
6.2.2. Microscopic Theory of the Dielectric Function

To derive the first priciples theory of optical properties of
matter we begin with the quantum theory for interaction of
photons and electrons.  Here, we will retain ourselves in the
one-electron picture and several approximations pertinent to
our case.

The unperturbed one-electron Hamiltonian introduced in chap-
ter 2, already, is

  H0  =  p2 / 2m + V(r), (6.22)

where V(r) is the crystal potential without photons.  The time-
dependent solutions to the S-eq. are Bloch functions

|k,t〉  =  uk(r) e i (k·r – Ekt/h).

The electromagnetic field or photons can be simply described
by the vector potential

              A(r,t)  =  A0 cos[i(q·r – ωt)]

by choosing a suitable gauge.

The difference between classical and quantum approach
(QED) is quantization of the field to photons with harmonic os-
cillator energetics, (n+1/2) hω.  Thus, in general, a photon can
be represented by the properly normalized solution of the clas-
sical Maxwell equations.

In our treatment the explicit quantization of the field is not es-
sential for the results we obtain and we can ignore it.  Thus,
our theory can be considered to be semi-classical.

The electric and magnetic fields of the scalar potential Φ and
the vector potential are

     E  =  –∇Φ – ∂A/∂t   and    B  =  ∇×A, respectively.
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As indicated above, already, representation of the field is not
unique.  We chose the standing plane waves and Coulomb
gauge, in which for the scalar potential

   Φ  =  0 (6.23a)

and for the vector potential

  ∇·A  =  0. (6.23b)

In Coulomb gauge

  E  =  – ∂A/∂t (6.24a)
and

         B  =  ∇×A, (6.24b)

and the one-electron Hamiltonian takes the form

H  =  [p + eA]2 / 2m + V(r) (6.25)

for the motion of negatively charged electron (–e) in the field A.

Now,
[p + eA]2  =
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Thus,

H  =  H0 + HeR , (6.28)

where

           HeR  =  e/m  A·p (6.29)

is called electron–radiation interaction Hamiltonian.  It shoud
be noted that the particular form of this Hamiltonian depends
on the gauge.

Another common representation is

            HeR  =  –e r·E, (6.29)

which is the electric dipole approximation to the above.  These
two are equivalent in the limit q → 0 (or v → 0).  Hamiltonian
(6.29) includes the Lorentz force  e v×B, but both neglect the
higher order term  (e2/2m  A2).

To obtain the complex dielectric function from the electronic
structure we need to evaluate matrix elements for the "optical
transitions"  〈c|HeR|v〉  between the valence band states  |v〉
and the conduction band states  |c〉  for the Fermi Golden Rule
(of time-dependent perturbation theory).

Thus, we proceed with evaluation of

             |〈c|HeR|v〉|2  =   (e/m)2 |〈c|A·p|v〉|2. (6.31)

However, it is worth of noting that as  A·p  contains momentum
 p, its matrix elements can also be estimated from the experi-
mental effective mass data using relations (2.41 – (2.44) within
the framework of k·p method.
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Now, for the vector potential

              A(r,t)  =  A0 cos[i(q·r – ωt)]

let us write

Evaluate

p (uk(r) e i k·r)
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Substituting  |k,t〉  =  uk(r) e i (k·r – Ekt/h)  for both |kc,t〉  and  |kv,t〉
we obtain
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Now, split the integration
to two parts by writing:

r  →  "Σj" Rj + r',

where the lattice vector Rj

runs over all unit cells and
r' is integrated over a
single representative unit
cell.

Thus,
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