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The system of two interacting electrons in one-dimensional harmonic potential or
Hooke’s atom is considered, again. On one hand, it appears as a model for quantum
dots in a strong confinement regime, and on the other hand, it provides us with a
hard test bench for new methods with the “space splitting” arising from the one-
dimensional Coulomb potential. Here, we complete the numerous previous studies of
the ground state of Hooke’s atom by including the excited states and dynamics, not
considered earlier. With the perturbation theory, we reach essentially exact eigenstate
energies and wave functions for the strong confinement regime as novel results. We
also consider external perturbation induced quantum dynamics in a simple separable
case. Finally, we test our novel numerical approach based on real-time path integrals
(RTPIs) in reproducing the above. The RTPI turns out to be a straightforward approach
with exact account of electronic correlations for solving the eigenstates and dynamics
without the conventional restrictions of electronic structure methods. Published by
AIP Publishing. https://doi.org/10.1063/1.5028503

I. INTRODUCTION

The problem of two electrons confined in a harmonic potential, sc. Hooke’s atom, has been
investigated by several authors.1–8 There are analytical solutions of the ground and excited states,
but only for some specific confinement parameters or oscillator frequencies.1 There are also some
approximate and numerical approaches to solve the problem, but all of these are focused on the
ground state energy and wave function of the three-dimensional system.8–13

Solution of the problem can be reduced to those of center-of-mass (CM) and internal dynamics,
and the latter one, further to radial and angular components. The radial component is the solution at
the positive and negative parts of one-dimensional space, and thus, it turns out to form the solutions
of one-dimensional Hooke’s atom—analytically for the above-mentioned specific set of confinement
parameters. These two parts can be combined to form symmetric and antisymmetric spatial wave
functions as singlet and triplet (or bosonic and fermionic) states, respectively.

However, the one-dimensional Coulomb potential is not trivial to consider, and therefore, it
has been a case of interest since 1959.14 It has been argued in many previous studies14–19 that
only the odd wave functions are valid solutions of the Schrödinger equation. More recent studies
on one dimensional strongly interacting confined quantum systems21–26 and previous studies on
relativistic and non-relativistic one dimensional Coulomb potential14–20,27,28 motivate us to revisit
the problem and demonstrate how to find solutions for all eigenstates and all confinement parameters
both analytically and numerically.

Oseguera and de Llano29 have proven that for the attractive one-dimensional Coulomb potential
the singularity acts as an impenetrable barrier and space is divided into two independent domains.
This is called the space splitting effect. Therefore, solutions for the positive and negative values of
the relative coordinates of a two-particle system are completely independent. In one-dimension, the
attractive delta function interaction and Coulomb interaction both cause the space splitting, too.29

Due to the space splitting, the relative coordinate wave function of two particles should vanish at
the origin. Extension of the problem to repulsive Coulomb potential is simple. It is enough to replace
�e2→ e2, and again, it can be shown similar to the attractive Coulomb interaction that the amplitude

0022-2488/2018/59(5)/052104/12/$30.00 59, 052104-1 Published by AIP Publishing.

https://doi.org/10.1063/1.5028503
https://doi.org/10.1063/1.5028503
https://doi.org/10.1063/1.5028503
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5028503&domain=pdf&date_stamp=2018-05-11
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of reflection coefficient for repulsive Coulomb interaction equals to one and the singularity acts as
an impenetrable barrier.29

In this study, we complete the numerous earlier studies by presenting solutions from the pertur-
bation theory (PT) for all confinement parameters, and also, for both the ground state and excited
states dynamics. We assess the accuracy of PT solutions as a function of confinement and order of PT.
Our analytical PT results give better match with the exact numerical solutions in a strong confinement
region as compared with interpolation formula in Ref. 1.

Furthermore, with a novel numerical approach based on Feynman path integral formalism in
real time (RTPI),30 we find wave functions, energetics, and dynamics of such a strongly correlated
system to confirm the PT results and trends. We also assess the robustness of RTPI for excited states
and dynamics, where it is applied for the first time.

In Sec. II, we introduce PT and RTPI for the one-dimensional confined charged particles. In
Sec. III, we give the PT and RTPI solutions to Hooke’s atom and assess the quality and accuracy
by comparing with exact solutions for both eigenstates and quantum dynamics in an external time-
dependent electric field.

II. MODEL AND METHODS

A. Separation of variables

The Hamiltonian of two electrons in a 3D harmonic well is

H =
−~2

2me
∇2

1 +
−~2

2me
∇2

2 +
1
2

meω
2x2

1 +
1
2

meω
2x2

2 +
e2

|x1 − x2 |
, (1)

where x1 and x2 are the three coordinates of electrons 1 and 2, respectively. The relative and center
of mass (CM) motion of the two electrons can be separated by defining new variables

r = x1 − x2

and

R=
x1 + x2

2
.

Now, the Hamiltonian separates as

H =H(r) + H(`) + H(R),

where H(`) = `(` + 1)~2/2µr2 is the rotational part. For the rotational ground state of the relative
motion (` = 0), one can rewrite the above Hamiltonian as follows:

H =
−~2

2µ
d2

dr2
+

1
2
µω2r2 +

e2

|r |
+
−~2

2M
∇2

R +
1
2

Mω2R2 (2)

=H(r) + H(R),

where µ= me/2 and M = 2me are the reduced and the total mass of electrons, respectively. If separating
the wave function and total energy as ψ(r, R)= u(r)

r Φ(R) and Etot = E + ECM, then the CM motion is
simple harmonic oscillation in all three dimensions

−~2

2M
d2

dR2
Φ +

1
2

Mω2R2
Φ=ECMΦ, (3)

where ECM = (N + 1/2)~ω with non-negative integers N. Relative motion of the electrons is harmonic
oscillation with the Coulomb interaction as a perturbation in the rotational ground state (` = 0),

−
~2

2µ
u′′(r) + (

1
2
µω2r2 +

e2

|r |
)u(r)=Eu(r). (4)

Equations (3) and (4) define the dynamics of 1D Hooke’s atom without external fields. The solutions
are bound states with quantized energies and those of the CM are states of a simple harmonic oscillator.
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B. Perturbation theory

In this section, we review the PT and its applicability in one dimensional confined quantum
systems with Coulomb potential as the interparticle interaction.

1. Reference states and boundary conditions

Equation (4) remains as the one dimensional Schrödinger equation to be solved. It would be
natural to consider the Coulomb repulsion as perturbation and choose the harmonic oscillator as
the reference system. However, in one-dimensional PT because of the space spitting effect, we are
looking for solutions of relative motion with the boundary condition and symmetry like those of
one-dimensional hydrogen atom at the origin14–19

u(0)= 0. (5)

This means that the odd numbered eigenstates of harmonic oscillator (4), only, are acceptable. Then,
the exactly solvable problem with the same boundary condition as one dimensional Coulomb potential
is31

−
~2

2µ
ζ ′′n (r) +

1
2
µω2r2ζn(r)= εnζn(r), (6)

where ζn are the eigenstates of one dimensional harmonic potential. The exact solutions are

ζn(r)B

(
1

4√π

√
ξ
)

exp
(
−1
2 ξ

2r2
)
Hn(ξr)

√
2nn!

,

εn = (n +
1
2

)~ω,

ξ =

√
µω

~
,

n= 1, 3, 5, . . .

where Hn are the Hermite polynomials and only odd quantum numbers apply.
The integral solution of Eq. (4) can be written as31

u(r)=−〈G(r, r ′)|δv(r ′)|u(r ′)〉, (7)

δv(r ′)=
e2

|r ′ |
, (8)

where G(r, r ′) is Green’s function of Eq. (6) with the same boundary conditions as u(r), i.e., Eq. (5).
Using the eigenfunction expansion of Green’s function, we have31

un = ζn +
∑
p,n

〈ζp |δv |u〉

En − εp
ζp, (9)

En = εn + 〈ζn |δv |un〉. (10)

This is normal PT theory with odd numbered eigenstates. The validity condition (〈ζn|δv |un〉

� |En � En±1|) should also hold.32 We will discuss this in Sec. III.

C. Path integral approach

Recently, we have presented a novel real-time path integral (RTPI) approach to the electronic
structure calculations and coherent quantum dynamics. It was first tested in the case of a single
electron quantum dot.28 Combined with Monte Carlo sampling of paths, RTPI was demonstrated to
be a robust first-principles method and relatively simple to use, but computationally heavy.

Later, it was shown that in the case of Hooke’s atom RTPI is capable of incorporating the
electronic correlations exactly within numerical accuracy.31 Now, we demonstrate finding not only
the ground state but lowest excited states, and also, dynamics as a response to external electric fields.
We analyze the role of relevant approximations, the Monte Carlo method, and numerical parameters.
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Thus, the RTPI is a general numerical method for testing the perturbation theoretical predictions,
where analytical data are not available. Simultaneously, we can test the numerical performance and
accuracy of RTPI for finding more complex many-particle wave functions and quantum phenomena,
which are out of reach with the conventional first-principles methods.

The first and second excited states are calculated with the incoherent propagation path integral
Monte Carlo30,33 simulations. The used parameters in atomic units are time step (t = 0.1), number
of walkers (N = 300 000), and the walker size ε (ε2 = 0.005). The purpose of the last parameter is
to reduce the oscillations of the kinetic propagator. This is done by representing a single walker as a
Gaussian function with variance ε2 instead of Dirac delta function.33

Here, it should be noted that the RTPI simulations are carried out in single-particle coordinates
x1 and x2, thus testing the performance of description of the electron correlations.

III. ONE DIMENSIONAL HOOKE’S ATOM

In this section, we discuss the solutions of one dimensional Hooke’s atom within PT and RTPI.
First we consider lowest stationary states, and then, dynamics in the presence of external time
dependent electric field.

A. Stationary eigenstates
1. Ground state

Taut has introduced some exact solutions of 3D Hooke’s atom for certain confinement parame-
ters.1 For the relative motion, this means solutions to the following Schrödinger equation [Eq. (9) in
Ref. 1]:

−
u′′(r)

2
+

1
2
ω2r2u(r) +

1
2

1
r

u(r)=Enu(r). (11)

This is equivalent to the Schrödinger equation (4) for a particle with reduced mass (µ = 1) and 1√
2

electric charge. However, the approach involves finding solutions of two simultaneous equations,
which restricts the answers to some specific values of ω and states.

Out of those we choose ω = 0.5, because the analytical exact solution of the ground state is
available for this value and it is also the largest one in the set of specified values of ω. In the first
order PT, the energy levels as a function of n and ω can be written as

En =

(
2n +

3
2

)
~ω +

e22−2n−1ξ
√
π(2n + 1)!

∫ ∞
−∞

e−(ξx)2
H2n+1(ξx)2

|x |
dx. (12)

Where n is non- negative integers. The first term in Eq. (12) represents the simple harmonic oscillator
energy levels with odd quantum number. Because of odd Hermite polynomials in the integrand, we
are not worried about the singularity at origin. Thus, the first few energy levels are

E0 = 2e2

√
µω

π~
+

3ω~
2

,

E1 =
5e2

3

√
µω

π~
+

7ω~
2

,

E2 =
89e2

60

√
µω

π~
+

11ω~
2

,

E3 =
381e2

280

√
µω

π~
+

15ω~
2

.

In Ref. 1, the interpolation method of eigenenergies is also presented. However, the fitting has
been done for the confinement parameters in a narrow region, only. The maximum value of ω for the
ground state is 0.5, and by increasing the number of states, the corresponding maximumω decreases.
Therefore, the extrapolation results for the ground state are accurate in region ω ≤ 0.5, for the first
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excited state in region ω ≤ 0.38, and for higher states this region becomes narrower (cf. Table I in
Ref. 1).

Rather than analytical exact solutions, there are two approximations in Ref. 1: the weak and the
strong confinement approximations. As discussed in Ref. 33, for the largest confinement parameter
(ω = 0.5), the PT gives more accurate results compared to the weak and strong approximations.

A comparison between the analytical exact and perturbative solutions for ω ≤ 0.5 is shown in
Fig. 1. The difference between these two decreases as n and ω increase, so the maximum difference
appears for the ground state. For small values of ω, the PT is less accurate, because the validity
condition for PT (Vnn � |En � En±1|) is violated. We can use the average value of kinetic energy as a
limit for the validity of PT. In the first order perturbative approximation, the average kinetic energy of

relative motion for the ground state becomes negative forω < 4e4µ

9π~3 , which sets a minimum acceptable
ω for the ground state in PT.

The ground state wave function and its properties have been discussed in detail in Ref. 33 already.

2. First two excited states

For the excited states with ω > 0.5, the PT gives accurate results even in the first order. The
accuracy of the PT results has been checked (up to fourth order) comparing the numerical exact
solutions for the one-dimensional Hooke’s atom.

FIG. 1. Comparison of PT and analytical exact total energies (solid black circles) results in Ref. 1 of Hooke’s atom in atomic
units (hartree). The first-, second-, and third-order corrected energies are shown by the dotted (red), dotted-dashed (green),
and dashed (blue) lines, respectively, and all axes are in logarithmic scale. (a) Ground state energy, n = 0 as a function ofω in
logarithmic scales. The pink cross shows the RTPI result.33 (b) First excited state, n = 1. (c) Second excited state, n = 2. (d)
Third excited state, n = 3.
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Figure 2 shows the relative errors between the first order PT and the numerical exact solution
eigenenergies for the ω ≥ 0.5. As seen, even in the first order PT the relative errors reduce rapidly
for excited states. The relative error for the ground state is around 5% and for states with n ≥ 3, the
relative errors are less than 1%.

We can compare the PT results for the first excited state of the relative motion with the analytical
exact solution for ω = 2

5.26 137 . This ω has been chosen, because the analytical exact solution for
the first excited state is available.1 The analytical exact solution wave function for this frequency
is1

u1,exact =Nr exp(−
ω

2
r2)

(
r3 − 36(r + 4)r2ω + 12r2 + 72r + 144

)
, (13)

where N is the normalization constant.
Comparison between the exact solution and PT solutions is given in Fig. 3. As expected, the

first order PT has larger deviation from the exact solution, compared with the second and third
order PT. Figure 3(b) shows the relative error between different order PT wave functions and exact
solution.

Table I shows the results for the expectation values of Coulomb potential (V c), relative
motion harmonic potential (VH,r), and relative motion kinetic energy (T r). The total energy is the
ECM,0 + E0. The expectation values have been calculated directly from normalised wave functions. The
RTPI energetics is in good match with the exact energies (and PT, where the analytical exact results are
not available), but there is a systematic error where the electrons are close to each other (r→ 0) or when
their separation is large. The former is due to the improved Trotter kernel approximation28 with smaller
error near the singular potential with finite time step. The latter is mostly caused by the small density
of the Monte Carlo grid in that region and that error can be made smaller by increasing the number of
walkers.30,33

The first two excited states are combinations of the CM and relative motion ground states and
first excited states. The first (second) excited state is a combination of the ground state of relative
motion (CM) and excited state of CM (relative motion).

For the excited states, the results are reported for theω = 1
2 , because the analytical exact solution

for the ground state is available for this frequency,1 and the results can also be compared with
the the work on RTPI.33 Using the Virial theorem for one dimensional harmonic oscillator, we
have32

FIG. 2. The relative errors (EPT � Eexact-numeric)/Eexact-numeric for the eigenenergies n = 1, . . ., 8 of Hooke’s atom [ω = 0.5
(blue circles), 0.7 (brown squares), 0.9 (green lozenges), and 2.0 (red triangles)]. The PT results in this figure are of the first
order.
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FIG. 3. (a) Comparison between the analytical exact solution (solid black line) and different order PT results for the first
excited state wave function of relative motion (ω = 2

5.261 37 ). u(n)
PT ,1 represents the nth-order corrections in PT. The first, second,

and third order corrections are, respectively, shown by the dotted (red), dotted-dashed (green), and dashed (blue) lines. The
relative error increases around the node and tail of the exact solution, where the wave function tends to zero. The horizontal
axes represent relative distance between electrons in atomic units, i.e., bohr radius. (a) Analytical exact and different order PT
wave functions. (b) Relative error between PT and analytical exact wave function.

〈TCM〉= 〈VH ,CM〉= (n +
1
2

)
~ω

2
, (14)

where TCM is kinetic energy of center of mass motion and VH ,CM =
1
2 Mω2R2 is the CM harmonic

potential. Here, for n = 1, this gives 3/8 = 0.375. Table II shows the RTPI, PT, and analytical exact
values (where available) for kinetic and potential energies of Hooke’s atom. As one can see that the
results are in agreement with exact solution results.

TABLE I. Expectation values of kinetic and potential energies of the first
excited state in PT (ω = 2

5.261 37 ) calculated directly from normalized wave
functions. Comparison between the exact and PT wave functions is given in
Fig. 3.

Exact value 1st order PT 2nd order PT 3rd order PT

V c 0.3521 0.3638 0.3452 0.3508
VH,r 0.7671 0.7276 0.7832 0.7807
T r 0.5912 0.6217 0.5845 0.5807
Total energy 1.9006 1.9032 1.9030 1.9024

TABLE II. The first excited state (ω = 0.5) and its expectation values. The first excited state is the combination of first excited
state of CM and ground state of relative motion.

Exact value RTPI 1st order PT 2nd order PT 3rd order PT

V c 0.4474 0.4530(4)
a

0.4354 0.4443 0.4466
VH,r 0.5131 0.5117(1)

a
0.5161 0.5218 0.5181

T r 0.2894 0.2870(9)
b

0.3028 0.2847 0.2861
VH,CM 0.375 0.3722(1)

a
0.375 0.375 0.375

TCM 0.375 0.3765(15)
b

0.375 0.375 0.375

Potential energy 1.3355 1.3369(3)
b

1.3265 1.3412 1.3397
Total energy 2 1.9969(6)

c
2.0043 2.0010 2.0009

aPotential energy = V c + VH ,r + VH ,CM and its components are calculated as RTPI output.
bThe expectation values of T r and TCM are calculated directly from normalized wave functions.
cTotal energy has been calculated (independent from potential and kinetic energies) directly from the wave function’s phase in RTPI.
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TABLE III. The second excited state and its properties as Table II (cf. Fig. 4). The second excited state is combination of the
CM ground state and first excited state of relative motion. Analytical exact values for this state are not available. The accuracy
of the PT has been checked for the closest confinement parameter in Fig. 3(a) and Table I.

Exact value RTPI 1st order PT 2nd order PT 3rd order PT

V c . . . 0.4234(9)
a

0.4233 0.4074 0.4119
VH,r . . . 0.9811(9)

a
0.9530 1.0074 1.0043

T r . . . 0.786(4)
b

0.8159 0.7771 0.7753
VH,CM 0.125 0.1620(3)

a
0.125 0.125 0.125

TCM 0.125 0.0986(7)
b

0.125 0.125 0.125

Potential energy . . . 1.5665(6)
b

1.5013 1.5399 1.5413
Total energy . . . 2.4331(2)

c
2.4423 2.4420 2.4417

aPotential energy = V c + VH ,r + VH ,CM and its components are calculated as RTPI output.
bThe expectation values of T r and TCM are calculated directly from normalized wave functions.
cTotal energy has been calculated (independent from potential and kinetic energies) directly from the wave function’s phase in RTPI.

The energetics of the second excited state is shown in Table III. Clearly, for the second excited
state, the average of T r (relative motion kinetic energy), TCM , and VH,CM from RTPI simulation is
not well-fitted to the exact and PT results. This can be explained by the shape of the wave function.
As one can see from Fig. 4, the RTPI predicts wider wave function comparing to the exact and PT.
A wider wave function has smaller kinetic energy, and for the harmonic confinement, it gives larger
potential energy. However, the total value of the eigenenergy and potential energy is in agreement
with data from PT. Therefore, the different contributions balance each other in such way that the total
quantities approach the correct values.

B. Dynamics in the presence of external transient field

Time evolution of the stationary states has been successfully simulated using RTPI in Ref. 33
already. As expected, there appears as change in the phase of the wave function only. To test the time
evolution of Hooke’s atom, a short time pulse of spatially constant electric field (linear in space and
Gaussian in time) has been considered as a perturbation. We have chosen the external potential as

U(x, t)=
U0
√
πα

x exp(−
(t − t0)2

α
), (15)

where U0 = 1, α = 0.1, and t0 = 1 (in atomic units).

FIG. 4. A snapshot of the wave function from the converged RTPI simulation with ∆t = 0.1, N = 300 000, and ω = 0.5 (blue
walkers). Red line is an envelope curve from the 3rd order PT [cf. Fig. 3(a), ω ' 0.38] in (a) and exact solution from Eq. (3)
in (b) fitted to the data. All the figures are in atomic units. (a) The first excited state of Internal motion. (b) Ground sate of CM
motion.
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In the presence of this external electric field, the Hamiltonian of the system becomes as

H =
−~2

2me
∇2

1 +
−~2

2me
∇2

2 +
1
2

meω
2x2

1 +
1
2

meω
2x2

2 +
e2

|x1 − x2 |
+ U(x1, t) + U(x2, t)

=H(r) + H(R) + 2U(R, t)

=H(r) + H(R) + f (t)R,

where f (t)= 2√
πα

exp(− (t−t0)2

α ).

1. Exact solution

As expected the spatially constant electric field does not change the internal motion and its
effects appear only in CM motion. Therefore, in this subsection, we just discuss the CM motion.
However, the RTPI solves the unseparated total wave function in single-particle coordinates again,
and its results are presented in Subsection III B 2.

The Heisenberg equation of motion simplified into two coupled partial differential equations
(PDE) can be written as

d
dt
〈R〉=

〈PCM〉

M
, (16)

d
dt
〈PCM〉=−(Mω2〈R〉 + f (t)),

where PCM is the center of mass momentum. To find the average potential energy, we need 〈R2〉,
which is found from the following coupled PDEs:

d
dt
〈R2〉=

2
M

(
〈P2

CM〉

M
−Mω2〈R2〉 − f (t)〈R〉), (17)

d
dt
〈P2

CM〉=−2Mω2(
〈P2

CM〉

M
−Mω2〈R2〉 − f (t)〈R〉) − 2

d
dt
〈f (t)PCM〉.

Solution for 〈R〉 and 〈PCM〉, give us the average of the potential energies as a function of time. Figure 5
shows the average of the total potential energy as a function of time.

FIG. 5. Potential energy in atomic units from one MC simulation ∆t = 0.1 and N = 100 000 with different walker size ε in
atomic units. Blue short dotted line ε2 = 0.05, red dotted line ε2 = 0.005, and green dashed line ε2 = 0.0005. The black solid
line represents the exact solution.
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2. Coherent RTPI simulation

In the time domain simulations, the ground state is affected by Gaussian shape pulse discussed
above. As can be seen from the potential energies in Fig. 5, the walkers’ size ε affects the results much
more than in incoherent propagation. Too large ε cuts out higher energy states and results in incorrect
energies (blue line) and too small ε increases in the incidental numerical error from the kinetic energy
part of the propagator (green line). That is expected as it cuts out higher energy states, which are
not present in the simulation of lower eigenstates but contribute to the real time evolution. For the
real-time dynamics, ε must be chosen smaller than that for the optimal incoherent propagation.30,33

There is a delay in the system response to such an ultrafast transient process. It is due to the inertia of
electrons. After the external pulse, the total energy is conserved and the electrons remain in harmonic
oscillation.

Figure 6 shows the different interaction contributions in the potential energy. As expected, the
Coulomb interaction remains unchanged during the time evolution, and the effects of the external
electric field just appear in a short time interval.

3. Fourier transformation and time evolution

After the external pulse, the Hamiltonian of the system returns to its initial time indepen-
dent form, but the wave function remains as a superposition of eigenstates of the unperturbed
system,

Ψ(r, R, t)=
∑

ciψi(r, R)e−ı
Eit
~ ,

where ci depends on the matrix elements of the external potential. Therefore, the Fourier transform of
Ψ is a sum of Dirac delta functions located at Ei. In practice, one can perform the Fourier transform
by collecting finite samples of the wave function at different times and coordinates. Here the PT is
used to find the time evolution for illustration of the approach. In the absence of analytical solutions,
RTPI can be used to find the wave function time evolution.

Figure 7 shows the Fast Fourier Transformation (FFT) of the one dimensional Hooke’s atom
after applying the U(x, t) + U(x2, t) as the external potential. We choose a nonlinear perturbation
x + x2 because it has non-zero matrix elements for the first few excited states. The sampling rate is
100 (atomic units) and total integration time is 46 (atomic units). From Fig. 7, the eigenenergies are
located at {1.5, 2.0, 2.43, 2.5, 2.93, 3.45}. Here we used Ψ(1, 1, t) as the input in FFT.

FIG. 6. Contributions to the potential energy in atomic units from Coulombic (black solid line), harmonic (red dotted line),
and external potential (blue dashed line) effects from one MC simulation with N = 100 000 and ε2 = 0.005.



052104-11 Gholizadehkalkhoran, Ruokosenmäki, and Rantala J. Math. Phys. 59, 052104 (2018)

FIG. 7. Fast Fourier Transformation (FFT) of time dependent wave function of the one dimensional Hooke’s atom. Peaks are
located at 1.5, 2.0, 2.43, 2.5, 2.93, and 3.45. The small peaks at the end of energy axis come from numerical error.

IV. CONCLUSIONS

Hooke’s atom has served as a well-defined model system, but also, as a challenging problem for
decades.1–20 In addition to analytical approaches,1–8 numerical calculations have been published,1–14

and the specific challenges have arisen from the one-dimensional case and Coulomb space splitting,
in particular.15–27 All of these studies, however, have considered the ground state, only.

In this study, we have been able to complete these numerous studies by including the excited
states and dynamics induced by an external potential. We have shown how perturbation theory (PT)
provides an accurate approach in the strong confinement regime, ω > 0.5, and in particular, the real-
time path integral (RTPI) approach with Monte Carlo simulation is a general and robust simulation
tool28,31 for confined quantum systems. It should be mentioned here that similar studies could be
carried out for other atoms with exact analytical solutions.34–36

We have demonstrated that PT is accurate enough, even for higher excited states. This means that
PT is probably suitable for studying the properties of the strongly one-dimensionally confined many
body or few-body quantum systems.21–26 Unlike earlier analytical results, as described in Sec. III,
PT is applicable for all confinement parameters and eigenstates.

With the RTPI, the improved Trotter kernel is shown to be useful with a large enough num-
ber of Monte Carlo walkers, in cases where exact propagators are not available. We find that the
accuracy and stability of RTPI are tunable with the number of Monte Carlo walkers and the real
time step size. Regarding ground states, the computational cost of RTPI is significantly higher than
that of Diffusion Monte Carlo. However, one of the advantages of RTPI is that it provides one
with the wave function explicitly, and thus, the evaluation of local multiplicative expectation values
becomes straightforward. Moreover, as RTPI is capable of locating the nodal surfaces of excited
states, it can be used to find the nodal surfaces in a diffusion Monte Carlo simulation of the excited
states.
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33 I. Ruokosenmäki et al., Comput. Phys. Commun. 210, 45 (2017).
34 M. Moshinsky, Am. J. Phys. 36, 52 (1968).
35 R. Crandall, R. Whitnell, and R. Bettega, Am. J. Phys. 52, 438 (1984).
36 C. A. Downing, Phys. Rev. A 95, 022105 (2017).

https://doi.org/10.1063/1.1673854
https://doi.org/10.1103/physrevlett.59.1140
https://doi.org/10.1103/physrev.128.2687
https://doi.org/10.1063/1.1671438
https://doi.org/10.1103/physreva.33.1480
https://doi.org/10.1063/1.1673855
https://doi.org/10.1063/1.1318767
https://doi.org/10.1103/physreva.68.022505
https://doi.org/10.1119/1.1934950
https://doi.org/10.1139/p06-072
https://doi.org/10.1063/1.1862237
https://doi.org/10.1119/1.1975232
https://doi.org/10.1088/0305-4470/30/19/025
https://doi.org/10.1103/physreva.83.064101
https://doi.org/10.1103/physreva.89.049908
https://doi.org/10.1119/1.14132
https://doi.org/10.1038/ncomms6300
https://doi.org/10.1103/physrevlett.111.130401
https://doi.org/10.1103/revmodphys.85.1633
https://doi.org/10.1038/nature09393
https://doi.org/10.1126/science.1100700
https://doi.org/10.1038/nature02530
https://doi.org/10.1088/1751-8113/40/5/010
https://doi.org/10.1103/physreva.90.052116
https://doi.org/10.1063/1.530358
https://doi.org/10.4208/cicp.180914.161214a
https://doi.org/10.1016/j.cpc.2016.09.012
https://doi.org/10.1119/1.1974410
https://doi.org/10.1119/1.13650
https://doi.org/10.1103/physreva.95.022105

