
1. Basic characteristics of semiconductors

SP I, sp 2012      1

Something about the history:
1833 M. Faraday: For AgS decreasing ρ with increasing T 
1873 W. Smith: Photoconductivity of Se
1874 F. Braun: Rectifying properties of PbS
1948 Bardeen & Brattain: Bipolar transistor

1.1. Qualitative properties
Bands:
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1.2. Composition of 
     semiconductors

The most usual semiconductors are the
elemental ones, Si and Ge (and diamond C).
They are tetrahedrally bonded, and thus, four-
fold coordinated with sp3-hybridization. 
Semiconductors are typically:

- stoichiometric:
elemental, binary, tertiary, quaternary, ...

- crystalline
- small band gap materials 

⇒ semiconducting
- covalently bonded (mainly)

There are also semiconducting organic,
magnetic and ferroelectric materials.  Some
high–Tc superconductors are semiconducting
in N-state.
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1.3. Structure of solids
1.3.1. Crystalline and amorphous forms

Classification by
internal structure
and order
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1.3.2. Lattice and basis
The lattice points are

R(l 1,l 2,l 3) = l 1 a1 + l 2 a2 + l 3 a3 (1.1)
where a1, a2 and a3 are the primitive (translation or lattice)
vectors, and l 1,l 2 and l 3 take all integer values.  Thus, In 3D we
have three primitive lattice vectors (alkeistranslaatiovektori eli
perusvektori) , which span (virittää) the lattice (hila).  For the
specific lattice (set of points in space) the choice of primitive
lattice vectors is not unique.
The crystal structure (kiderakenne) is formed by adding an atom
or an identical set of atoms, the basis (kanta), to each lattice
point.

• Lattice and basis     -->      crystal structure
The coordination polyhedron (koordi-
naatiokoppi) is defined or confined
around a lattice point by planes
perpendicularly bisecting the nearest
neighbor distances.  This polyhedron is
called the Wigner–Seitz cell.
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1.3.3. Bravais lattices
There are 14 possible
lattices in the three
dimensional space.  These
are called Bravais lattices.
The Bravais lattices can
be grouped to 7 crystal
systems (kidejärjestelmä),
which is the most
fundamental classification
of crystal structures.
In the cubic system, the
cube spanned by vectors
(a, 0, 0), (0, a, 0) and 
(0, 0, a) is called the
crystallographic unit cell
(yksikkökoppi) and  a  is
the lattice constant (hilava-
kio).
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1.3.4. Crystallographic terminology
• Directions

• Planes
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1.3.5. Structures of semiconductors
The face-centered cubic (fcc, pintakeskinen kuutiol-
linen, pkk) lattice is spanned by primitive vectors

a1  =  (0, a/2, a/2)
a2  =  (a/2, 0, a/2)
a3  =  (a/2, a/2, 0).

See the "periodic table" on p. 3 above.
• Elemental compounds:
The diamond structure (timanttirakenne) of
carbon, silicon and germanium is obtained
from fcc with a basis of two atoms at (0, 0, 0)
and (a/4, a/4, a/4).  Thus, the diamond struc-
ture consists of two interpenetrating fcc
structures with equal nearest neighbor distances.
It has eight atoms per unit cell, whereas fcc has
four, see figure 2.2.
 • III–V compounds:
The zinc-blende structure orwurtzite structure.
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 • III–V compounds:
The zinc-blende structure (sinkkivälke- eli sfaleriittirakenne) of the most of III–V compound
semiconductors occupies the same sites as the diamond structure, but with two atoms of
different elements (i.e. 2 x FCC), e.g. Ga and As.
or

wurzite structure: ionicity in bonding ⇒ increase of band gap

 • II–VI compounds:
- zinc blende structure:

or
wurzite structure:

 - strong ionicity in bonding ⇒ large band gap (> 1 eV)
 • I–VII compounds, e.g.,
 • IV–VI compounds, e.g., PbS, PbSe and PbTe  appear in rock salt structure

Tertiary compounds from mixing the binaries ...

 • Oxides:
Oxide semiconductors are, e.g., CuO, Cu2O and some high–Tc superconductors in N-state.
Band gap of La2CuO4, for example, is about 2 eV.  Complex crystal structures.
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1.4. Chemical bonding in semiconductors
1.4.1. Diamond structure semiconductors

The electronic configuration of Si atom is 
1s2 2s2 2p6 3s2 3p2.  In solid crystal the core
electrons are atomic-like but the valence
electrons hybridize to

h1 = s + px + py + pz,

h2 = s + px – py – pz,

h3 = s – px + py – pz,

h4 = s – px – py + pz

to form tetrahedrally oriented bonding.  The
bond angles are arccos(–1/3) ≈ 109.47°.
This transforms the configuration 3s2 3p2 to
3s 3p3.  This is called sp3 hybridization.
Methane molecule CH4 has the same tetra-
hedrally oriented bonding as the diamond
and zinc-blende structures.
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1.4.2. Zincblende structure semiconductors
Bonding in zincblende structure is basically covalent like in diamond structure, but due to
difference in number of participating valence electrons, zincblende structure always includes
some ionic nature;

e.g. Ga: [Ar]3d104s24p  and   As: [Ar]3d104s24p3   hybridize to
    Ga: [Ar]3d10h1h2h3h4  and  As: [Ar]3d10h1h2h3h4  in bonding to GaAs.

In more details, one particular "molecular orbital" can be written in "valence bond" formalism
as

ψ  = ϕA + λ ϕB  =  hA + λ hB,  (1.9)

where A and B refer to the atoms and λ is a parameter describing the charge transfer.  Now,
as two electrons occupy the orbital, the total wavefunction (without normalization) is

Ψ  =  ψ(1) ψ(2)  = (1.10–11)
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For a compound semiconductor  B8–NAN  the effective charge(transfer) can be written as
QA  =  e  [(N λ2 – (8–N) ] / [1+λ2]  =  – QB, (1.12)

where  e  is the electron charge.
Table 1.6.  Effective charges and ionicity parameters

     Q / e         λ 

       0         1              (IV, N = 4)
0.43–0.49      0.68 BA, where B = Ga, Al, In; A = As, Sb, P   (III-V, N = 5)
0.45–0.49 0.48–0.49 BA, where B = Zn, Cd; A = S, Se, Te       (II-VI, N = 6)

1.4.3. Layered semiconductors
In layered III–VI compounds like InSe, each In atom is bonded to three nearest neighbor Se
atoms in the same layer and to one In atom perpendicular to the layer.
PbI2 and MoS2, for example, form layered semiconductors, whose bonding within layers is
covalent, but between layers origins from the van der Waals forces.  This implies 2D charge
carrier structures.
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1.4.4. Wurtzite structure semiconductors
Many II-VI compounds like ZnS occur in both the wurtzite and zincblende structures.  CdS
takes primarily the wurtzite structure.

1.4.5. Other semiconductors
Organic semiconductors
Semiconductor like properties are also found in "organic compounds" like polydiacetylene
(CH2)n with conjugate carbon chains, fullerenes, nanotubes, BN nanotubes, etc.  Organic
molecules can easily be tailored at the molecular level and "tuned" for applications.
However, these are not used too much, yet, but they seem promising materials for nonlinear
optics (NLO), for example.
Magnetic Semiconductors
Strong magnetooptical effect allows the material to be used in optical modulators.  Their
Faraday rotation can be up to six orders of magnitude higher than that of nonmagnetic semi-
conductors.  Magnetic field can also be used to cause the
metal to semiconductor transition, a phenomenon also called
colossal magnetoresistance.
Other ...
• ferroelectric
• complex inorganic materials ... for NLO
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1.5. Growth of pure semiconductor crystals
Semiconductors can be grown as single crystals with high quality (dislocation densities as
low as 1000 cm–3) and high purity (impurity concentrations less than 1:1012).
Czochralski Method
Czochralski method is for growing bulk single crystal (erillis-
kide) ingots (tanko).  Typical growth speed is a few mm/min.
Liquid-Encapsulated Czochralski (LEC) method is used for
volatile compounds.
Silicon is usually grown in [100] direction.
Bridgman Method
Bridgman method involves use of the controled temperature
gradient in Czochralski growth.
The ingots (of diameter up to 30 cm) grown by the above
methods are then mechanically sliced to wafers (kiekko) of
submillimeter thickness.  These wafers are then the sub-
strates for the high quality epitaxial growth.
Homoepitaxy, e.g.
Heteroepitaxy, e.g.
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Epitaxy:
The two basic techniques are Molecular Beam Epitaxy
(MBE) and Metallo-Organic Chemical Vapor Deposi-
tion (MOCVD).  These allow a monolayer by monolay-
er growth, and thus, design and fabrication of atomic
level artificial structures, such as, superlattices (super-
hila) and quantum wells (QW, kvanttikaivo).
Strain-induced self-organization may also be used to
grow nanostructures.

Chemical Vapor Deposition (CVD)
A suitable chemical reaction is used to deposit
solid semiconductor onto the substrate.
For Si, e.g.:   SiH4   →   Si + 2 H2
and dopands:
from phosphine 2 PH3  →  2 P + 3 H3
from arsine 2 AsH3  →  2 As + 3 H3

For GaAs: Ga(CH3)3 + AsH3 → GaAs + 3CH4
at about 700 °C.  This is MOCVD.
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Molecular Beam Epitaxy (MBE)
MBE is accopmlished in Ultra High Vacuum
(UHV, < 10–11 torr ≈ 10–14 Pa) with ballistic
molecular beams from effusion (or Knudsen)
cells.  This is the epitaxial technique used at
the Optoelectronics Research Centre (ORC)
at Tampere Univ. of Tech.
Reflection High-Energy Electron Diffraction
(RHEED) is used to monitor the growth
"online".
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Liquid Phase Epitaxy (LPE)
LPE is an inexpensive technique for lower quality growth.

Growth of Self-Organized Quantum Dots
The three basic growth modes are:
  (1) monolayer or 2D growth
  (2) Volmer–Weber mode
  (3) Stranski–Krastanov mode
One important factor controling
the growth mode is the
lattice match (hilasovitus) or
lattice mismatch.
Lattice mismatch causes misfit
dislocations in layers thicker than
the critical thickness (kriittinen
paksuus) in otherwise possibly
pseudomorphic growth.
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2. Electronic energy bands: basic theory
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The concept of electronic structure (elektronirakenne) of material (or a specified object)
covers all aspects of the quantum state of the many-electron system: distribution of electrons
in space wrt crystal lattice and atoms, distribution of electrons in energy (density-of-states),
possible spin-density and all other related quantities.
The most complete description is given by the many-electron wavefunction, of course, which
is however, not directly obtainable for the almost infinite number of electrons of a crystal.
For solids the one-electron picture (yksi-elektronikuva) is invoked, and for periodic crystals
the most important concept is the electronic band structure, BS (elektronien kaistarakenne
eli vyörakenne).
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The band structure is a classification of the one-electron energies by their symmetry, i.e. the
wave vector (aaltovektori) k of the reciprocal space, and band index.  The tool to work
rigorously with translational, rotational and other symmetries is group theory (ryhmäteoria).
It gives the rules and algorithms to calculate and label the electronic states.  Here, however,
we do not go to such details.
It is worth of emphasizing that the electronic structure of matter provides all the information
for evaluation (at least in principle) of all the essential properties of matter (except for mass
density).  Thus, mechanical, thermal, electric, magnetic and optical properties relate mostly
or exclusively to the states and dynamics of electrons.
Except for a few cases the electrons have to be dealt with by using quantum mechanics, QM,
i.e. they should be solved fom the Schrödinger equation, S-eq.  This is true for the stationary
states, in particular.  Approaches starting from and using only nuclear charges, QM and Pauli
principle are called ab initio or first-principles methods.  Those approaches who simplify the
formalism by using empirical knowledge of experimental data to fit some properties to the ob-
served ones are called semiempirical methods.
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2.1. Schrödinger equation
The Schrödinger equation for n electrons and N ions of a crystal, omitting spin–orbit
interaction and other relativistic effects, is written as

(2.1)

where Ψ is the total wavefunction,R = {R1,...,RN}, r = {r1,...,rn} and the potentials are

         and

Other notations should be obvious.
Heading for the adiabatic approximation or Born–Oppenheimer approximation we approxi-
mate the total wavefunction as

Ψ(r,R)  =  ψ(r,R) ϕ(R), (2.2)
where ψ(r,R) is the electronic eigenfunction and ϕ(R) stands for that of the nuclei.
We first consider the electronic eigenfunction ψ(r,R) by assuming the nuclear coordinates 
R = {R1,...,RN} as parameters describing the positions of "classical mass points".  This is the
Born–Oppenheimer approximation.
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Thus, we write the electronic Schrödinger equation

(2.3)

where the electronic energy E(R) is a function of nuclear coordinates.
The equation for nuclei is

(2.4)

where Φ(R) = Ee(R) + Vii(R) is the effective potential for nuclei.  Often, it is called the
potential energy hypersurface (PES) of atoms.
Finally, we can find the neglected terms.  By substitution of (2.2) to (2.1) we obtain the Eqs.
(2.3) and (2.4), and see that we have omitted terms called the nonadiabatic coupling of
electron–ion dynamics

Next we consider the electronic Eq. (2.3) assuming the potential Vei(r,R0) to be strictly peri-
odic and give the electrons the conventional crystal environment to dwell.
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2.2. Electrons in a periodic potential
Let R0 = {R01,...,R0N}  be the strictly periodic
crystal lattice and denote

V(r)  =  V(r+R(l ))  = Vei(r,R0) (2.5)
where  R(l )  = R(l 1,l 2,l 3)  is any lattice vec-
tor in Eq. (1.1).  Thus, V(r) is periodic and
can be expanded in a Fourier series

(2.6)

where G runs through the reciprocal lattice
vectors:
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V(r) = VGeiG•r

G
∑



Thus, the reciprocal lattice vectors are
G  =  n1 b1 +  n2 b2 +  n3 b3, (2.12)

where
(2.13)

i, j, k are permutations of 1, 2, 3; and Ω0 is the volume of the primitive cell given by the Eq.
(1.2).
The vectors b1, b2 and b3 are the primitive translation vectors of the reciprocal space.
Finally, we note that

ai · bj  = 2π δij ;   i,j = 1, 2, 3, (2.14)
and

(2.15)

and
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b i =
2π
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3

.

2.3. Starting from free electrons ...
The quantum nature of electrons in a crystal can immediately be seen from their de Broglie
wavelength λ = h/p, which thus relates to the energy as

E  =  p2 / 2m  = h2 / 2mλ2. (2.16)
Now, with typical (conduction)electron energies, a few eV, the wavelength is the order of lat-
tice constant or interatomic spacing leading to the interference phenomena.
To go to quantum description of electrons, p ⟼ –iℏ∇, and Eq. (2.3) above results.  For free
electrons with the constant potential

H    ⟼    H0  =  –ℏ2∇2 / 2m (2.19)
and solutions are planewaves

ψ(r)    ⟼     χ(r)  =  eik·r, (2.21)
and energy is the "square parabola"

E0(k)  =  ℏ2k2 / 2m. (2.16)
The planewaves serve as a good basis set for solu-
tions in the periodic potential.
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2.4. ... and with periodic potential: plane wave expansion
Let us use the trial expansion (plane waves)     ψ(r)  =  ∑k C(k) eik·r (2.31)
and

Now, substitute to Η ψ = Ε ψ.

(2.35)
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2.5. Bloch's theorem
The secular equations (2.35) couple the k vector to the others of the form k − G, only.  Thus,
these are the only k vectors we have for a certain wavefunction.  The coefficients for other,
say k', are independent.  Therefore, we can now rewrite the Eq. (2.31)    ψ(r)  =  ∑k C(k) eik·r

in form
        ψk(r)  =  ∑G C(k−G) ei(k-G)·r.    (2.36a)

This means that we have the one-electron eigenstates, wavefunctions and energies for each
k, independently.
Furthermore, we can write the above as

        ψk(r)  =  [ ∑G C(k−G) e-iG·r ]  eik·r  (2.36b)
and

                ψk(r)  =  uk(r)  eik·r. (2.37–2.38)

Note, that uk(r) is periodic with the periodicity of the lattice.  Thus, the k vectors label one-
electron wavefunctions and the Bloch's theorem states that the form of the one-electron
wavefunction is a plane wave modulated by the periodic prefactor uk(r).

SP I, sp 2012      28



2.6. Electrons in a weak periodic potential
Let us treat the potential as weak perturbation using perturbtion theory.  As 0th order solution
we have the free electrons from (2.16) and (2.21)                      |k〉 =  eik·r (2.39)

                      E0(k)  =  ℏ2k2 / 2m (2.40)
For the second order we get

(2.41)

(2.47)

Similarly,
(2.49)

(2.50)
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2.7. Brillouin zones
As a consequence of the above secs. 2.4–2.6, the wave vector k can be used as a quantum
number of the one-electron state.  Note, that  k = 2π/λ  and  p = ℏk  or  p = ℏk  in 3D.  A plot of
energy eigenvalues  Ek  of (2.47) as a
function of k is the electronic band struc-
ture (BS, vyörakenne eli kaistarakenne).
The band index  n = 1, 2, 3, ... ;  labels the
consequent higher energy bands at the
same k-point in the reciprocal space
(käänteisavaruus).
The reciprocal lattice of fcc is body-
centered cubic (bcc, tilakeskinen
kuutiollinen, tkk) and vice versa.
Fig. (a) Diamond and zinc-blende structures.  (b) Fcc
structure: unit cell and primitive cell.  (c) Bcc structure
of the reciprocal space of fcc.  The first Brillouin zone
is shown with its high-symmetry points and lines.
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The Wigner–Seitz primitive unit cell,
see sec. 1.3.2 on p. 5, of the reciprocal
space is the first Brillouin zone.

Figs: (Above) 2D reciprocal
space and the 1st Brillouin
zone.  (Left) Bands in 2D
case.  (Right) 3D reciprocal
space and the 1st Brillouin
zone of FCC real space
lattice.

SP I, sp 2012      31

2.8. Energy bands and energy band gaps
Due to the periodicity of the reciprocal space
the (free-electron) bands overlap or cross
the others in the neighboring Brillouin zones.
At the zone boundary, in paricular, the
bands become degenerate, see the figure.
Consider now the eq. (2.35) on p. 27

where 
for the degenerate states k and k–G0, while neglecting all others.

Then, from Eq. (2.35) we obtain a pair of equations

and further
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Thus, the secular equation for the nontrivial solutions Ek becomes

(2.54)

and the solution

(2.55)

At the zone boundary k = G0/2, where due to degeneracy E(0)k = E(0)k–G0, we obtain
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Due to the periodicity of the
reciprocal space the bands
can be represented in the
extended zone scheme, the
periodic zone scheme or the
reduced zone scheme.  The
reduced zone scheme
presents all the information in
the first Brillouin zone and it is
the most used in literature.
Figs: (Above) The zone schemes.
(Below) Free-electron bands with a
periodic potential with zero strength
resulting from the periodicity of the
reciprocal space,only.

The Kronig–Penney
model includes a very
week periodic potential
in 1D, see the text book
and exercises.
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2.9. Tight binding method
The Bloch states expansion in terms of plane waves converges well in case of week
electron–ion interaction.  In the "opposite" case, strong electron–ion interaction, better
starting point is localized atomic orbitals as a basis to form the bonding (and antibonding)
states of shared electrons.  This is the tight-binding (TB) or linear-combination-of-atomic-or-
bitals (LCAO) approach.
It should be noted that the conduction band states tend to be delocalized free-electron like
(and antibonding), whereas the valence band states are more localized molecular orbital like
and bonding.

2.9.1. Wannier functions
One choice of a localized basis set is sc. Wannier functions  wn(r – R()), Fourier transforms
of fully delocalized Bloch functions  ψnk(r).  These two relate as

          wn(r – R())  =  N–1/2 Σk exp(–ik·R()) ψnk(r) (2.69a)
              ψnk(r)  =  N–1/2 Σl  exp(ik·R()) wn(r – R()), (2.69b)

where R() are lattice vectors, n is band index, k the wave vector in the reduced zone
scheme and N the number of unit cells in the crystal.  Thus, the Bloch functions are indexed
by the wave vectors (k-points) in the reciprocal space and the Wannier functions by the lat-
tice vectors (or primitive cells) in real space.
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While Bloch functions are more convenient for representing extended or delocalized states in
ideal crystals, the Wannier functions are more appropriate for localized electrons of defects.
However, though Wannier functions form a complete basis set (as do the Bloch functions),
they are of limited use in practice, because the Bloch functions are needed in Eq. (2.69a).

2.9.2. LCAO method
Following the idea of Wannier and Bloch functions in Eqs. (2.69) let us write the tight binding
Bloch function as

          ψkκi(r)  =  N–1/2 Σl  exp(ik·R(l κ)) ϕκi(r – R(l κ)), (2.74)
where κ and i label the atoms and orbitals, respectively, and the atomic orbitals are solutions
of the one-electron equation of the free atom

                hκ(r) ϕκi(r)  =  εκi ϕκi(r).
Thus, ψkκi(r) in (2.74) is the eigenfunction of "non-interacting atoms" of the crystal

H0  =  Σl i hl κi(r – R(l κ)).
Now, turning on the interactions between atoms will mix the functions (2.74) and the eigen-
functions of the interacting hamiltonian  H  can be expanded at any k as a linear combination

                  Ψk(r)  =  Σi Ci(k) ψkκi(r).
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The bands and the Bloch functions can be evalu-
ated from

      | H – Ek S |  =  0, (2.75)
where H and S are the hamiltonian and overlap
matrices.  Using the notation for atomic orbitals in
atoms at sites j as
ϕκj(r)  =   {| j n 〉}  =  {| sj 〉, | pxj 〉, | pyj 〉, | pzj 〉}

(a typical basis set) allows us to write the matrix
elements of hamiltonian and overlap matrices as
〈 i n | H | j m 〉  and  〈 i n | j m 〉.
Consider the molecular orbitals of the hydrogen
molecule as an example.  We find graphically
the bonding and antibonding nature of the two
possible linear combinations:
See also the schema of bonding and antibond-
ing bands on page 11.
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Extension to include p-orbitals:
SP I, sp 2012      38

s±s

s±pz

s±px

pz±pz

px±px

pz±px



Now, consider the matrix elements of the basis ϕκjn(r)  =   {| j n 〉}  =  {| sj 〉, | pxj 〉, | pyj 〉, | pzj 〉}.
1) The "on-site" matrix elements (i = j) within an atom are trivial

〈 j n | H | j m 〉  =  En δnm 

and    〈 j n | j m 〉  =  δnm .
2) The matrix elements be-
tween orbitals in different
(neighboring) atoms (i ≠ j)
may vanish due to the sym-
metry.  As the hamiltonian
has the full symmetry, the
hamilton and overlap matrix
elements have the same "se-
lection rules", which can be
easily found by simple graph-
ical inspection:
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Thus, in case of basis {| sj 〉, | pxj 〉, | pyj 〉, | pzj 〉} there are four independent non-zero matrix
elements, in both hamiltonian and overlap matrices.
If the atoms do
not lie on the z-
axis, the matrix
elements are
linear combina-
tions of those
above.
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3. Electronic energy bands: semiconductors

For the crystal properties the core electrons do not play an essential role and they are usual-
ly replaced together with the nuclei by some simplified description of ion core (atomisydän).
The usual replacement is the frozen-core or the pseudopotential.  If the core electrons are
included explicitly in the calculation, the method is said to be an all-electron approach.
The valence electrons are responsible for the crystal structure and most properties, whereas
the core electron wavefunctions remain relatively intact.  Thus, only the valence electrons
(valenssielektronit) are treated explicitly and solved from the relevant S-eq.
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3.1. Spin–orbit interaction
The atomic p-electrons have orbital angular momentum , which couples to the spin angular
momentum s.  This is called the spin–orbit interaction (spin–rata-vuorovaikutus).  It is a rela-
tivistic effect, and thus, most important for the heavier elements, such as Ge, Ga, As and Sb
of our interest.
In case of semiconductor crystals the p-electrons are often mostly responsible of the
electronic structure at the valence band maximum (VBM).  See hybridization discussions
above and the schema on page 11.  Therefore, the spin–orbit interaction is responsible of
one of the main features of the VBM structure.
The effect in the (spherically symmetric) atoms serves as a good approximate model for bulk
semiconductors, too.  So, we will consider the atomic p-orbitals  {| px 〉, | py 〉, | pz 〉}  =  {|x〉, |y〉,
|z〉}, who relate to the angular momentum eigenfunctions as
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In spherical symmetry the spin–orbit hamiltonian (energy of the spin orientation in the
magnetic field of orbital motion: –m· B = –s· B ∝ s· (E×v) ∝ s· (dV/dr r×v) ∝ s· ) can be written
in terms of orbital and spin angular momenta, s and , as

           Hso  =  ξ(r)      · s, (3.1)
where the coupling parameter is

 (3.2)

The eigenfunctions of Hso turn out to be those of s.c. jj-coupling, |j mj〉,which relate to
coupling  and s of an electron first as  j =  + s,  and then the electrons  J = Σ j.
For a p-electron:

Compare LS- and jj-coupling:
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Let us find the eigenvalues of the operator     · s  for  |j mj〉, with j = 3/2 and 1/2
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The s–o splitting of VBM increases as  Δ0 ∝ Z4.
Table
 compound C Si Ge GaAs GaP InP GaSb InSb InAs

   Z 6 14 32 31–33 31–15 49–15 31–51 49–51 49–33

Δso / eV 0.013 0.044 0.295 0.341 0.08 0.11 0.75 0.81 0.38

 compound ZnTe CdTe
  Z 30–52 48–52

Δso / eV 0.93 0.92
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3.2. Electron–ion interaction and pseudopotentials
The rapidly oscillating core wavefunctions are laborious to solve together with the valence
electrons, and in particular, to keep them all mutually orthogonal.  Furthermore, the core is
well localized, whereas the valence electrons are essentially delocalized like planewaves.

3.2.1. Orthogonalized plane wave method
Let us assume we have the mutually orthogonal set of core electron states {|c〉}c and we
denote the planevawes by |k〉 = exp(ik·r).  Then, the orthogonalized planewaves are written
as

|k〉OPW  =  |k〉 –  Σ c  〈c|k〉 |c〉, (3.4)
where the summation is over all core states.  It is easy to see that |k〉OPW are orthogonal to
any core state |c'〉:

(3.5)
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Now, following from the Bloch theorem (2.36–38), the delocalized electron states can be
expanded in terms of |k〉OPW as

|φkOPW〉  =  Σ G C(k–G) |k–G〉OPW. (3.6)
Now, substituting this into the Schrödinger equation    H φk  =  Ek φk , where   H  =  H0  + V,     
H0 = –ℏ2∇2 / 2m ,  V  is the potential energy and   |k〉OPW  =  |k〉 –  Σ c  〈c|k〉 |c〉   (3.4),  we find

Σ G C(k–G) {   [H0  + V]  |k–G〉  –  Σc 〈c|k–G〉 [H0  + V] |c〉   }  =

=  Σ G C(k–G) {   Ek |k–G〉  –  Σc 〈c|k–G〉  Ek  |c〉   } (3.7)

Σ G C(k–G) { 〈k–G'| H0 |k–G〉 + 〈k–G'| V |k–G〉 –  Σc εc 〈c|k–G〉 〈k–G'|c〉   }  =

=  Σ G Ek C(k–G) {   δGG'  –  Σc 〈c|k–G〉 〈k–G'|c〉   } (3.9)
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We obtain

[ℏ2(k–G)2/ 2m] C(k–G) + Σ G 〈k–G'| { V +  Σc (Ek–εc) |c〉〈c|} |k–G〉 C(k–G) = Ek C(k–G') (3.10)

Thus, we have found an effective potential V + VR for the continuum electron states, where
    VR =  Σ c (E – εc)  |c〉〈c|, (3.11)

or VR(r,r')  =  Σ c (E – εc) ϕ c*(r) ϕ c(r').  
This effective potential conveys the effect of core electrons in the nonlocal potential operator
VR.  Therefore, this potential is repulsive and leads us to the concept of pseudopotential.

3.2.2. Pseudopotential method
We call the above found effective potential as pseudopotential

Vps  =  V + VR, (3.12)
which lets us write the Eq. (3.10) as

          Σ G' HG,G'(k) C(k–G')  =  E C(k–G),  (3.13)
where

      HG,G'(k)  =  [ℏ2(k–G)2 / 2m] δGG' + 〈k–G| Vps |k–G'〉 (3.14)
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Now, defining the function
χk(r)  =  Σ G C(k–G) |k–G〉 (3.15)

we can write
|φkOPW〉  =  |χk〉 –  Σ c  〈c|χk〉 |c〉. (3.16)

Using this as a trial solution to the Schrödinger equation
H |φkOPW〉  =  Ek |φkOPW〉

gives
H |χk〉  –    Σ c  〈c|χk〉 H |c〉 =  E ( |χk〉 –  Σ c  〈c|χk〉 |c〉 ) (3.17)

and further
{ H –  Σ c (E – εc) |c〉〈c|  } |χk〉 =  E |χk〉. (3.18)

Finally, we have
[H0  + Vps] |χk〉  =  E |χk〉.  (3.19)
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3.2.2.1. Empirical pseudopotential method

3.2.2.2. Nonlocal pseudopotential method
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The fitting procedure is the following:
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3.2.2.3. Ab initio pseudopotentials
This is what is being used today, together
with planewave basis set, in particular.
Usually fitted with atomic calculations,
sometimes including relativistic effects.

SP I, sp 2012      54

Si

B



3.3. Electron–electron interaction
The full hamiltonian of the electronic structure, only, is

(3.40)

and the consequent Schrödinger equation is Eq. (2.3) on p. 23.  Here the last term,
electron–electron interaction, makes the one-electron problem much more complex many-
body problem.  There are several approaches to find approximate solutions to this and in the
following we will look at some, which are introduced in more details in the lectures of
Quantum theory of molecules and nanostructures.

3.3.1. Hartree method
In the one-electron picture we may expand the wave function as

ψN(r1, r2, ..., rn)  =  ϕ1(r1) ϕ2(r2) ... ϕn(rn), (3.41)
neglecting the Pauli principle for the antisymmetry of total electronic wavefunction.  With the
hamiltonian for the electron/orbital i
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we obtain the Hartree equation

(3.42)

for each occupied one-electron state ϕi.

3.3.2. Hartree–Fock method
With the proper antisymmetric wavefunction

(3.43)

variation of the total energy expression with respect to the one-electron orbitals ϕi yields the
Hartree–Fock equations

(3.44)
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The exchange term can be written

(3.45)

in terms of the exchange operator

(3.46)

which thus, turns out to be nonlocal and nonlinear.
The exchange interaction between the same spin electrons results in the Fermi-hole or
exchange hole described by the pair correlation function.  Correspondingly, the Fermi heap
emerges in the pair correlation function of opposite spin electrons.
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The many-body effects in the system of electrons are called correlations.  In finite and small
systems the many-electron wavefunction can be written as an expansion of ground and
excited state Slater determinants

       Ψ =  C0ψ0 + Σa,p Capψap + Σa<b,p<q Cabpqψabpq + Σa<b<c,p<q<r Cabcpqrψabcpqr + ...
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3.3.3. Density functional theory (DFT)
The solids with essentially an infinite number of electrons can be best treated with another
approach.  It can be shown that the ground state properties of the many-electron system has
one-to-one correspondence with its one-electron density.
Thus, by writing the ground state energy as

and requiring its variation to be stationary with respect to the density
ρ(r)  =  Σi |ψi(r)|2, (3.47)

Hartree–Fock like one-electron equations, sc. Kohn–Sham equations result as

(3.48)
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Local-Density Approximation (LDA)
is based on the HEG data for
εx(ρ), εc(ρ), µx(ρ) and µc(ρ).
The exchange terms are known analytically

and the correlation can be taken from the
Quantum Monte Carlo simulations of
Ceperley and Alder
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3.3.4. Excited electronic states
Properties and dynamics of excited electronic states are reflected in
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3.4. The k·p method
One semiempirical approach to band structure calculations is the k·p method, which can use
optical data, in particular, to fit its parameters.  The band gaps or (transition energies) and in-
tensities are most useful.  The entire band structure can be interpolated from high symmetry
points or even extrapolated from the zone center data.  Also, analytic expressions for band
dispersion, and thus, the charge carrier effective masses are conveniently obtained.

3.4.1. Nondegenerate bands
An electron in the constant potential is the planewave (2.21)

ψ(r)   =  eik·r

with the energy from the "square parabola" (2.16)
         E0(k)  =  2k2 / 2m. (3.54)

The effective mass m* is

(3.55)

(3.56)
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Now, let us start with a Bloch function
           ψnk(r)  =  unk(r) eik·r (3.57)
and substitute into the Schrödinger equation

(3.58)

where p = –i∇.
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p2

2m
+ V(r)M

NO
P

QR
ψ nk (r) = E ψ nk (r)



(3.59)

For k = k0 = 0  (Γ-point)

If the functions un0 are known or can be solved, they can be used as a basis for the solutions
of (2.35), i.e. in the perturbation expansion of  unk.  The larger basis set is used, the further
from the k0 the expansion is valid. 
This is called the k·p method.
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p2

2m + h k·p
m  + h2k2

2m  + V(r)   unk(r)  =  Enk unk(r).

p2

2m + V(r)   un0(r)  =  En0 un0(r).

From the first order perturbation theory for nondegenerate states we obtain for the wavefunc-
tion

but the corresponding energy correction vanishes, as k0 is an extremum point of the band.
The second order expansion for the energy becomes as

By definition of the effective mass

Thus, comparison with (3.60) gives now

      

This shows the origin of  m* ≠ m. It is in the wave nature of electrons and the consequent
coupling of different bands via  k·p  operator.
Let us consider the bands of the zinc blende structure at Γ-point, next.  The conduction band
minimum (CBM) is usually of s-type (and belongs to Γ1 symmetry) and the valence band
maximum (VBM) is of p-type (and belongs to Γ4 symmetry), GaAs as an example.
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unk  =  un0 + h
m 〈un0 | k·p | un'0〉

En0 – En'0
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 ,

Enk  =  En0 + h2k2

2m  + h2

m2 
| 〈un0 | k·p | un'0 〉 |2
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∑
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 .

Enk  =  En0 + h2k2

2m* .

1
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m + 2
m2k2 

| 〈un0 | k·p | un'0〉 |2
En0 – En'0

∑
n'≠n

 . (3.63)

(3.60)



A small (in absolute value) denominator ∆E = En0 – En'0 makes the coupling stronger, i.e. for
∆E > 0  (∆E < 0)  the inverse effective mass  1/m* will increase (decrease).  Thus, the bands
below (above) decrease (increase) the effective mass itself m* from its reference value free
electron mass of the noninteracting band.
Let us consider next the coupling of CBM (Γ1) to the VBM (Γ4), which is much stronger than
to the higher and further above Γ4 bands due to the smaller  |∆E|.  If ignoring other couplings
(3.63) gives for the conduction band inverse effective mass

where  E0  is the direct band gap.
Denote the three degenerate VBM (Γ4) wavefunctions as |X〉, |Y〉 and |Z〉.  Then,

     〈 Γ1|p|X〉  =  〈 Γ1|px|X〉 ̂i  +  〈 Γ1|py|X〉 ̂j  + 〈 Γ1|pz|X〉 ̂k 

and we denote the nonzero
matrix elements by

                〈 Γ1c|px|X〉  =   〈 Γ1c|py|Y〉  =   〈 Γ1c|pz|Z〉  =  iP

where  P  is a real constant (assuming that the wavefunctions are real).  Now, from (3.63) this
gives

SP I, sp 2012      67

1
m*  =  1

m + 2
m2k2 

| 〈Γ1c | k·p | Γ4v〉 |2
E0

 ,

m
mc*

  =  1 + 2 P2

m E0
 . (3.65)

It turns out that for most of the group-IV, III–V and II–VI semiconductors the nearly free elec-
tron value  P = h/a0  is a good approximation, which leads to an estimate

2P2/m ≈ 20 eV,
and a further approximation

          

Comparison:
Table 2.22.  Γ1 conduction band effective masses
Element/compound Ge GaAs GaN

E0 / eV 0.81 1.43 3.44

    Eq., above 0.041 0.072 0.17
mc*/m

    Observed 0.041 0.067 0.17
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m
mc*

  ≈  2 P2

m E0
  ≈  20 eV

E0
.



3.4.2. Valence bands
The j = 3/2 Γ4v band splits to two, sc. heavy-hole band

and light-hole band

which are not spherical but "warped" and parabolic in
directions [100] and [111], only.
The spin–orbit split–off band (j = 1/2) near Γ is spherical
with parabolic dispersion

where the effective mass mso comes from
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Ehh(k)  =  – A k2 – B2k4 + C2 [kx
2ky

2 + ky
2kz

2 + kz
2kx

2]

Elh(k)  =  – A k2 + B2k4 + C2 [kx
2ky

2 + ky
2kz

2 + kz
2kx

2]

Eso(k)  =  –Δ0 + h2k2

2mso
 ,

m
mso

  =  1 – 2
3  P2

m(E0 – Δ0)
 + 2Q2

m(E'0 – Δ0)
 .

3.4.3. Conduction bands
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3.4.4. Zincblende structure semiconductors
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3.5. Energy band structures for
       specific semiconductors

3.6. Modification of energy 
band gaps
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