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First-principles simulation of molecular dissociation–recombination
equilibrium
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For the first time, the equilibrium composition of chemical dissociation–recombination reaction
is simulated from first-principles, only. Furthermore, beyond the conventional ab initio Born–
Oppenheimer quantum chemistry the effects from the thermal and quantum equilibrium dynamics
of nuclei are consistently included, as well as, the nonadiabatic coupling between the electrons and
the nuclei. This has been accomplished by the path integral Monte Carlo simulations for full NV T

quantum statistics of the H+
3 ion. The molecular total energy, partition function, free energy, en-

tropy, and heat capacity are evaluated in a large temperature range: from below room temperature to
temperatures relevant for planetary atmospheric physics. Temperature and density dependent reac-
tion balance of the molecular ion and its fragments above 4000 K is presented, and also the density
dependence of thermal ionization above 10 000 K is demonstrated. © 2011 American Institute of
Physics. [doi:10.1063/1.3633516]

I. INTRODUCTION

The H+
3 molecular ion has been the subject of a number

of theoretical and experimental studies since its first experi-
mental detection.1 Because of its rapid formation through the
exothermic reaction (�E ≈ −1.7 eV),

H2 + H+
2 → H+

3 + H, (1)

the H+
3 ion is expected in any active environment containing

molecular hydrogen,2 and thus, it is encountered, e.g., in hy-
drogen plasma and in the atmosphere of giant planets.3, 4 This
smallest polyatomic molecule dissociates to several fragments
in a temperature and density dependent manner. It is a five-
particle system, and therefore, small enough to allow related
simulations based on first-principles, only.

In planetary atmospheric physics, importance of the H+
3

ion lies in its capability to act as a cooling agent via infrared
radiation.5–7 The atmospheric models taking into account this
cooling are commonly based on the high temperature molecu-
lar partition function of the H+

3 ion.2 Conventional evaluation
of the partition function faces, however, a few challenges of
which the first one is finding a good approximation to the in-
finite summation over all rovibrational quantum states with
accurate enough energies.2 This has usually been worked out
with the calculations of a finite number of states from, e.g., a
semi-empirical potential energy surface.8

The next challenge comes with the changing geome-
try of the H+

3 ion at finite temperature. The rovibrational
model needs to be extended for calculations of correct ener-
getics for the emerging linear geometry of the weakly bound
molecule.5

Finally, as pointed out above, at finite temperatures the
molecule may also dissociate to its fragments, and in fact, the

a)Electronic mail: ilkka.kylanpaa@tut.fi.
b)Electronic mail: tapio.rantala@tut.fi.

equilibrium reaction

H+
3 ↔ H2 + p+

↔ H+
2 + H

↔ 2H + p+

↔ H + 2p+ + e−

↔ 3p+ + 2e−, (2)

needs to be considered, the balance depending strongly on
both the temperature and the density of H+

3 ions.
This brings forth two questions, at the least. First, how

relevant it is to consider the molecular energetics and related
partition function at temperatures where the molecule has dis-
sociated and appears in form of fragments of the equilibrium
reaction, Eq. (2), only. Second, the balance of the equilib-
rium reaction may be strongly affected, not only by the den-
sity, but also by the environment including the neutralizing
negative counterparts of the positive H+

3 . Thus, the thermal
dissociation–recombination balance above dissociation tem-
perature gives rise to problems, which have yet not been taken
into account in this context.

To start with we first define the molecular partition func-
tion (and other molecular quantities) as the one of the system
of particles that constitute the molecule. Thus, the low tem-
perature limit gives us, in practice, the conventional textbook
molecular partition function. However, this generalization al-
lows us to extend the concept of molecular partition function
(and the other molecular quantities) seamlessly to higher tem-
peratures, where the molecule may dissociate and recombine
in density and temperature dependent balance.

Similar definition of the molecule as a five-particle sys-
tem allows us to carry out simulations of the full quan-
tum statistics of the H+

3 ion, now described by Eq. (2), at
low densities and temperatures ranging from 160 K up to
about 15 000 K using the path integral quantum Monte Carlo
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(PIMC) method. PIMC is the method to meet the above chal-
lenges: we need not make any approximations or restrictions
in the summing over states, geometries, or quantum effects
in equilibrium dynamics. The finite temperature is inherent in
the PIMC approach and the Coulomb many-body treatment of
the particle–particle interactions is exact. The PIMC method
is computationally expensive, but feasible for small enough
systems.9–14

The conventional quantum chemical ab initio description
of the H+

3 ion emerges as the zero Kelvin extrapolate from the
PIMC simulations as we have shown earlier.15 There, we eval-
uated the differences between three models for the description
of the nuclear dynamics: the Born–Oppenheimer approxima-
tion, nuclei in thermal motion and nuclei in both thermal and
quantum dynamics. At low temperatures the necessity of the
fully quantum mechanical approach for all five particles was
established.

In Sec. II, we present the essential details of the Feynman
path integral quantum statistical approach, numerical simula-
tion method, and the model of the H+

3 ion. In Sec. III, we
present and analyze the energetics, partition function, and
other thermodynamic functions of the system fitting to analyt-
ical forms where pertinent. In the last section the conclusions
are given.

II. METHOD AND MODELS

According to the Feynman path integral formulation of
the quantum statistical mechanics16 the partition function
of interacting distinguishable particles is given by the trace
of the density matrix ρ̂(β) = e−βĤ as

Z = Trρ̂(β) =
∫

dR0dR1 . . . dRM−1

M−1∏
i=0

e−S(Ri,Ri+1;τ ),

(3)
where the action S(Ri, Ri+1; τ ) is taken over the path Ri

→ Ri+1 in imaginary time τ = β/M , where β = 1/kBT and
M is called the Trotter number. The trace implies a closed
path (RM = R0).

For simulation, we use the pair approximation in the
action9, 17 for the Coulomb interaction of charges. This is ex-
act in the limit M → ∞, but chemical accuracy is reached
with sufficiently large M , i.e., small enough τ . Sampling in
the configuration space {Ri} in NV T ensemble is carried out
using the Metropolis algorithm18 with bisection and displace-
ment moves.19 The total energy is calculated using the virial
estimator,20 which is proper for molecular energetics.

The error estimate in the PIMC scheme is commonly
given in powers of the imaginary time-step τ .9 Therefore,
in order to systematically determine the thermal effects on
the system we have carried out all the simulations with
τ = 0.03E−1

H , where EH denotes the unit of Hartree. Thus,
the temperatures and the Trotter number M are related by
T = (kBMτ )−1, where kB is the Boltzmann constant.

In the following we mainly use the atomic units, where
the lengths, energies, and masses are given in the units
of Bohr radius (a0), Hartree (EH), and free electron mass

(me), respectively. Thus, for the mass of the electrons we
take me = 1 and for the protons mp = 1.836 152 672 48
× 103me. Conversion of the units of energy is given by
EH = 219 474.631 370 5 cm−1 ≈ 27.2 eV, and correspond-
ingly, kB = 3.166 815 2 × 10−6EH K−1.

The statistical standard error of the mean (SEM) with
2 SEM limits is used as an error estimate for the evaluated
observables.

For the NV T simulations, we place one H+
3 ion, i.e.,

three protons and two electrons, into a cubic box and apply
periodic boundary conditions and the minimum image prin-
ciple. The simulations are performed in three different super
cell (box) volumes: (300a0)3, (100a0)3, and (50a0)3. These
correspond to the mass densities of ∼1.255 × 10−6g cm−3,
∼3.388 × 10−5g cm−3, and ∼2.710 × 10−4g cm−3, respec-
tively, which are relevant to H+

3 ion containing atmospheres.6

The density has no essential effect at low T , where dissocia-
tion rarely takes place. At higher T , however, the finite density
gives rise to the molecular recombination balancing the more
frequent dissociation.

It should be pointed out that application of the minimum
image principle with only one molecular ion in the periodic
super cell may give both rise to the finite-size effects and also
disregard high density distribution effects, i.e., fragments of
several ions in the simulation box. Thus, the lower the density
the better we are able to minimize the finite-size effects,
which in this work are negligible, if not absent. In principle,
the zero density limit cannot be reached due to the finite T .
To avoid all these high density distribution ambiguities we
have defined our targets as molecular energetics, molecular
partition function, and other related molecular quantities, at
all temperatures and considered low densities. Therefore,
in the following, we also exclude the trivial contribution from
the center-of-mass thermal dynamics and energy 3/2kBT to
the molecular quantities.

We do not simulate the real-time quantum dynamics
with our approach, but evaluate the quantum statistics of
the thermal equilibrium from the imaginary time paths of
particles. However, the energetics and other expectation val-
ues evaluated from the correct quantum statistics inherently
include all contributions from the equilibrium thermal motion
and quantum dynamics in translationally, vibrationally, and
rotationally excited states.16 With rising temperature, the
thermal contribution takes over leading to the classical limit,
whereas decrease towards zero Kelvin takes to the quantum
limit, where only the zero point motion remains.15

The contribution to energetics from nuclear quantum dy-
namics, which was shown to be essential at low T, turns out
to be negligible at higher temperatures. It is included, how-
ever, to be consistent with the low temperature results and our
earlier study. Also, the distinguishable particle (boltzmannon)
simulation was shown to be accurate for the nuclei due to
the negligible overlap of nuclear wavefunctions and the two
electrons in singlet state. Now, at higher temperatures both
assumptions are still valid as the direct Franck–Condon tran-
sition energies of H+

3 and H2 to the lowest triplet state are still
more than an order of magnitude larger than the thermal en-
ergy of these molecules in our simulations.21–23 For the free
fragments, the overlap of electronic wavefunctions is again
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FIG. 1. NV T total energy of the H+
3 molecular ion as a func-

tion of temperature at three different densities: blue circles (∼1.255 ×
10−6g cm−3), red squares (∼3.388 × 10−5g cm−3), and gray triangles
(∼2.710 × 10−4g cm−3). The blue dashed line is the energy fitted to Eq. (7).
The black dots give the energy computed using the partition function fit given
in Ref. 2. The horizontal dashed-dotted lines are the nonadiabatic zero Kelvin
energies for the ion, its fragments and the barrier to linearity. The high tem-
perature solid lines are mainly for guiding the eye, but used later for numeri-
cal evaluation of the partition function.

negligible and contributions from the weak overlapping con-
figurations turns out to be vanishing.

For more details about the model and a discussion about
the here neglected contribution from the exchange interaction,
see Ref. 15.

III. RESULTS AND DISCUSSION

A. Overview of molecular energetics

In Fig. 1, the NV T total energy (canonical ensemble in-
ternal energy) of the H+

3 ion and its fragments is shown as a
function of temperature. The molecular energy does not in-
clude the center-of-mass translational kinetic energy 3/2kBT .
The data from simulations are given as circles, squares, and
triangles corresponding to the three densities. The PIMC data
is also given in Tables I and II.

The solid lines at T < 4000 K are fitted to analytical
model forms but at higher temperatures lines are only for
guiding the eye. Our low temperature fit and analytical model,
Eq. (8), is given as a blue dashed line and it is discussed in
Secs. III B and III C in more detail. For comparison, the en-
ergies from the fitted partition function of Ref. 2 is shown as
black dots. These two do not manifest dissociation, and there-
fore, are not relevant at “higher T .”

The horizontal dashed-dotted lines show the zero Kelvin
energies for the ion and its fragments in Eq. (2). One of these
lines presents the energy for the “barrier to linearity,” i.e., the
minimum energy needed for the transformation to the linear

TABLE I. NV T energetics of the H+
3 molecular ion at low temperatures—

here the same data applies for all three densities. The energies are given in
the units of Hartree (atomic units) and with 2 SEM error estimates. The
energies from our low T fit (LTFIT) from Eq. (7) and those from the fit of
Ref. 2 (NT) are also given as comparison. At 0 K, the best upper bound is
given, see the footnote c.

T (K) PIMCa LTFITa NT fitb

0 −1.3231 (−1.32367)c

∼160.61 −1.3227(7) −1.3227 −1.3232
∼321.22 −1.3221(6) −1.3220 −1.3225
∼642.45 −1.3198(6) −1.3202 −1.3209
∼1052.6 −1.3173(7) −1.3171 −1.3179
∼1365.2 −1.3143(5) −1.3141 −1.3148
∼2000.3 −1.3064(7) −1.3065 −1.3070
∼2569.8 −1.2983(8) −1.2984 −1.2989
∼3049.2 −1.2905(12) −1.2909 −1.2917
∼3499.3 −1.2840(12) −1.2835 −1.2847
∼3855.6 −1.2774(7) −1.2774 −1.2792

aThis work.
bCalculated from the fit given in Ref. 2.
cPara-H+

3 , see Refs. 23 and 25.

molecular geometry on the zero Kelvin Born–Oppenheimer
surface.

Within the considered molecular densities, T ≈ 4000 K
can be considered as apparent dissociation temperature. The
energetics below 4000 K is so close to density independent
that the differences between the three curves in Fig. 1 cannot
be seen.

Above 4000 K, the density dependence is clearly seen as
varying composition of fragments. In the range from 4000 to
10 000 K, the changing dissociation–recombination balance
leads to distinctly different energetics, and above that, at our
highest simulation temperatures the thermal ionization of hy-
drogen atoms starts contributing to the energy. However, it is
worth pointing out that the temperature limits of these three
ranges, i.e., about 0 − 4000 K, about 4000 − 10 000 K, and
above 10 000 K, are subject to changes with larger variation
of densities.

TABLE II. PIMC NV T energetics of the H+
3 molecular ion at high tem-

peratures for the three densities (expressed as the number of molecular ions
per volume), see Fig. 1. Notations are the same as in Table I.

T (K) (300a0)−3 (100a0)−3 (50a0)−3

∼3999.2 −1.152(16)
∼4050.0 −1.19(6)
∼4100.4 −0.9995(4)
∼4498.2 −0.9993(4) −1.219(34) −1.244(15)
∼4819.5 −0.9993(4) −1.215(37)
∼5139.6 −0.9995(4) −1.020(33) −1.169(29)
∼5634.8 −1.156(66)
∼6070.3 −0.9991(4) −1.018(18) −1.062(35)
∼7017.2 −0.9995(4) −1.008(9) −1.024(12)
∼10279 −0.997(3) −0.9995(8) −1.003(3)
∼12016 −0.9993(6)
∼13997 −0.86(10)
∼14951 −0.805(23) −0.988(8) −0.9957(8)
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FIG. 2. Histogram of total energy sampling pinned in boxes of width
0.001EH from at least (2 × 104) × 105 Monte Carlo samples averaged over
blocks of 105 samples. The energy expectation values are also given with
2 SEM error estimates. The temperature and the Trotter number are ∼5139.6
K and 2048, respectively. The histograms are normalized to unity for all three
densities. Other notations are taken from Fig. 1.

Above 10 000 K, in our lowest density case the ther-
mal ionization of H atoms is evident, see Fig. 1, but for our
higher density cases some 15 000 K is needed to bring up first
signs of ionization. Similar trend for the ionization is stated in
Ref. 24, although the density is notably less than our lowest
one.

Let us now consider the dissociation–recombination re-
action chain, Eq. (2), and the contributing fragments to the
quantum statistical NV T equilibrium trying to give an intu-
itive classical-like picture of the composition. With finite T ,
instead of zero, we have finite β, instead of infinite, that brings
classical nature to the system the more, the higher the tem-
perature. In other words, the partial decoherence in our five-
particle quantum system increases with increasing tempera-
ture, that enables us to distinguish the fragments as separate
molecules and atoms in thermal equilibrium. Based on this
interpretation, we show the total energy distribution in Fig. 2
from sampling the imaginary time paths at about 5000 K with
M = 2048 for all considered densities.

For our highest density (gray in Fig. 2), for example, we
see three main peaks and by inspection of the energy dis-
tribution the first and the second can clearly be assigned to
the rovibrationally excited H+

3 and H2 + H+, respectively. As
there are no rovibrational excitations available for 2H + H+,
the third main peak average position is very close to −1EH.
The fourth fragment, H+

2 + H, can be identified as the small
high-energy side shoulder of H2 + H+ peak. With the inter-
pretation of the area under the peak as the abundance of the
fragment in the equilibrium we find this contribution to be
much smaller than that of the others, for which we can suggest
following explanations. Probably due to loose binding of H+

2
the distribution of its energetics is broad, and therefore, partly
covered by the neighboring narrow peaks. Also, the larger en-

tropy factor −T S in free energy of the three particle system
2H+H+ increases its contribution. Lower densities make this
effect even stronger as is distinctly seen in the Fig. 2.

It is important to note, however, that the above illustration
is dependent on the block averaging procedure, see the cap-
tion of Fig. 2. Pinning the energy data of each and every sam-
ple, i.e., choosing block of size one sample, would broaden
the peaks in Fig. 2. At the opposite limit, all samples in one
block, would give the single mean energy or the ensemble
average corresponding to the quantum statistical expectation
value. From the highest density to the lowest, the expectation
values are −1.169(29)Eh, −1.020(33)Eh, and −0.9995(4),
respectively, Figs. 1 and 2, where the statistical uncertainty
decreases with increasing simulation length.

B. Molecular partition function

To compare with the other published approaches for the
molecular partition function based on single molecule quan-
tum chemistry we start from the lowest temperature range
from 0 to ∼4000 K, where the molecule does not essentially
dissociate, yet.

We present a low temperature H+
3 molecular partition

function as a first approximation for the modeling of low
density H+

3 ion containing atmospheres. Our aim is to find
a simple analytical form, which can be accurately fitted to the
NV T energies from our simulations.

The partition function in terms of the Helmholtz free en-
ergy F is written as

Z = e−βF , (4)

where β = (kBT )−1, and the energy expectation value is
straightforwardly derived from the partition function as

〈E〉 = − 1

Z

∂Z

∂β
. (5)

After solving the free energy from Eq. (4) as

F (T ) = −kBT ln Z(T ), (6)

we write F (T ) = −kBTf (T ) and the energy expectation
value may be written as

〈E〉 = kBT 2 ∂f (T )

∂T
. (7)

We find that a well-behaving function fitting perfectly into our
simulation data,

〈E〉 = kBT 2(ae−bT + c) + de−α/T , (8)

allows analytical integration of Eq. (7) for f (T ) or ln Z(T ),

ln Z(T ) = −a

b
e−bT + cT + d

kBα
e−α/T + D. (9)

Using the boundary condition for the molecular partition
function with a nondegenerate ground state, Z(0) = 1 or
ln Z(0) = 0, we get D = a/b in our model. Another choice,
inclusion of the contributions from the ground state spin
degeneracy factor and the zero-point rotations would give
Z(0) = ξ > 1 and D = a/b + ln ξ , and thus, shift the func-
tion ln Z by a constant, only. We have chosen the first and
more conventional boundary value, Z(0) = 1.
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The weighted least squares fit of the above energy func-
tion, Eq. (8), to our data for temperatures up to about 3900 K,
see Table I, gives the parameters,

a = 0.00157426,

b = 0.000132273,

c = −6.15622 × 10−6,

d = 0.00157430,

α = 269.410, and

D = a/b ≈ 11.9016.

In the fit, in addition to the (2SEM)−2 weights, we force the
first derivative of the energy with respect to the temperature to
be monotonically increasing up to 3900 K. The fit extrapolates
the 0 K energy to about 0.000 549EH above that of the para-
H+

3 , i.e., it gives an excellent match within the statistical error
estimate.

In Fig. 3, the function ln Z(T ) from Eq. (9) is shown in
the range 0 < T < 4000 K — the behavior of the model at
higher T is illustrated by the dashed line. Above 4000 K, the
three curves for different densities are obtained from those
shown in Fig. 1 by numerical integration of Eq. (7) as

ln Z(T ) = ln Z(T1) +
∫ T

T1

〈E〉
kBT 2

dT , (10)

where T1 = 500 K.
In Ref. 2, Neale and Tennyson (NT) have presented the

partition function ln Z(T ) based on a semi-empirical poten-
tial energy surface, see Fig. 3. The NT partition function has
conventionally been used in atmospheric models. The overall
shape is similar to the one of ours. However, the energy 〈E〉
evaluated from their fit tends to be systematically lower than
ours, although roughly within our 2SEM error limits. Thus,
the deviations are not visible in Fig. 1. The energy zero of the
NT fit, black dots in Figs. 1 and 3, is the same as ours in this
work, and thus, allows direct comparison in Fig. 1.

Also in Fig. 3, the difference due to the choice of the
J = 0 state as the zero reference is illustrated by the NT par-
tition function values, black pluses — the shape is notably af-
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FIG. 3. The molecular NV T ensemble ln Z(T ) from the energetics in Fig. 1
with the same notations. The blue solid line below 4000 K and its extrapo-
lation (dashed line) are from Eq. (9), whereas the curves for three densities
are from Eq. (10). The ln Z(T ) data (black pluses) and the fit (black dots)
of Ref. 2 are also shown. The black dots have the same zero energy as the
partition function of this work (see text).
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FIG. 4. Helmholtz free energy from Eq. (5) in the units of Hartree. Notations
are the same as in Fig. 3.

fected at low T , only. As mentioned above, already, the zero
reference of ln Z can be chosen differently.

Our low temperature partition function, Eq. (9), is close
to complete. With the PIMC approach, we implicitly include
all of the quantum states in the system with correct weight
without any approximations. This partition function is the best
one for the modeling of the low density H+

3 ion containing at-
mospheres, at the moment. However, it is valid up to the disso-
ciation temperature, only. As soon as the density dependence
starts playing larger role, more complex models are needed.
Such models can be fitted to our PIMC data given in Tables I
and II.

C. Other thermodynamic functions

In Fig. 4, we show the Helmholtz free energy from com-
bined Eqs. (6) and (9). As expected, lower density or larger
volume per molecule lowers the free energy due to the in-
creasing entropic factor. Dissociation and the consequent
fragments help in filling both the space and phase space more
uniformly or in less localized manner.

This kind of decreasing order is seen more clearly in the
increasing entropy, shown in Fig. 5. The entropy has been
evaluated from

S = U − F

T
, (11)
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FIG. 5. Entropy from Eq. (11) in the units of kB. Notations are the same as
in Fig. 3.
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FIG. 6. Molecular heat capacity as a function of temperature calculated using
the analytical model of this work. The values on the y-axis are given in units
of the Boltzmann constant kB.

where the internal energy is U = 〈E〉 − 〈E〉T =0. As expected,
both the total energy (internal energy) and entropy reveal the
dissociation taking place, similarly.

Finally, in Fig. 6, we present the molecular constant vol-
ume heat capacity

CV = ∂〈E〉
∂T

, (12)

where 〈E〉 is taken from Eq. (8), which is valid below disso-
ciation temperatures, only.

Considering the goodness of our functional form for 〈E〉,
it is very convincing to see the plateau at about 3/2kB corre-
sponding to “saturation” of the contribution from the three ro-
tational degrees of freedom. Thus, above 200 K the rotational
degrees of freedom obey the classical equipartition principle
of energy. It is the last term in the functional form of Eq. (8),
that gives the flexibility for such detailed description of the
energetics.

It should be emphasized that the plateau is not artificially
constructed to appear at 3/2kB, except for a restriction given
for the first derivative of the total energy to be increasing.
Thus, the analytical model we present, Eq. (8), is found to
be exceptionally successful at low temperatures, i.e., below
dissociation temperature.

IV. CONCLUSIONS

We have evaluated the temperature dependent quantum
statistics of the five-particle molecular ion H+

3 at low densi-
ties far beyond its apparent dissociation temperature at about
4000 K. This is done with the PIMC method, which is ba-
sis set and trial wavefunction free approach and includes the
Coulomb interactions exactly. Thus, we are able to extend
the traditional ab initio quantum chemistry with full account
of correlations to finite temperatures without approximations,
also including the contributions from nuclear thermal and
equilibrium quantum dynamics.

At higher temperatures, the temperature dependent
mixed state description of the H+

3 ion, the density dependent
equilibrium dissociation–recombination balance, and the en-

ergetics have been evaluated for the first time. With the rising
temperature the rovibrational excitations contribute to the en-
ergetics, as expected, whereas the electronic part remains in
its ground state in the spirit of the Born–Oppenheimer ap-
proximation. At about 4000 K the fragments of the molecule,
H2 + H+, H+

2 + H, and 2H + H+, start contributing. There-
fore, presence of the H+

3 ion becomes less dominant and even-
tually negligible in high enough T .

We have also shown how the partial decoherence in the
mixed state can be used for interpretation of the fragment
composition of the equilibrium reaction. Furthermore, we
have evaluated explicitly the related molecular partition func-
tion, free energy, entropy, and heat capacity, all as functions
of temperature. An accurate analytical functional form for the
internal energy is given below dissociation temperature. We
consider all these as major additions to the earlier published
studies of H+

3 , where the dissociation–recombination reaction
has been neglected.

It is fair to admit, however, that PIMC is computationally
heavy for good statistical accuracy and approximations are
needed to solve the “Fermion sign problem” in cases where
exchange interaction becomes essential. With H+

3 , however,
we do not face the Fermion sign problem, as the proton wave-
functions do not overlap noteworthy and the two electrons
can be assumed to form a singlet state, due to large singlet
to triplet excitation energy.
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