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Full quantum statistical NVT simulation of the five-particle system H3
+ has been carried out using the

path integral Monte Carlo method. Structure and energetics are evaluated as a function of
temperature up to the thermal dissociation limit. The weakly density dependent dissociation
temperature is found to be around 4000 K. Contributions from the quantum dynamics and thermal
motion are sorted out by comparing differences between simulations with quantum and classical
nuclei. The essential role of the quantum description of the protons is established. © 2010 American
Institute of Physics. �doi:10.1063/1.3464758�

I. INTRODUCTION

The triatomic molecular ion H3
+ is a five-body system

consisting of three protons and two electrons. Being the sim-
plest polyatomic molecule, it has been the subject of a num-
ber of theoretical and experimental studies over the years.1–5

Experimentally, the H3
+ ion was first detected in 1911 by

Thompson;6 however, definite spectroscopic studies were
carried out not until 1980 by Oka.7 Since then, this five-body
system has proven to be relevant, also in astrophysical stud-
ies concerning the interstellar media and the atmosphere of
gas planets. Therefore, low-density high-temperature H3

+ ion
containing atmospheres have been studied experimentally8 as
well as computationally.9

Until now, the computational approaches have consis-
tently aimed at finding ever more accurate potential energy
surfaces �PESs� for H3

+ at 0 K and consequent calculations of
the rovibrational states.10,11 These calculations include Born–
Oppenheimer �BO� electronic energies in various geometries
often supplemented with adiabatic and relativistic
corrections.12,13 For the study of rovibrational transitions, it
is desirable to have an analytical expression for the PES,
which is usually generated using Morse polynomial fits.10

Inclusion of the nonadiabatic effects, however, has turned out
to be a cumbersome task, and so far they have not been
rigorously taken into account.4

In this work, we evaluate the full five-body quantum
statistics of the H3

+ ion in a stationary state at temperatures
below the thermal dissociation at about 4000 K. We use the
path integral Monte Carlo �PIMC� approach, which allows us
to include the Coulomb correlations between the particles
exactly in a transparent way. Thus, we are able to monitor
the fully nonadiabatic correlated quantum distributions of
particles and related energies as a function of temperature.
Furthermore, we are able to model the nuclei as classical
mass points, in thermal motion or fixed as conventionally in
quantum chemistry, and find the difference between these
and the quantum delocalized nuclei.

The PIMC method is computationally expensive, but

within the chosen models and numerical approximations, it
has been proven to be useful with exact correlations and
finite temperature.14–21 For 0 K data with benchmark accura-
cies, however, the conventional quantum chemistry or other
Monte Carlo methods, such as the diffusion Monte Carlo,22

are more appropriate. Thus, it should be emphasized that we
do not aim at competing in precision or number of decimals
with the other approaches. Instead, we will concentrate on
physical phenomena behind the finite-temperature quantum
statistics.

Next, we will briefly describe the basics of the PIMC
method and the model we use for the ion. In Sec. IV, we first
compare our 160 K PIMC “ground state” to the 0 K ground
state and then consider the higher temperature effects.

II. METHOD

According to the Feynman formulation of the quantum
statistical mechanics,23 the partition function for interacting
distinguishable particles is given by the trace of the density
matrix

Z = Tr �̂��� =� dR0dR1 ¯ dRM−1 �
i=0

M−1

e−S�Ri,Ri+1;��,

where �̂���=e−�Ĥ, S is the action, �=1 /kBT, �=� /M, RM

=R0, and M is called the Trotter number. In this paper, we
use the pair approximation in the action15,24 for the Coulomb
interaction of charges. Sampling in the configuration space is
carried out using the Metropolis procedure25 with bisection
moves.26 The total energy is calculated using the virial
estimator.27

The error estimate in the PIMC scheme is commonly
given in powers of the imaginary time time-step �.15 There-
fore, in order to systematically determine thermal effects on
the system, we have carried out all the simulations with �
=0.03EH

−1, where EH denotes the unit of hartree. Thus, the
temperatures and Trotter number M become fixed by the
relation T= �kBM��−1.

In the following, we mainly use the atomic units, where
the lengths, energies, and masses are given in units of thea�Electronic mail: ilkka.kylanpaa@tut.fi.
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bohr radius �a0�, hartree �EH�, and free electron mass �me�,
respectively. The statistical standard error of the mean
�SEM� with 2SEM limits is used as an error estimate for the
observables, unless otherwise mentioned.

III. MODELS

Two of the five particles composing the H3
+ ion are elec-

trons. For these, we do not need to sample the exact Fermion
statistics, but it is sufficient to assign spin-up to one electron
and spin-down to the other one. This is accurate enough, as
long as the thermal energy is well below that of the lowest
electronic triplet excitation.

We apply the same particle statistics for the three pro-
tons, too. This is even safer because the overlap of well
localized nuclear wave functions is negligible and related
effects become very hard to evaluate, anyway. On the other
hand, however, the nuclear exchange due to the molecular
rotation results in the so called zero-point rotations. These
too contribute to energetics less than the statistical accuracy
of our simulations. Therefore, we ignore the difference be-
tween ortho-H3

+ �I=3 /2� and para-H3
+ �I=1 /2�. Thus, the

protons are modeled as “boltzmannons” with the mass mp

=1.836 152 672 48�103me. The higher the temperature, the
better is the Boltzmann statistics in describing the ensemble
composed of ortho-H3

+ and para-H3
+.

For the NVT simulations, we place one H3
+ ion into a

cubic box with the volume of �300a0�3 and apply periodic
boundary conditions and minimum image principle. This
corresponds to the mass density of �1.255�10−6 gcm−3.
This has no essential effect at low T, but at high T the finite
density gives rise to the molecular recombination balancing
the possible dissociation. Within the considered temperature
range, the contributions from the dissociated states are neg-
ligible.

The electrons are always simulated with the full quan-
tum dynamics. For the nuclei, however, we use three models
to trace the quantum and thermal fluctuations separately. The
case of full quantum dynamics of all particles we denote by
AQ �all-quantum�, the mass point model of protons by CN
�classical nuclei�, and the adiabatic case of fixed nuclei by
BO �Born–Oppenheimer potential energy surface�.

IV. RESULTS AND DISCUSSION

A. Ground state: 0 K reference data

The equilibrium geometry of the H3
+ ion in its ground

state is an equilateral triangle D3h for which the internuclear
equilibrium distance is R=1.65a0.4 The best upper bound for
the electronic ground state BO energy to date is
−1.343 835 625 02EH.4 The vibrational normal modes of H3

+

are the symmetric-stretch mode �1 and the doubly degenerate
bending mode �2. The latter one breaks the full symmetry of
the molecule, and therefore it is infrared active.5

The vibrational zero-point energy is 0.019 87EH and the
so called rotational zero-point energies are 0.000 29EH and
0.000 40EH for para-H3

+ and ortho-H3
+, respectively.3,11 These

yield about 0.020 215EH for the average zero-point energy.
Note, however, that the nuclear spins and zero point rotation
are not included in our model of H3

+.

The lowest electronic excitation from the BO ground
state is a direct Franck–Condon one �0.710EH� �Refs. 4 and
5� to dissociative potential curve: H3

+→H2+H+ or H3
+→H2

+

+H.4,28 The dissociation energies �De� are 0.169EH and
0.241EH, respectively.

The linear geometry with equal bond lengths 1.539 12a0

�D�h� is a saddle point on the BO PES at −1.278 681 90EH

�Ref. 11� or 0.065 15EH above the BO energy at the equilib-
rium geometry. This energy is usually called as the barrier to
linearity.2 The 0 K energetics is shown in Fig. 1 by the three
horizontal lines.

B. PIMC ground state: 160 K

At our lowest simulation temperature T	160 K, the
electronic system is essentially in its ground state. For the
total energy we find −1.3438�2�EH, see the BO black tri-
angles in Fig. 1. The thermal energy is kBT=0.000 507EH,
and therefore, the contribution from the rotational and vibra-
tional excited states is also small and we find
−1.3406�29�EH, see the CN red square in the same figure.
The full quantum simulation includes vibrational zero-point
contribution and yields −1.3233�12�EH, about 0.0205�14�EH

above the BO energy in a good agreement with about
0.0202EH in Refs. 3 and 11.

From our AQ simulation we still find the equilateral tri-
angle configuration of the nuclei with the internuclear dis-
tances increased to 
R�=1.723�4�a0, which indicates an in-
crease of about 0.073�4�a0, as compared with the 0 K BO
equilibrium distance bond lengths. Interestingly, within the
error limits, this is the same as the bond length increase of
the hydrogen molecule ion H2

+. The zero-point energy of H3
+

is about 2.7 times as large as that of the H2
+ ion,21 as expected

from the increase of vibrational modes from one to three—
the zero-point energy of our model does not contain the ro-
tational zero-point energy, as mentioned earlier.

The thermal motion �CN� alone increases the bond
length to 
R�=1.658�4�a0 only �see the data in Figs. 2 and 3�.
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FIG. 1. Total energy of the H3
+ molecular ion as a function of temperature.

Fully nonadiabatic quantum statistical simulations �AQ �blue circles��, clas-
sical nuclei simulations �CN �red squares��, and the equilibrium geometry
Born–Oppenheimer simulation �BO �black triangles��. 0 K data �Refs. 3, 4,
and 11� are given for comparison: BO ground state energy at equilibrium
internuclear geometry �black dashed-dotted line�, energy including the
nuclear zero-point motion �green dashed line�, and energy at the barrier to
linearity �gray solid line�. 2SEM statistical error estimate is shown by the
error bars from simulations at the H3

+ ion density �300a0�−3 or �1.255
�10−6 g cm−3.
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This clearly points out the difference between quantum and
thermal delocalization of the nuclei at low T.

For the proton-electron and electron-electron interac-
tions, the differences between our two approaches are
smaller than in the proton-proton case but still distinctive.
Comparison of the fixed nuclei simulation to the CN one
shows that the two schemes give almost identical distribu-
tions. The AQ distributions, however, cannot be labeled iden-
tical with those from the CN or fixed nuclei simulations. The
distributions are given in Figs. 4 and 5, where the notations
are the same as in Fig. 2.

The calculations of the relativistic corrections involve,
among other things, evaluation of the contact densities

��rij�� for the electron-nuclei and the electron-electron
pairs.12 For the electron-nuclei contact density at the BO
equilibrium configuration, we get 0.1814�20� and for the AQ
case, 0.1765�20�. For the electron-electron pair we get
0.0182�3� and 0.0166�3� for BO and AQ approaches, respec-
tively. The estimated uncertainties due to extrapolation to the
contact are given in parentheses. The 0 K reference values12

for the BO case are 0.181 242 �electron-nuclei� and
0.018 386 63 �electron-electron�. Thus, the quantum dynam-
ics of the nuclei turns out to be a significant factor in lower-

ing the contact densities, too. See the snapshot of the AQ
simulation in Fig. 6 for some intuition of the low-
temperature quantum distributions in imaginary time.

C. High temperature phenomena

With the increasing temperature, the increasing contribu-
tion from rovibrational excitations is clearly seen in the total
energies shown in Fig. 1. Contributions from the electronic
excitations do not appear because the lowest excitation en-
ergy 0.710EH is much too high as compared to the thermal
energy kBT. Consequently, the equilibrium geometry BO en-
ergy depends on the temperature almost negligibly. For con-
venience, the essential energetics related data have been col-
lected into Table I also.

As expected, the increase in the total energy due to the
classical rovibrational degrees of freedom is 9�

1
2kBT, defin-

ing the slope of the CN line. The most prominent quantum
feature in AQ curve is, of course, the zero-point vibration
energy. At higher temperatures, however, by comparing the
AQ and CN curves we see that the quantum nature of nuclear
dynamics becomes less important, except for dissociation.

At the dissociation limit we find the molecule with quan-
tum nuclei somewhat more stable than the one with classical
nuclei. With the relatively low density �300a0�−3, the mol-
ecule is mainly kept in one piece above 4000 K in the former
case, whereas more dissociated in the latter. The total energy
becomes higher for the CN than the AQ case slightly below
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FIG. 2. Nuclear pair correlation functions �bond length distributions� at
different temperatures from the quantum statistical simulations �solid lines�
and from the classical nuclei simulations �dashed lines�. The 0 K equilib-
rium internuclear distance is given as a vertical black dashed-dotted line.
The distributions include the r2 weight and normalization to unity. �Note that
the r2 weight is usually not included in description of extended or periodic
systems.�
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FIG. 3. Expectation values of the internuclear distance at different tempera-
tures from distributions in Fig. 2. Quantum statistical simulations �blue
circles� and classical nuclei simulations �red squares�. The FWHM limits are
shown by triangles �all the lines are for guiding the eye�. The 0 K equilib-
rium internuclear distance is shown as a horizontal black dashed-dotted line.
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FIG. 4. Proton-electron pair correlation functions at the four temperatures
from the full quantum statistical simulations �AQ �solid lines�� and from
simulations with the classical nuclei �CN �dashed lines��. That from the BO
scheme is given at the lowest �electronic� temperature only �dashed-dotted
line�. Notations are the same as in Fig. 2.
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FIG. 5. Electron-electron pair correlation functions from the same simula-
tions as those in Fig. 4. Notations are the same as in Figs. 2 and 4.
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4000 K �see Table I�. The total energies at this crossing point
are above the “barrier to linearity,”2,11 already.

At higher temperatures T	4100 K, other configura-
tions, such as H2+H+, H2

++H, and 2H+H+, start playing
more significant roles in the equilibrium dissociation-
recombination processes. These will be considered in our
next study.

The nuclear pair correlation function or bond length dis-
tributions �Figs. 2 and 3� follow the energetics discussed
above. There, the zero-point vibration in AQ case is seen
even better. At the 0 K limit both the expectation value and
the distribution, in particular, are significantly different from
those of the CN case.

The temperature dependence in the other pair correlation
functions is weak �see Figs. 4 and 5�. Obviously, this is the
case, because electrons do not present a quantum-to-classical
transition in the temperature range considered, now. Thus,
the evolution in distributions in Figs. 4 and 5 following the
rising temperature arises from the changes in the nuclear
dynamics, and mostly, from the change in the conformation
or the bond lengths, presented in Fig. 3.

V. CONCLUSIONS

In this study, the path integral Monte Carlo method was
shown to be a successful approach for examination of quan-
tum statistics of the five-particle molecule, H3

+ ion. The
method is based on the finite temperature mixed state de-

scription, and thus, it gives information, which is comple-
mentary to the high-accuracy 0 K description of conven-
tional quantum chemistry. It was also shown how
contributions from quantum and thermal dynamics to particle
distributions and correlation functions can be sorted out, and
furthermore, quantum-to-classical dynamics transition can be
monitored.

Our approach is fully basis set and trial wave function
free. It is based on the Coulomb interactions only and allows
the most transparent interpretation of consequent particle-
particle correlations.

Simulation at 160 K essentially reproduces the 0 K data
from conventional quantum chemistry. Of course, a proper
extrapolation to 0 K can be done for more accuracy. BO
potential energy surface and the equilibrium geometry can be
found by using classical nuclei with fixed coordinates. De-
scription of the zero-point motion within our nonadiabatic
five-body quantum simulation gives the vibrational zero-
point energy accurately. We find an increase of 0.073�4�a0 in
the bond length due to the nonadiabatic zero-point vibration.
The classical thermal contribution at 160 K is 0.008�4�a0,
only.

With the raising temperature the rovibrational excitations
contribute to the energetics, as expected, whereas the elec-
tronic part remains in its ground state in the spirit of BO
approximation. At about 4000 K the H3

+ ion dissociates,
weakly depending on the ion density. We find that the full
quantum molecule dissociates at slightly higher temperature
compared to the one where the nuclei are modeled by clas-
sical particles with thermal dynamics only. Thus, we con-
clude the necessity of the quantum character of the protons
in the correct description of dissociation.

We find that the nuclear quantum dynamics has a distinc-
tive effect on the pair correlation functions, too. This is least
for the electron-electron pair correlation function, stronger
for the electron-proton one and largely increased in the
proton-proton correlations. These are seen in the contact den-
sities and, consequently, in the relativistic corrections where
relevant.
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