4. Kinematics and dynamics of electrons and holes in energy bands

Key ideas

A free electron in an energy band can be represented semiclassically by a *wave packet* of Bloch states that is *spatially localized*. The velocity of the center of the wave packet is the *group velocity* v_{g} .

The curvature of an energy band is proportional to the *inverse effective* mass. The *inverse effective* mass tensor is defined by

$$\left(\frac{1}{m^*}\right)_{\alpha\beta} = \frac{1}{\hbar^2} \frac{\partial^2 E_{nk}}{\partial k_\alpha \partial k_\beta}$$

An external force F acting on a band electron produces a change of its wave vector k with time,

$$\boldsymbol{F}=\hbar\frac{d\boldsymbol{k}}{dt},$$

which is analogous to the classical relation of force to time rate of change of momentum *p*:

$$\boldsymbol{F}=\frac{d\boldsymbol{p}}{dt}.$$

Electrons and holes in energy bands

4.1 Group velocity

4.2 Inverse effective mass tensor

4.3 Force equation

SP I, sp 2012 74

One therefore defines the crystal momentum to be $\hbar k$.4.4 Dynamics of electronsAn electric field \mathcal{E} produces an accelerated electron wave packet:

$$\frac{d\boldsymbol{v}_g}{dt} = -e\left(\frac{1}{m^*}\right) \cdot \boldsymbol{\mathcal{E}}.$$

A hole is an empty state in an otherwise filled band. Both the electric charge of a hole and its effective mass are positive.
The effective mass of a charge carrier can be measured by cyclotron 4.6 Cyclotron resonance resonance.
The concentration and charge sign of a charge carrier can be measured by the Hall effect.
4.5 Dynamics of holes
4.6 Cyclotron resonance
4.7 Holl effect

The valence electrons are responsible of the charge carrier generation, too, and in case of intrinsic semiconductors, in particular. Electrons are excited from the valence band to conduction band leaving the holes behind.

The charge carrier properties, however, follow from the band structure, as discussed below.

4.1. Group velocity

To consider electrons as spatially localized charge carriers moving in the crystal from one location to another we define the concept *wave packet* (aaltopaketti). The wave packet can be created as a superposition

$$f_{nk_0}(\mathbf{r},t) = \int a_{nk} \psi_{nk}(\mathbf{r},t) \, \mathrm{d}\mathbf{k}, \qquad (4.1)$$

of the time-dependent Bloch functions

$$\psi_{nk}(\mathbf{r},t) = \mathbf{e}^{i\mathbf{k}\cdot\mathbf{r}} \mathbf{u}_{nk}(\mathbf{r}) \ \mathbf{e}^{-i(\mathbf{E}_{nk}/\hbar)t}.$$
(4.2)

The $\mathbf{E}_{n\mathbf{k}}$ is the eigenenergy of the Bloch state.

SP I, sp 2012 76

4.2. Inverse effective mass tensor

SP I, sp 2012 78

4.3. Force equation

4.4. Dynamics of electrons

Assume an external electric field ${\bf E}$ with a force

$$\mathbf{F} = -\mathbf{e} \mathbf{E} \tag{4.17}$$

on the electron. Thus, the crystal momentum or wave vector is changing in time

$$d\mathbf{p}/dt = m^* d\mathbf{v}_g/dt = \mathbf{h} d\mathbf{k}/dt = -e \mathbf{E}.$$

(4.18 - 4.19)

Deceleration due to scattering of the accelerating electrons leads to a dynamical balance of charge carrier flow or electrical current.

SP I, sp 2012 80

4.5. Dynamics of holes

For the holes in valence band we infer:

4.6. Experimental determination of effective masses: cyclotron resonance in semiconductors

SP I, sp 2012 82

4.7. Experimental determination of carrier charge and concentration: Hall effect

Consider DC current in a bar (in x-direction). Due to the Lorentz force

$$\mathbf{F} = \mathbf{q} \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right), \tag{4.55}$$

where $\mathbf{B} = B_z \mathbf{k}$, there is a force component $F_y = q(E_y - v_x B_z)$ on the charge carriers. Therefore,

$$\mathbf{E}_{\mathbf{y}} = \mathbf{v}_{\mathbf{x}} \mathbf{B}_{\mathbf{z}} \tag{4.57}$$

and V_{H} = $E_{y}\,w.\;$ Suppose the charge carriers are holes, in which case J_{x} = $qp_{0}v_{x}$ and

$$E_v = J_x/qp_0 B_z = R_H J_x B_z$$
, where $R_H = 1/qp_0$. (4.58–59)

 $R_{\rm H}$ is *Hall coefficient* (Hall-vakio). Thus, measurement of Hall coefficient gives both the charge carrier concentration and charge of the carriers (including sign) from

$$p_0 = 1 / qR_H = J_x B_z / qE_y$$

Measurement of the resistivity $\rho = Rwt/L = 1/\sigma$, too, allows evaluation of the mobility

$$\mu_p = \sigma / qp_0$$

in case there is only one type of charge carriers.

5. Electronic effects of impurities

Key ideas	Impurities in
Donor impurities in n-type semiconductors provide free electrons to	semiconductors
the conduction band and positively charged <i>donor ions</i> . Acceptor impurities in <i>p-type semiconductors</i> provide free holes to the valence band and negatively charged acceptor ions.	5.1 Qualitative aspects of impurities
Shallow impurities have ionization energies that are small compared to	5.2 Effective mass theory
the fundamental gap. Their energy levels and eigenfunctions are well described by <i>effective mass theory</i> .	
The anisotropic effective mass of the conduction band in Si and Ge causes a splitting of energy levels associated with <i>p</i> -like hydrogenic states.	5.3 Donor impurities in Si and Ge
A set of donor levels is associated with each conduction band minimum: six minima for Si and four for Ge.	
The wave vector dependence of the dielectric constant leads to coupling	
between impurity states associated with different extrema of an energy band and a splitting of degeneracies.	
In materials such as InSb, the small effective mass and large dielectric constant lead to a large <i>effective Bohr radius</i> of <i>donor levels</i> .	5.4 Donor impurities in III—V semiconductors
Degeneracy and warping of the valence bands lead to complicated structure of acceptor levels.	5.5 Acceptor impurities

SP I, sp 2012 84

Deep level centers have energy levels near the midpoint of the fundamental gap. The ground state ionization energy depends significantly on the nature of the impurity or defect. Central cell corrections are required in the impurity potential.	5.6 Central cell corrections and deep levels
At sufficiently high impurity concentrations, the wave functions of neighboring impurities overlap sufficiently to produce an <i>impurity</i> band.	5.7 Impurity bands

By doping with impurities the electronic properties of semiconductors can be controlled or tuned as desired. Impurities are one type of defects, whose electronic states we consider next. In general, defects can be either useful or harmful.

5.1. Qualitative aspects of impurities

The most general defects are	point defects	(piste	evika	, line	defe	<mark>cts</mark> (v	viivavi	ka) a	nd <mark>c</mark>	omplexes
(kertymä).		В	А	В	А	В	А	В	А	В
Classification of point defects:										
- vacancy (vakanssi)	V_A	А	В	А	В		В	А	В	А
- interstitial (välikköatomi)	I _A			А						
- substitutional (korvaus-)	C_A	В	А	В	А	В	А	В	А	В
- antisite	\mathbf{B}_{A}									
 Frenkel defect pair 	V _A –I _A	А	В	В	В	С	В	А	В	А
		В	А	В	А	В	А	В	А	В

Impurities like C_A involving foreign atoms are *extrinsic* defects, whereas the others are *native* or *intrinsic*.

Donors acceptors double donors double acceptors isovalent substitutional

5.2. Effective mass theory

Impurities whose electrons can be treated by s.c. *"effective mass approximation"* are called *shallow* (matala) and the others are called *deep* (syvä). The effective mass approximation or theory is based on simplifying assumptions:

1. The impurity potential is weak, because the impurity is strongly screened by the high dielectric constant of a typical semiconductor crystal.

2. The impurity potential is slowly varying over the crystal lattice constant.

3. The impurity state is very spread out and only wave vectors near the band extremum (Γ -point) are essential to consider.

SP I, sp 2012 86

Thus, consider a donor with a weakly bound electron, e.g. $P_{Si}@Si$. Describe the electronic state with a hydrogen like orbital in the potential

$$V_i(r) = -Ze^2 / (4\pi\epsilon_0 \epsilon r),$$
 (5.6)

where the dielectric constant ϵ takes into account the screening of the medium and Z is the charge of the impurity.

Thus, for the donor state $\psi_i(\mathbf{r})$ we solve the Schrödinger equation

$$(H_0 + V_i(\mathbf{r})) \psi_i(\mathbf{r}) = E_i \psi_i(\mathbf{r}),$$
 (5.1)

where H_0 is the one-electron hamiltonian of the perfect crystal.

Let us expand the solution in terms of Luttinger–Kohn functions (see the text book) or localized Wannier functions

$$\psi_i(\mathbf{r}) = N^{-1/2} \Sigma_{ni} F_n(\mathbf{R}_i) w_n(\mathbf{r} - \mathbf{R}_i),$$
 (5.3)

where the coefficients $F_n(\mathbf{R}_i)$ can be regarded as amplitudes of the contributing Wannier functions, or the *envelope wave function*. By substituting (5.3) into (5.1) and assuming isotropic, nondegenerate and parabolic lowest conduction band

$$E_{c}(\mathbf{k}) = E_{c}(\mathbf{0}) + h^{2}k^{2}/2m^{*}$$
(5.7)

we are left with an equation for the envelope function

$$-\frac{\hbar^2}{2m^*}\nabla^2 + V_i(\mathbf{R}) \left[F(\mathbf{R}) = \left(E - E_c(0) \right) F(\mathbf{R}), \qquad (5.8)$$

which is similar to the Schrödinger equation of a particle with mass m^* in a potential $V_i(\mathbf{R})$, whose reference (zero) energy is $E_c(\mathbf{0})$. This is the *effective mass approximation* for the donor state (envelope wave function) or the charge carrier with effective mass m^* in medium described by the dielectric function ε .

The variable **R** in (5.8) assumes the discrete values of lattice vectors, only. However, in the range of tens or hundreds of Ångströms we can consider **R** continuous or quasi-continuous. As the potential $V_i(\mathbf{R})$ is essentially that of the point charge with effective ε , the solution $F(\mathbf{R})$ is the hydrogen atom wave function for a particle with effective mass m^* . There are both discrete bound eigenstates and continuum states with a continuous energy spectrum available for the charge carrier.

By denoting the states with principal quantum number N, angular momentum quantum number L (and M_L and M_S) we obtain the *bound Rydberg states* or levels

$$E_N = E_c(0) - R / N^2,$$
 (5.11)

where N = 1, 2, 3, ...; and R is the *donor Rydberg constant*.

SP I, sp 2012 88

The donor Rydberg constant is

$$R = \frac{m^{*}}{m_{0}} \frac{1}{\epsilon^{2}} R_{H} = \frac{m^{*}}{m_{0}} \frac{1}{\epsilon^{2}} \frac{e^{4}m_{0}}{(4\pi\epsilon_{0})^{2} 2\hbar^{2}}$$

The donor Bohr radius is

$$a^* = \epsilon \frac{m_0}{m^*} a_0 = \epsilon \frac{m_0}{m^*} \frac{(4\pi\epsilon_0) h^2}{e^2 m_0}$$
 (5.9)

and the lowest energy wave function (1S)

$$C_{1S}(\mathbf{R}) = \frac{1}{\sqrt{\pi a^{*3}}} \exp\left(\frac{-R}{a^*}\right)$$

Thus, a simplified description of the shallow donor wave function is

$$\psi_i(\mathbf{r}) = u_0(\mathbf{r}) F(\mathbf{r}).$$

5.3. Donor impurities in Si and Ge

SP I, sp 2012 90

5.4. Donor impurities in III–V semiconductors

5.5. Acceptor impurities

5.6. Deep centers (syvät tilat)

The shallow impurity states extend over many primitive cells and need only a few Bloch functions to form the descriptive Wannier function. The deep center levels are characterized by much stronger localization and need of several Bloch functions (**k**) from several bands (n) for the description.

The deep levels often relate to the lattice distortion (or relaxation), which takes energy E_D . A shallow level conversion to a deep level of energy E_0 is favorable and minimizes the total energy, if $|E_0| > E_D$.

Si_{Ga} in GaAs is a shallow hydrogenic donor, but in GaAlAs with more than 25% of Al it converts to a deep center with $E_0 \approx 0.4$ eV. Such deep donor is called a *DX center*.

SP I, sp 2012 92

5.7. Impurity bands

At high impurity concentrations, $n_I \ge 10^{18} \text{ cm}^{-3}$, the neighboring impurities are close enough to interact and form impurity bands. This may lead to high enough charge carrier concentration to screen the donor Coulomb potential to the form

$$V(r) = -e^2 / (4\pi\epsilon_0 r) e^{-q_s r},$$
(5.16)

where q_s is the inverse screening length specified by $\ q_s$ = 4 $(3n_I$ / $\pi)^{1/3}$ / $a^*.$ This binds the electron only if q_s < 1.19 / a^* or

$$n_{\rm I}^{1/3} a^* < 0.36.$$
 (5.17)

6. Semiconductor statistics

Key ideas Statistics In an *intrinsic semiconductor* free charge carriers arise from the excitation 6.1 Intrinsic semiconductors of electrons from the valence band to the conduction band creating equal concentrations of free electrons in the conduction band and free holes in the valence band. At thermal equilibrium the Fermi-Dirac distribution function specifies the occupation number of a state. The density-of-states in an energy band is the number of states per unit volume per unit energy interval. The intrinsic carrier concentration enters the law of mass action that relates the concentration of electrons and holes. In extrinsic semiconductors the charge carriers arise primarily from 6.2 Extrinsic semiconductors impurities. Donor impurities produce an n-type semiconductor. In the freeze-out range the free carrier concentration increases exponentially with temperature, but in the saturation range it is nearly constant. Acceptor impurities produce a p-type semiconductor. In a compensated semiconductor both donor and acceptor impurities are present. In an n-type semiconductor electrons are the majority carriers and holes are the minority carriers. In a p-type semiconductor the roles of electrons and holes are reversed.

SP I, sp 2012 94

6.1. Intrinsic semiconductors

6.2. Extrinsic semiconductors

SP I, sp 2012 96

7. Lattice vibrations in semiconductors

Key ideas

Phonons

In the <i>harmonic approximation</i> the equations of motion are linear in the displacement components of the atoms.	7.1 Equations of motion
The normal mode frequencies of a monatomic linear chain are confined to a band between zero and a maximum frequency.	7.2 Monatomic linear chain
The normal mode frequencies of a diatomic linear chain lie in the <i>acoustic</i> branch or the optical branch with a gap between the branches.	7.3 Diatomic linear chain
<i>Elastic continuum theory</i> provides a simple treatment of long-wavelength modes of vibration.	7.4 Three-dimensional crystals
Phonon dispersion curves are determined by inelastic neutron scattering. Short range interactions are insufficient to account for the experimental data. The deformability of the electron charge distribution is taken into account by the <i>shell model</i> and the <i>bond charge model</i> . The partial ionic character of the electron-pair bonds and the effective charge of the atom is taken into account by the <i>deformation dipole model</i> . The <i>linear response method</i> provides full phonon dispersion curves without fitting parameters to experimental curves.	7.5 Lattice dynamical models
In a normal mode of vibration all atoms vibrate with the same frequency.	7.6 Normal coordinate transformation
The vibrational specific heat obeys the <i>Debye</i> T^3 - <i>law</i> at low temperatures and the <i>Dulong</i> - <i>Petit law</i> at higher temperatures	7.7 Vibrational specific heat

SP I, sp 2012 98

Anharmonic effects are responsible for <i>thermal expansion</i> and <i>diffusive</i>	7.8 Anharmonic effects
Impurities and other defects can give rise to <i>localized modes</i> .	79 Impurity effects on lattice vibrations
<i>Piezoelectricity</i> can increase the elastic moduli and the speed of sound.	7.10 Piezoelectric effects
Applied stress can cause shifts and splittings of electronic and vibrational	7.11Effects of stress-induced atomic
energy levels.	displacements

The atoms in any crystal vibrate around their equilibrium positions, that leads to several important phenomena. Vibration breaks the ideal and exact lattice symmetry leading to coupling with electrons and electrical resistivity. Vibration is also the main mechanism behind the thermal phenomena: heat capacity and thermal conductance. Acoustics in solids are described with one type of vibrations and one class of optical properties with another type.

The quantized lattice vibrations are called phonons.

7.1. Equations of motion

The most direct approach to vibration dynamics is based on the Born–Oppenheimer approximation for evaluation of the potential energy hypersurface (PES), where the *adiabatic ion core quantum dynamics* is solved. Such PES can be obtained from theoretical total enegy calculations or by fitting observed phonon frequencies to suitably parameterized model of functional form. The simplest approximation is the collective or coupled *harmonic oscillator model* or *harmonic approximation* (not capable of explaining the thermal expansion). It should be emphasized that the adiabatic Born–Oppenheimer dynamics does not include the *electron–phonon interaction* or scattering, which is an essential feature in transport phenomena.

With the position vector of an atom

$$\mathbf{u} = \mathbf{R} - \mathbf{R}^{(0)} \tag{7.2}$$

The calssical equation of motion of the atom \boldsymbol{k} with mass \boldsymbol{M}_k is

$$\mathbf{M}_{\mathbf{k}} \, \ddot{\mathbf{u}}_{\mathbf{k}} \, = \, - \, \nabla \Phi$$

or

$$M_k \ddot{u}_{k\alpha} = -\partial \Phi / \partial u_{k\alpha}, \quad (7.5)$$

where Φ is the PES, defined above.

In the quantum mechanical approach we consider the hamiltonian in a unit cell I . Again, if \mathbf{u}_{kl} is the displacement of the atom from its equilibrium, in the harmonic approximation we write

$$H'(\mathbf{u}_{k|}) = 1/2 M_k \dot{\mathbf{u}}_{k|}^2 + 1/2 \Sigma_{k'|} \cdot \mathbf{u}_{k|} \cdot \Phi(\mathbf{k}|, \mathbf{k'}|) \cdot \mathbf{u}_{k'|},$$

where Φ is the harmonic force constants (matrix).

SP I, sp 2012 100

7.2. Monatomic linear chain

By setting the force constant of the harmonic force field to be $\Phi=2~\sigma,$ the equation of motion becomes now in form

$$M_k \ddot{u}_k =$$
(7.22)

whose solution is

7.3. Diatomic linear chain

Consider two different atoms in the unit cell, where the reduced mass of internal dynamics M relates to the two atomic masses M_1 and M_2 as

$$M^{-1} = M_1^{-1} + M_2^{-1}. (7.32)$$

The simplest procedure to find the main features of the phonon band is doubling the unit cell of the previous monatomic chain leading to halfing the 1. Brillouin zone:

SP I, sp 2012 102

7.4. Three-dimensional crystals

As an extension to the 1-dimensional case, now, the dynamics of atoms is coupled to collective normal modes, which assume the form of Bloch waves

$$\mathbf{u}_{kl} (\mathbf{q}, \omega) = \mathbf{u}_{k0} \exp[i (\mathbf{q} \cdot \mathbf{R}_{l} - \omega t)], \qquad (7.13)$$

where q is the wave vector, ω is the frequency and R₁ are lattice vectors.

As above, since \mathbf{R}_{l} are lattice vectors, two phonons whose wave vectors differ by a reciprocal lattice vector are equivalent. In other words, the unit cell or interatomic distance sets limits to the shortest wavelength. Thus, the phonon dispersion $\omega(\mathbf{q})$ is the same in all Brillouin zones.

As diamond and zinc-blende structures have two atoms in the primitive cell, there are six phonon bands: 3 acoustic and 3 optical. In high symmetry directions these can be classified to 4 transverse and 2 longitudinal

7.5. Lattice dynamical models for semiconductors

The quantized normal modes are phonons. The phonon dispersion curves can be measured by inelastic neutron scattering and inelastic x-ray scattering experiments.

Phonon creation is called Stokes process and annihilation correspondingly anti-Stokes process. Thus, the energy and momentum conservation laws can be written

Fig. 3.1. Phonon dispersion curves in Si along high-symmetry axes. The *circles* are data points from [3.4]. The continuous curves are calculated with the adiabatic bond charge model of *Weber* [3.5]

Fig. 3.2. Phonon dispersion curves in GaAs along high-symmetry axes [3.6]. The experimental data points were measured at 12 K. The *continuous lines* were calculated with an 11-parameter rigid-ion model. The numbers next to the phonon branches label the corresponding irreducible representations

SP I, sp 2012 104

7.6. Normal coordinate transformation

7.7. Vibrational specific heat

7.8. Anharmonic effects

Transport properties

8. Charge carrier scattering and transport properties

		122	
Kev	10	e	as
			_

	「「「「「「」」」」「「「」」」」「「」」」」」「「」」」」」」」」」」」
Charge carriers in semiconductors are characterized by their <i>mean free path</i> , <i>relaxation time</i> , and <i>mobility</i> .	8.1 Elementary transport theory
The Boltzmann equation governs the behavior of the carrier distribution function.	8.2 Boltzmannequation
The mobility of a carrier is proportional to the average relaxation time.	8.3 Electrical conductivity and mobility
In general, the <i>relaxation time</i> of a carrier depends on its <i>energy</i> and on the nature of the <i>scatterers</i> .	8.4 Energy dependence of the relaxation time
Scattering mechanisms such as those due to ionized impurities and phonons contribute to the relaxation time.	8.5 Relaxation times for specific scattering mechanisms
The <i>electrical conductivity</i> is modified by an <i>external magnetic field</i> . The <i>Hall effect</i> enables one to measure the <i>carrier concentration</i> .	8.6 Magnetotransport properties
The presence of a <i>temperature gradient</i> gives rise to the <i>Seebeck effect</i> . An <i>electric current</i> can produce a <i>heat flux</i> through the <i>Peltier effect</i> .	8.7 Thermoelectric phenomena
Free carriers contribute to the thermal conductivity of a semiconductor.	8.8 Thermal conductivity
Using deep impurities, semi-insulating semiconductors can be produced.	8.9 Semi-insulating semiconductors
In high electric fields, free carriers have a higher effective temperature and a lower mobility. Negative differential conductivity can arise that produces Gunn oscillations. High-energy carriers can generate additional carriers by impact ionization.	8.10 Hotcarrierphenomena
In disordered semiconductors at low temperature, the electrical conductivity can have an $\exp(-BT^{-\frac{1}{4}})$ dependence due to variable-range hopping of carriers.	8.11 Variable-range hopping conductivity

SP I, sp 2012 106

Consider next *free charge carriers*, electrons and holes, under the influence of an external field. In a weak electric field the behavior can be described by *Ohm's law*, but in high fields the behavior is different and the carriers are called *hot electrons*.

8.1. Simple phenomenological introduction to transport in semiconductors

We start with a simple phenomenological discussion for the externally driven *drift current* and concentration gradient driven *diffusion current*.

8.1.1. Electric conduction current

In the absence of external field the "low-density-noninteracting" charge carrier distribution could be viewed even with the classical statistics. Then, the *equipartition principle* would give for the mean thermal square speed s_{th}^2 a relation

 $1/2 \text{ m}^* \text{ s}_{\text{th}}^2 = 3/2 \text{ k}_{\text{B}} \text{ T}$

or

(8.1)

The average time between collisions of charge carriers (*scattering or relaxation time* τ) is in the range $10^{-13} - 10^{-12}$ s leading to the *mean free path*

$$\Lambda = s_{\rm th} \tau, \tag{8.2}$$

which thus is usually about 100 - 1000 Å.

For the drift current we assume that all electrons (holes) experience the same weak external field $\mathbf{E} = -\nabla \Phi(\mathbf{r})$ of the slowly and linearly varying external potential $\Phi(\mathbf{r})$.

By modeling "friction" due to the scattering of electrons by impurities and phonons with the above defined relaxation time τ , the classical equation of motion of electrons becomes as

$$m^* \ddot{r} + (m^*/\tau) \dot{r} = -e E,$$
 (8.3)

where the dot indicates time derivative.

From the steady-state condition $\ddot{\mathbf{r}} = 0$ (and denoting more generally q = -e) we derive the drift velocity of carriers

SP I, sp 2012 108

Define the *carrier mobility* μ by

$$\mathbf{v}_{\rm d} = \boldsymbol{\mu} \mathbf{E} \tag{8.10}$$

in the isotropic case leading to

$$\mu = q\tau / m^*.$$
 (8.11)

By adding the contributions of both electrons and holes we obtain for the conductivity

$$\sigma = q \left(n_e \mu_e + n_h \mu_h \right). \tag{8.14}$$

8.1.2. Conductivity effective mass

8.1.4. Displacement current

SP I, sp 2012 110

8.2. Boltzmann equation and its solution

Next we consider a more general case, where the carriers are distributed according to a temperature dependent *distribution function* and the scattering time is charge carrier energy dependent. This is also called the relaxation time approximation.

The distribution function $f_k(T, \mathbf{r})$ gives the probability for the occupation of the band state E_k (at \mathbf{r}) at temperature T. In the absence of the external field and thermal equilibrium this is the *Fermi–Dirac distribution*

$$f_{k}^{0} = \frac{1}{\exp\left[\frac{(E_{k} - \mu_{F})}{k_{B}T}\right] + 1}$$
(8.72)

for fermions, like electrons, where μ_F is the *chemical potential* and k_B is the Boltzmann constant.

In the presence of external perturbation the distribution function obeys the *Boltzmann* equation

$$\frac{\mathrm{d}\mathbf{f}_{\mathbf{k}}}{\mathrm{d}t} = \left(\frac{\partial \mathbf{f}_{\mathbf{k}}}{\partial t}\right)_{\mathrm{field}} + \left(\frac{\partial \mathbf{f}_{\mathbf{k}}}{\partial t}\right)_{\mathrm{diff}} + \left(\frac{\partial \mathbf{f}_{\mathbf{k}}}{\partial t}\right)_{\mathrm{scatt}}.$$
(8.45)

The three terms on the right hand side include the effects from the external field, diffusion of charge carriers and scattering of carriers by phonons and impurities.

Let us assume that diffusion is negligible and the applied field is weak enough that we can expand the distribution function

$$\mathbf{f}_{\mathbf{k}} = \mathbf{f}_{\mathbf{k}}^{0} + \mathbf{g}_{\mathbf{k}}(\mathbf{E}),$$

where $g_k(E)$ is the change induced by the external field E. Thus,

(8.46)

For the third term we write within the *relaxation time approximation*

$$\left(\frac{\partial \mathbf{f}_{\mathbf{k}}}{\partial \mathbf{t}}\right)_{\text{scatt}} = -\frac{\mathbf{g}_{\mathbf{k}}}{\mathbf{\tau}_{\mathbf{k}}}, \qquad (8.55)$$

which assumes the relaxation time to be \mathbf{k} -dependent. Relaxation is due to scattering processes, which we consider later.

Note, that a transient perturbation g_k decays away exponentially.

SP I, sp 2012 112

Now, in the steady state (e.g. in external field), from the Boltzmann equation

9. Surface properties of semiconductors

Key ideas	Surface Properties
The wave function amplitude of electronic surface states decreases strongly from the surface to the interior of the crystal.	9.1 Surface effects on electronic states
The wave function of a surface state in the nearly free electron approximation is constructed from Bloch functions with complex wave vectors. The energy eigenvalue lies in the gap between the energy bands of the bulk crystal.	
In the <i>tight binding method</i> the surface state wave function is a <i>linear</i> combination of atomic orbitals with coefficients that decay exponentially toward the interior of the crystal.	
Surface elastic waves have displacement amplitudes that decay exponentially from the surface to the interior. Their velocity is less than that of bulk waves.	9.2 Surface effects on lattice vibrations
In diatomic semiconductors <i>surface modes of vibration</i> can occur with frequencies in the gap between acoustic and optical branches.	
The <i>shell model</i> , the <i>bond charge model</i> and <i>ab initio methods</i> can be used to calculate the properties of surface modes in real semiconductors.	
Surface vibrational modes can be studied experimentally using <i>Brillouin</i> scattering, <i>Raman</i> scattering, <i>electron</i> scattering, <i>helium atom</i> scattering, and <i>infrared spectroscopy</i> .	
The <i>recombination</i> of electrons and holes can be <i>enhanced</i> at a surface or interface of a semiconductor.	9.3 Surface recombination

Kuva 4.5: Galliumarsenidin (110)-katkaisupinta. with the slab model:

Pictures from Ville Arpiainen: Electronic structure and simulated STM images of GaAs cleavage surface (Master of Science Thesis, TUT 2004).

Kuva 4.7: Galliumarsenidin (100)-katkaisupinta.

SP I, sp 2012

114

Kuva 5.11: (100)-pinnan arseeniterminoitu (1x1)-rekonstruktio.

Kuva 5.7: (110)-pinnan seitsemän atomitasoa sisältävä slab-malli.

Kuva 5.8: (110)-pinnan relaksaatio.

Kuva 5.12: (100)-pinnan galliumterminoitu (1x1)-rekonstruktio.

Kuva 5.13: (100)-pinnan arseeniterminoitu (2x2)-rekonstruktio.

9.1. Surface effects on electronic states

Kuva 5.3: CASTEP- ja DMol3-energiavyöt [Mäk03].

Kuva 5.4: VASP- ja DMol3-energiavyöt [Kom03].

(a)

Kuva 5.10: (110)-pinnan energiavyöt ja bulk-tilojen projektiot. Slab-mallin paksuus (a) viisi atomitasoa (b) 15 atomitasoa.

Kuva 5.14: (100)-pinnan vyökaaviot.(a) Arseeniterminoitu (1x1)-rel tu (1x1)-rekonstruktio (c) Arseeniterminoidun (2x2)-rekonstruktion

(a)

Kuva 5.15: (100)-pinnan orbitaalit. (a) Ylin miehitetty. (b) Alin miehittämätön.

SP I, sp 2012 116

(c)

(f)

(b)

(b)

(d)

ю

Kuva 6.3: (110)-pinnan miehitetyt tilat joilla on merkittävä kontribuutio STM-kuviin (a),(c) Danglingbond -tila, energia -0,57 eV. (b),(d) Pintaresonanssitila, energia -0,15 eV.

(c)

(c) Kuva 6.5: (110)-pinnan miehittämättömät tilat joilla on kontribuutiota STM-kuviin (a) Alin miehittämätön tila. (b) Dangling bond -tila, energia 0,6eV. (c) Resonanssitila, energia 1,05 eV. (d),(e),(f) Tilojen aaltofunktiot.

(d)