correlation holes. The perpendicular to the discs (vertical)
and horizontal contributions are projected out from the fully 3D functions. This
allows us to analyze the semiconductor dimensionality effect: Is the third dimen-
sion or the thickness of the almost two-dimensional disc-like QD essential for the
horizontal distribution in the disc plane? The one-particle distributions are trivially
separable to the vertical and horizontal contributions, but this turns out not to be the
case for the two-particle distributions.

Generally, the correlations become more important at lower temperatures (10
and 30 K). At higher temperatures (100 and 300 K) the thermal broadening in the
mixed quantum state description screens the correlation effect efficiently. For this
reason, also the finite thickness of the QD disc is essential at the lower tempera-
tures only, and also for the two-particle distribution only.

Evaluation of accurate energies takes more computational capacity than there is
available today. This is true for the low-temperature quantum statistics in particu-
lar. Therefore, we are able to give rough estimates for some of the energy con-
tributions only. We are able to predict that in case of our double QD structure the
external potential energy is not strongly dependent on the temperature or correla-
tion effects. Similarly, the mutual Coulomb energy seems to be constant throughout
the various conditions of our system that we have considered.

We find that computational capacity becomes the limiting factor in simulations
with increasing accuracy or with an increasing number of particles. In particular,
this is true for fermion systems.
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