
9. First-principles methods
First-principles or ab initio methods are based on most fundamental starting point, i.e.
quantum mechanics together with constants and laws of Nature.  If restricted to electronic
structure of atoms and molecules, then names ab intitio and quantum chemistry are used.
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Let us compare various
"molecular modeling" 
methods by classification
schemes:

QTMN,  2018     168



METHODS IN COMPUTATIONAL CHEMISTRY
• MOLECULAR MECHANICS,

DYNAMICS (& MONTE CARLO)
give geometries

conformations
dynamics

but not electronic structure
• SEMI-EMPIRICAL METHODS

give electronic structure
(bonding, molec. orb.)

but not "independent" results
• AB INITIO METHODS

give "everything" static
independently

but not dynamics
large systems
inexpensive

• AB INITIO MOLECULAR
DYNAMICS
ab initio with dynamics
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Newtonian mechanics 

or
optimization
or Metropolis Monte Carlo

Solving

with empirical α and β

numerically

Consider solving the nonrelativistic time-independent Schrödinger equation
  H ψ(r, R)  =  E(R) ψ(r, R)

in Born–Oppenheimer-approximation,  where r = {ri} and R = {RI} are the coordinates of
electrons and nuclei.  Then, the electronic total energy E(R) depends on the nuclear
configuration and contributes to the potential energy (hyper)surface (PES).
After separation of the nuclear Coulomb repulsion, the remaining electronic hamiltonian is

where rIi = |ri–RI|, rij = |ri–rj| and {ZI} are the nuclear charges, for a molecule with n electrons
and N nuclei.
Methods of solution, where only nuclear charges, constants of nature (and fixed nuclear
configuration, i.e. B–O approximation) are called ab initio- or "first-principles" methods.
Within sc. semiempirical methods parts of the hamiltonian and/or wavefunction are fitted to
the known experimental data.  
Ab initio methods can be divided to two main formalisms: sc. wavefunction theory, which is
based on the Hartree–Fock theory, ja density-functional theory (DFT), where the basic
concept is the electron density.
The target is finding the conformation dependent energy with the "chemical accuracy", which
is 0.01 eV (~ 1 kJmol–1).  Then, the molecular structure and the energetics relevant for
chemical reactions are found with sufficient accuracy.
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(9.1)

(9.2)



Hartree–Fock SCF-method

9.1. One-electron picture
If ignoring the electron–electron repulsion, then for a nuclear configuration R, the N electron
wavefunction can be separated to one-electron wavefunctions or orbitals ψuo and

 Ho
 ψo  =  Eo

 ψo,
where

   Ho  =  ΣiN hi
and

     hi ψuo(ri)  =  Euo
 ψuo(ri),

when
ψo(r1, r2, ..., rN)  =  ψao(r1) ψbo(r2) ... ψzo(rN).

The one-electron wavefunction added by the spin function, is called spin-orbital  φu(xi) =
ψuo(ri) σu(i).  This can be called as Hartree approach.

9.2. Hartree–Fock approach
Now, the antisymmetrized N electron wavefunction ψo, (sec. 7.15) is written as
ψo(x1, x2, ..., xN; R)  =  (N!)–1/2 det|φa(x1) φb(x2) ... φz(xN)|  =  (N!)–1/2 det|φa(1) φb(2) ... φz(N)|.
The one-electron picture can be retained, while adding to the above hamiltonian the average
Coulomb potential of orbital charge density, the Hartree potential.  In case of atoms this is
the central-field approximation.  In Hartree–Fock method, each of the N electrons feel the
Hartree potential of the other (N–1) electrons.  Then, we change the notation  ψo → ψ.
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(9.3b)

(9.3a)

(9.4)

(9.5)

(9.6)

Now, let us find the best spin-orbitals with variation principle by minimizing the Rayleigh ratio

which leads to the Hartree–Fock equations, (Appendix 11), i.e. the one-electron equations
      fi φu(xi)  =  εu φu(xi)

for each spin-orbital  φu; u = a, b, ..., z.  The Fock-operator fi becomes as, sec. 7.16 and eqs.
(7.47–49)

fi  =  hi + Σu [d Ju(i) – Ku(i)],
where d = 1 is spin-degeneration, and Coulomb operator Ju and excahange operator Ku are

and

Note, that
    Ju(i) φu(i)  =  Ku(i) φu(i).

The spin-orbitals should be iterated to self-consistency (SCF), see sec. 7.16, and such, that
in the ground state  ψ = Φ0  the N lowest spin-orbitals are occupied.  The occupied spin-
orbitals contribute to the Fock-operator.  The Fock-operaattor has an infinite number of
eigenstates and energies, which relate to the one-electron excited states.

QTMN,  2018     172

(6.43a)

(9.7a)

(9.7b)

(9.7c)

(9.7d)



"Restricted" and "unrestricted" Hartree–Fock
If the atomic or molecular orbitals or shells are "closed", i.e. fully occupied, the spin state is
singlet, S = 0, because all orbitals have the same number of α and β electrons.  The Hartree–
Fock wavefunction is then

Φ0  =  (N!)–1/2 det| ψaα ψaβ ψbα ψbβ ... ψzα ψzβ |.
In case of closed shells this is called restricted–HF (RHF) wavefunction, whereas the open
shell unrestricted–HF (UHF) wavefunction is

        Φ0  =  (N!)–1/2 det| ψa1α ψa2β ψb1α ψb2β ... ψz1α ψz2β |.

The UHF one-electron orbitals may depend on spin, becauase of spin imbalance.  Thus, e.g.
ψa1(r)  ≠  ψa2(r).
The RHF wavefunction is an eigenfunction of the spin operator S2 with an eigenvalue
S(S+1)!2, but the UHF wavefunction is not, in general.

9.3. Roothaan equations
In lower than (atomic) spherical symmetry, i.e. molecules, the HF wavefunction is generally
expanded in a basis set {θj}.  The HF equation (7.47a) for an orbital ψu(r) is

fk ψu(rk)  =  εu ψu(rk),
and thus, the form of the solution

ψu(rk)  =  Σj
M cju θj(r).
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(9.9)

(9.8)

We substitute (9.8) to (9.9), multiply from the left by θi* and integrate.  We use a notation
    Sij  =  ∫ θi*(r) θj(r) dr,

for the overlap matrix element, and similarly for the Fock matrix
Fij  =  ∫ θi*(rk) fk θj(rk) drk.

Then we obtain for all i = 1, 2, ..., M; sc. Roothaan equations.  They can be given a matrix
equation

F F F F cu  =  εu S S S S cu,
where FFFF ={Fij}, SSSS ={Sij}, cu = {cju}  for each     u = a, b, ..., z.  These M equations can also be
presented in form

  F cF cF cF c  =  S cS cS cS c εεεε,
where cccc = {cu} = {cju} and εεεε = {εju}, when  εju = εu.
The solution, eigenvalues εu and the corresponding eigenvectors cu, must be determined
self-consistently (SCF), because the Fock operator, see (7.47–49), depends on the solution,

      Fij  =  hij + Σℓ,m Pℓm {〈 iℓ | 1/r12 | jm 〉 – 〈 iℓ | 1/r12 | mj 〉}

where the elements of the sc. density matrix are
      Pℓm  =  d Σu cℓu* cmu.

Here, d is the occupation of orbital ψu, usually 2.
The sc. two-electron integrals  (ij|ℓm) = 〈 iℓ | 1/r12 | jm 〉 are many, of the order of M4.
Therefore, they take a significant part of the computational capacity and power.
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(9.11)

(9.12)

(9.13a)

(9.13b)

(9.18)

(9.19)



9.4. STO and GTO basis sets
For an accurate, but easy presentation of molecular orbitals a good basis set is needed.  In
general, a complete basis consists of an infinite numer of basis functions, M = ∞.  The
solution in a complete basis set is called as Hartree–Fock limit and the difference from that is
called as the basis-set truncation error.
In the basis set Slater type orbitals (STO) the radial part is  e–ζr, where ζ is orbital exponent,
see sec 7.14.  The infinite set {e–ζr}ζ is complete, if ζ ∈ R, but in practice, only a limited
number of ζℓ are chosen by fitting to STO. 
STO is not very popular, because evaluation of two-electron integrals in STO is laborious.
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Fig. 9.1.

Gaussian type orbitals (GTO) basis functions assume the radial part e–αr2.  Sc. cartesian
GTO functions take the form

gijk(r)  =  N xi yj zk e–αr2,
where  r = rq – rc = x î  + y ĵ  + z k̂ , i, j and k are nonnegative
integers, rc is position of the "center", usually the nucleus,
and rq is position of the electron q.  Now,  ℓ = i + j + k, and
therefore, ℓ = 0, 1, 2, ... are s, p, d, ... type GTO functions.
If  xi yj zk  are replaced by spherical harmonics Yℓ mℓ

, we have
sc. "spherical gaussians" basis set.
The size of the Fock matrix to be diagonalized can be
reduced by contraction of the basis {gi}i to a smaller
"contracted GTO basis" {χj}j by  

χj  =  Σi dji gi,
where the contracted function χj is a sum of primitive GTO-
functions gi.  The coefficients dji are determined by fitting χj
to atomic orbitals.
Molecular orbitals are then written in the form

ψi  =  Σj cji χj

for the coefficients cji to be searched.
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Fig. 9.4.

(9.21)

(9.20)



The basis set formation and contraction schemes of GTO are many, e.g.:
  • minimal basis set
  • DZ, double–zeta basis set
  • TZ, triple–zeta basis set
  • SV, split–valence basis set
  • DZP, double–zeta basis set plus polarization functions
  • STO–NG, e.g. STO–3G
  • (4s)/[2s],  (9s5p)/[3s2p]
  • 3–21G, 6–31G*, 6–31G**
An incomplete basis set
implies errors or deficiencies
in the solution.  One of these
is sc. "basis set super-
position error", which can be
corrected by sc.
"counterpoise correction".
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Table 9.4.  HF–SCF bond lengths (in units of Bohr = 0.529177 Å)

Table 9.3.  HF–SCF energies (in units of Hartree = 27.21165 eV = 4.35975 aJ

Electron correlation
HF theory includes the Coulombic repulsion between
electrons in an average way, in form of Hartree potential, only.
This means, that the HF theory does not include the many-
body effects or correlations.  This is the "definition of
correlations" used with the ab initio methods.

9.5. Configuration state functions (CSF)
Assuming the number of basis functions is n, then we have 2n
spin-orbitals, which can be occupied with N electrons in

different ways.
Let us denote the ground state Slater determinant as  Φo and
once excited determinant as Φap and twice excited one as
Φabpq, etc.
Now, the configuration state function (CSF) is any of these
determinats or a linear combination of those, which is an
eigenfunction of the hamiltonian and all operators commuting
with the hamiltonian, e.g. the operator S2.
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Fig. 9.5.



9.6. Configuration interaction (CI)
The exact N electron many-body wavefunction can be written as

       Ψ =  C0Φ0 + Σa,p CapΦap + Σa<b,p<q CabpqΦabpq + Σa<b<c,p<q<r CabcpqrΦabcpqr + ... ,

i.e., as a linear combination of the CSFs defined above, and assuming that the one-electron
basis set is complete.  This means, that the CSFs or N-electron determinants form a
complete CSF-basis for N-electron wavefunctions.
The excat many-body wavefunction Ψ does not
represent the one-electron picture of Hartree–Fock
theory, i.e., occupation configuration of one-electron
orbitals, but instead, a superposition of those.
Therefore, this is called configuration mixing or
configuration interaction (CI).
The concepts "full CI" and "basis set correlation energy"
are definend in Fig. 9.6.  
Correlation phenomena can also be called structural/
static or dynamic depending on the interpretation of the
case.
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(9.23)

Fig. 9.6.

9.7. CI calculations
The coefficients C in CSF expansion of Ψ (9.23) are found with a similar hamiltonian matrix
diagonalisation as for finding coefficients c in the expansion of spin-orbitals ψi in sec. 9.3.
Many of the matrix elements vanish and the most contributing CSF "basis functions" are Φ0
and doubly excited Φabpq.  According to the Brillouin theorem, e.g.,  〈 Φ0 | H | Φap 〉 = 0.
Depending on truncation of series (9.23) various limited CI are called:
  • DCI
  • SDCI
  • SDTQCI
Limited CI lack of sc. "size-consistency".

9.8. MCSCF and MRCI
In basic CI approach all different CSF determinants are formed from the same HF optimised
spin-orbitals for Φ0.  But in case the set {cji} in (9.8) ψ = ΣjMcjiθj is optimised simultaneously
with {Cab...pq...} in (9.23), the approach is called "multiconfiguration–SCF" (MCSCF).  Thus, in
MCSCF there is no ground state configuration Φ0, which is improved with excited states.
The "Complete active-space–SCF" (CASSCF) is a MCSCF approach, where the spin-
orbitals are grouped to inactive, active and virtual, based on how they are excited or
occupied in CSF states.
Sc. Multireference–CI" (MRCI) is an intermediate between CI and MCSCF, which gives
relatively good description of correlations with a small set of CSF functions.  Thus, e.g. the
"size-consistency" error of MRCI can be made small.
CI approaches are variational, but suffer from lack of size-consistency.
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9.9. Møller–Plesset many-body perturbation theory
Many-body perturbation theory (MBPT, monihiukkashäiriöteoria) is an alternative to improve
HF approach with a systematic manner.  MBPT is not variational, but it is size–consistent.
In Møller–Plesset perturbation theory the reference state is chosen to be the sum of one-
electron Fock operators

  H(0)  =  Σi fi.
HF wavefunction Φ0 is an eigenfunction of this operator, see the example 9.4 in text book.
Next we choose the first order perturbation operator to be

H(1)  =  H – H(0),
which "corrects" the reference state H(0) energy to the Hartree–Fock energy, where H is the
molecular hamiltonian (9.2).
Thus, the Hartree–Fock energy is EHF = E(0) + E(1), where

       E(0)  =  〈 Φ0 | H(0) | Φ0 〉
and

       E(1)  =  〈 Φ0 | H(1) | Φ0 〉.
The second order correction is

where ΦJ are "excited" CSF functions.  In the numerator all the matrix elements vanish
except for those, where ΦJ is a doubly excited CSF.  This second order MP perturbation
theory is called MP2.  The third and fourth order theories are correspondingly MP3 and MP4.
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(9.27)

(9.28)

(9.29)

9.10. Coupled-Cluster method
The correlated N-electron wavefunction can also be written as

            Ψ  =  eC Ψ0 ,
where Ψ0 is the Hartree-Fock wavefunction

          eC  =  1 + C + C2/2! + C3/3! + . . . ,
where C is "cluster operator"

                 C  =  C1 + C2 + C3 + . . . + CN

and Ck is k-fold excitation operator.  For example,
     C1 Ψ0  =  Σa,p tap Φap    ja   C2 Ψ0  =  Σa,b,p,q tabpq Φabpq.

It can be shown, that e.g. out of 2-electron excitations C1C1 Ψ0  and
C2 Ψ0 only the latter one should be counted, the coupled one, see
the diagrams in Fig. 9.8.  The same rule should be followed in case
of all other excitations, too.

Thus, in "coupled cluster doubles" (CCD) approximation  C  =  C2  ja
Ψ  ≈  eC2 Ψ0  and Schrödinger equation is written as

      H eC Ψ0  =  E eC Ψ0.
Due to the orthogonality conditions, that results in energy

 E  =  EHF + 〈 Ψ0 | HC2 | Ψ0 〉.
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(9.30a)

(9.31a)

(9.31b)

(9.30b)

(9.32)

(9.33)
Fig. 9.8.



Density functional theory (DFT)
Density functional theory (DFT) is an alternative approach to solve the many-electron system
Schrödinger equation (9.1).  DFT is a natural approach for extended systems (solids,
sizeable clusters or molecules), whereas the Hartree–Fock wavefunction theory and its
derivatives of are that for smaller systems: atoms and smaller molecules.

9.11. Hohenberg–Kohn existence theorem
The starting point is the electron density, see sec. 7.18, p. 134.  All properties of the ground
state system of electrons in a given external potential  (e.g., that of the nuclei) uniquely
depend on the electron density ρ(r).  This is the first Hohenberg–Kohn theorem.
Let us prove, that the ground state electron density uniquely gives its external potential, i.e.,
its hamiltonian, which proves the theorem.  Thus, let us assume two different hamiltonians 
H and H' with two different ground state wavefunctions Ψ and Ψ', which lead to the same
ground state density.
Then, E0  < 〈 Ψ' | H | Ψ' 〉  =   〈 Ψ' | H' | Ψ' 〉  +  〈 Ψ' | H – H' | Ψ' 〉  =  E0'  +  ∫ ρ(r) [v(r) – v'(r)] dr,
but     E0'  < 〈 Ψ | H' | Ψ 〉   =    〈 Ψ | H | Ψ 〉   +   〈 Ψ | H' – H | Ψ 〉  =   E0  –  ∫ ρ(r) [v(r) – v'(r)] dr.
Now, sum of these inequalities implies

E0  +   E0' <  E0'  +   E0,
which proves that the assumption of two different external potentials for a given electron
density must be wrong.
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9.12. Hohenberg–Kohn variational theorem
The first Hohenberg–Kohn theorem implies, that with variation of the electron density the
total energy can be minimized to that of the ground state, but not below.  Thus, minimizing

          E[ρ]  =  T[ρ] + Vee[ρ] + ∫ ρ(r) v(r) dr  =  EHK[ρ] + ∫ ρ(r) v(r) dr
with the condition    δ { E[ρ] − µ ∫ ρ(r) dr }  =  0      we get

 µ   =  v(r) + δEHK[ρ]/δρ(r),
where µ is the chemical potential.  Cf., Thomas–Fermi theory in sec. 7.18, p. 134.

9.13. Kohn–Sham equations
Introducing one-electron orbitals of non-interacting electrons or sc. Kohn–Sham orbitals  ψi
the ground state total energy can be written as

where ρ(r)  =  Σi |ψi(r)|2.  The first term is the kinetic energy, the second is the potential
energy, the third is Hartree energy and the last one is sc. exchange and correlation energy.
Thus, the energy is a functional of electron density, E[ρ].

The last term corrects the independent electrons energy to the interacting electrons energy.
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(9.37)

(9.36)



Application of variational principle to the total energy, silimarly to HF earlier, here leads to the
Kohn–Sham equations

       f ψi  =  εi ψi,
where

and

If Exc[ρ] was known, the exchange and correlation potential Vxc[ρ] could be found as its
functional derivative.
Thus, with DFT we can keep the one-electron picture, although we have all the correlations
fully included.  Therefore, interpretation of the Kohn–Sham orbitals as quasi-electron states
is different from the wavefunction theory.  It can be shown, e.g., that the eigenenergy of the
highest occupied Kohn–Sham orbital is the first ionization energy, exactly!
Historically, the DFT was preceded by the Thomas–Fermi method, see sec. 7.18, where
however, calculation of the kinetic energy without the one-electron picture is not simple.
The sc. Xα-method derived from the HF theory by Slater is also reminiscent of DFT or LDA,
see the next sec.   Xα-method includes exchange energy as a functional of electron density.
Also, hungarian Gáspár had presented similar suggestion even before Slater.
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(9.39)

(9.42)

(9.41)

9.14. Local-density approximation (LDA)
For DFT calculations the exchange and correlation energy functional Exc[ρ] needs to be
known for a given ρ(r).  This functional is known very accurately for the homogeneous
electron gas (HEG), which can be described with a single parameter ρ0 or rs = (3 / 4πρ0)1/3.
In fact, the energies per electron in HEG  εxc[ρ0] = εx[ρ0] + εc[ρ0] are known and the
functional is then

Exc[ρ]  =  ∫ ρ(r) εxcLDA(ρ(r)) dr,
where εxcLDA(ρ(r)) = εxc[ρ0], when ρ0 = ρ(r).  Thus, at every position r the εxc is approximated
by that of the HEG, when ρ0 = ρ(r).  This is the LDA.
The LDA can be expected to be viable for conduction electrons of metals, for example, but is
has turned out to be very useful in many other cases as well and for molecules, in particular. 
In general, LDA can be expected to be viable, in cases where the exchange and correlation
hole is localized around the electron.
While HF approach is accurate for an one-electron system, e.g. hydrogen atom, the LDA is
exact for an infinite HEG.  Between these extremes the structure dependent correlations
need to be considered and HF is completed with CI, for example.  So far, the best
corrections to LDA are based on the "nonlocal" functionals of the form εxcNL[ρ(r); ∇ρ(r)].
Also, many kind of hybrids of HF and DFT have turned out to be useful.
Jokingly, we can say that the hamiltonian of wavefunction theories is exact, but the resulting
wavefunctions are not, whereas in case of DFT it is vice versa, the hamiltonian is an
approximate (with the functional Vxc[ρ]), but the resulting wavefunction is exact (for that
hamiltonian, within numerical accuracy).
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