Photoemission models

Photoemission can be described with the *one-step model,* where the initial state consists of the photon and the electrons in the ground state. In the final state, after the photon absorption, the photoelectron is in an initially empty state outside of the solid.

An approximation to the above is the *three-step-model*:

- 1. Excitation of the electron to an empty conduction band state following the photon absorption.
- 2. Ballistic transport of the photoelectron to the surface.
- 3. Transmission of the photoelectron through the surface.

8.2. Inverse Photoemission

Fig. 8.23 Measured band structure of Ge.

Surfaces break the 3D periodicities and by that effect on the electronic structures, most clearly seen as new electronic states.

8.3.1. Surface States and Surface Reconstruction

Cleaving the semiconductor and creating the surface breaks bonds and leaves signly occupied *dangling bonds* pointing out of the surface. These states form 2D bands, which may appear in the bulk band gap as surface states. If they, however, overlap in energy with bulk bands, they may broaden to surface resonances.

Unsaturated dangling bonds may also try to become saturated by *surface reconstruction*. This is analogous to *Peierls transition*, where a half-occupied (metallic) band splits to two: fully occupied and empty, by doubling the primitive cell size (bulk reconstruction).

Some surface reconstructions of GaAs (001) surface

Surfaces can be studied by Scanning Tunneling Microscopy (STM), see Ge(111)-c(2x8) surface in Fig. 8.24, below.

0	Adatom
0.	First
	monolayer
•	Second
	monolayer
	Saturated
	bonds
	Primitive
	cell

8.3.2. Surface Energy Bands

As surfaces are periodic in two dimensions, only, the reciprocal space is two dimensional, too.

Fig. Reduced (110) surface bands of SnO2. Bulk projection shown by green.

Bulk and surface bands of GaAs (110) obtained from DFT–LCAO calculation with a slab model.

Constant density surface of GaAs (110) surface illustrated by constant height curves as a simple model for STM picture.

8.3.3. Fermi Level Pinning and Space Charge Layers

The surface electronic states may or may not be in the band gap. If the surface bands are in the bulk band gap they are narrow compared to the surface bands overlapping the bulk bands and forming sc. *resonances*.

In the figure 8.27., below:

a) the bulk band gap is free of surface bands

b) p-type semiconductor with E_F pinning: hole depletion layer

c) n-type semiconductor with $\rm E_F$ pinning: electr. depletion layer d) intrinsic semiconductor with $\rm E_F$ pinning: hole enrichment layer

SP II, fall 2003 70

9. Effects of Quantum Confinement

Quantum size confinement of charge carriers is achieved using various type of nano scale structures. The first one was the *superlattice* at 1970's. Others are the *quantum wells* (QW), *quantum wires* and *quantum dots* (QD). In fabrication of nano structures atomic level accuracy is desirable. It can be achieved by MBE of MOCVD. Also self-organization.

Surface diffusion, growth, and selfassembly of quantum dots at III-V semiconductor surfaces

Matthias Scheffler and Peter Kratzer Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin http://www.fhi-berlin.mpg.de/th/th.html

Microscopic processes controlling the growth of III-V semiconductors

