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MISC. THOUGHTS ABOUT ERROR ESTIMATION

A. DEFINITIONS

Let X be a random variable that is assumed to have normal distribution (or close enough)

where essential. Let µ, σ2 and σ denote the mean, variance and standard deviation of the

distribution.

Consider a sample {Xi}, where i = 1, 2, ..., n, with the sample average

X̄ =
∑

i Xi

n
(A1)

and standard deviation (of the sample) S =
√

S2 obtained from the sample variance

S2 =
∑

i(Xi − X̄)2

n− 1
. (A2)

These are unbiased estimates of the distribution statistics,

〈X̄〉 = µ (A3)

and

〈S̄2〉 = σ2. (A4)

Root mean square (RMS) of the sample distribution is defined as

RMS =

√∑
i(Xi − X̄)2

n
≈ S. (A5)

Sample average X̄ is (at least closely) normally distributed with the standard deviation

called standard error of mean

SEM(n) =
σ√
n

. (A6)

It is essential to note that SEM(n) is sample size dependent.

If the data of the sample do not have (internal) correlations X̄ is within the limits µ±SEM ,

µ± 2 SEM or µ± 3 SEM with the probability 68%, 95% or more than 99%, respectively.

Therefore, error bars of size SEM , 2 SEM or 3 SEM have well-defined meanings and are

useful in defining statistical error limits.
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B. STANDARD DEVIATION OF GROUP AVERAGES

Often, a useful way to estimate SEM(n) is the ”method of group averages”. Let the

(uncorrelated) data be divided into k subgroups of m data, i.e.,

n = k m. (B1)

Now, the standard deviation S(m), from

S2(m) =
∑k

l=1(X̄l − X̄)2

k − 1
, (B2)

of the k group averages (l = 1, 2, ..., k)

X̄l =
∑m

i=1 Xi,l

m
(B3)

yields

SEM(m) = S(m). (B4)

According to (A6) we finally obtain

SEM(n) =
√

m

n
S(m) =

S(m)√
k

. (B5)

Note that S(1) = S by (A2) and S(n) = SEM(n) by (A6).

C. SUMMING INDEPENDENT ERRORS

Suppose that we deal with a random variable

X = Xa + Xb, (C1)

where Xa and Xb are normally distributed (or close enough). As the distribution of X is

a convolution of the distributions of Xa and Xb, for the variances it holds

S2 = Sa2 + Sb2
. (C2)

Furthermore, because for the sample averages obviously

X̄ = X̄a + X̄b, (C3)

we obtain for the standard error of mean

SEM2 = SEMa2 + SEM b2
. (C4)
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D. CORRELATED DATA

Now, let us consider data with the type of ”internal correlations” that may follow, e.g.,

from recording the successive values (in time) of a physical observable X(t). This is the

case of the dynamical variable along the trajectory (or path), which is a solution of the

equations of motion in molecular dynamics, for example. It is obvious that increasing the

sampling frequency beyond some limit,

fc =
1

∆tc
, (D1)

where ∆t is the time step, the recorded data values start approaching interpolates between

the adjacent ones rather than new independent information of the observable.

In such a case (A6) cannot be used to estimate the standard deviation of the sample

average X̄, i.e., SEM . However, a straightforward but careful use of (B4) can be used to

evaluate at least an upper limit for it, as shown in sec. E, below. But here, we will first

consider a more advanced method, based on the direct evaluation of the ”correlations” in

the data.

Let us first define some concepts for stationary (or close enough) time series {Xi} = {X(t)},

where t = ti = t0 + i ∆t and i = 1, 2, ..., n. The covariance of {Xi} and {Yi} is defined as

σXY = Cov(X, Y ) = 〈(X − µX)(Y − µY )〉 = 〈XY 〉 − µX µY . (D2)

Thus, we have σ2
X = σXX = Var(X), which is the variance (A4). A related quantity is the

correlation coefficient

ρXY =
σXY√
σ2

X σ2
Y

. (D3)

Thus, σXY = ρXY σX σY . Next, we define the autocovariance of {Xi} or {X(t)} as

γX(τ) = Cov(X(t), X(t± τ)) = 〈X(t) X(t± τ)〉t − X̄2 (D4)

and autocorrelation function as

ρX(τ) =
γX(τ)
γX(0)

. (D5)
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Note that γX(0) = σ2
X , the variance of X(t).

Now consider error estimation of the sample average X̄ of the ”correlated” data {X(t)}

defined above. It can be shown (Wayne A. Fuller, Introduction to Statistical Time Series,

Wiley 1976) that

Var(X̄) =
1
n2

n∑
i=1

n∑
j=1

γX(ti − tj) =
1
n

n−1∑
i=1−n

(
1− |i|

n

)
γX(ti), (D6)

which implies

SEM =
1
n

√√√√ n−1∑
i=−(n−1)

(
n− |i|

)
γX(ti), (D7)

as Var(X̄) = SEM2. In case of uncorrelated data, for which γ(τ) ≡ 0, if τ 6= 0, (D7)

reduces to 1
n

√
n γX(0) −→ σX/

√
n, which is (A6), as expected.

For evaluation of SEM from (D7) one needs to compute γX from (D4) first. In practice, the

fluctuations in γX(τ) become large for large τ , which has shown to introduce uncertainty

in what (D7) yields for SEM . Therefore, the autocovarience function has to be cut or

smoothened at large τ .

E. CORRELATED DATA, A SIMPLE APPROACH

Here, we suggest a staightforward approach to estimate the statistical error limit SEM

of the sample average X̄ of correlated data, based on concepts given in section B. Hence

again, let us divide the trajectory into k pieces of equal length, and consequently, the

recorded data to k subgroups of m successive values of the observable,

n = k m. (E1)

Next consider the function S(m) as defined by (B2). For a sufficiently large m, with a

good approximation,

S(m) ∝ 1√
m

, (E2)

if the ”correlation length” is shorter than m. With a constant k the correlation length mc

and the sampling frequency f are proportional and

mc ≈
f

fc
. (E3)
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For small m, m < mc, on the other hand, S(m) can be expected to be constant. This can

be concluded from the fact that increasing f (or m) with constant k should not have any

effect on the group averages X̄l, and thus, on their standard deviation. Therefore,

S(mc) ≈ σ. (E4)

Note that from the above it follows that
√

mS(m) is constant for large m.

Finally, we estimate the SEM (with the confidence limits given above). If mc is found (by

inspection, for example), from

√
mc S(mc) =

√
n S(n)

we obtain

S(n) =
√

mc

n
S(mc), (E5)

which is the standard deviation of the group averages for the sample size n, i.e., it has the

confidence limits of SEM . By defining the ”number of uncorrelated” (or independent)

data values

nc =
n

mc
(E6)

of the sample and using (E4) and (E5), we can finally write

SEM(nc) =
σ
√

nc
. (E7)

Also, it is worth of noticing, that the correlations in the time series and the limiting fre-

quency fc may be inspected and estimated using Fourier transformations and the sampling

theorem.

APPENDIX a: APPLICATION OF THE THEORY OF SEC. E TO THE

ORIENTATION PARAMETERS OF PLPC FATTY ACID CHAIN

Consider a system of 36 (= nM ) PLPC molecules each containing several carbon chain

segments, whose orientation and statistical errors we wish to evaluate. For simplicity, in
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what follows we talk about one segment or one orientation parameter X as an example,

and as a numerical value take a rough average over segments. The molecular dynamics

runs over 7200 (= nt) time steps, and thus, we have a collection of

n = nM nt (a1)

data points Xij (for each segment). Defining the indices as i = 1, 2, ..., nt and j =

1, 2, ..., nM , we can expect strong ”internal correlation”, as defined in section D, for a

certain j as i runs over the successive data in time domain. On the other hand, for a

certain i there may be structural correlations through molecular interactions for different

j.

The computed figures are as follows. In parentheses the limits over the different segments

are given, followed by ”an average” (median) value as an example. The standard deviation

of the whole data

S = (0.40 ... 0.46) = 0.43 (a2)

and according to the (E7)√
nc

n
SEM(nc) = (0.0008 ... 0.0009) = 0.001, (a3)

but nc is unknown.

On the other hand, the standard deviation of the nM time averaged (over nt data values)

group averages X̄t
j is

SM (nt) = (0.18 ... 0.42) = 0.3, (a4)

which implies according to (B5)

SEM(nc) =
SM (nt)√

nM
= (0.03 ... 0.07) = 0.05. (a5)

This is a good measure of the statistical error and can be used as an error bar, too.

Now, from (a3) and (a5) we obtain nc ≈ 100, or a period of 0.1ps (10−13s), for the

correlation length. This rough estimate is of the order of typical molecular vibration
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period (as the vibration of hydrogen atoms is hindered, now). This is actually what one

would expect.

The standard deviations attached to each of the group averages X̄t
j are

St
j = (0.24 ... 0.36) = 0.3. (a6)

Now, for the orientation parameter let us suppose that

X = XM + Xt, (a7)

where XM is sc. structural distribution among the PLPC molecules and Xt is a dynamic

distribution due to the thermal motion in time domain. For a ”long enough” time period

this separation becomes meaningless as the structural distribution decays to the dynamic

one. For shorter periods, however, we can try the following analysis, though its relevance

and limitations should be carefully considered.

First note that (S̄t or)

St
j ≈ 0.3 < S ≈ 0.43 (a8)

and

SM (nt) ≈ 0.3 < S ≈ 0.43. (a9)

The former inequality suggests that some contribution from the structural distribution

beyond St
j remains in S and the latter implies that the structural distribution has not

decayed to the dynamic one, yet. Furthermore, in the spirit of section E we see that the

(E2) holds very well

SM 2
+ Sj2

= 0.42 ≈ S. (a10)

Hence, the model of two independent contributions to the orientation parameter X works

well. However, as limitations in the model we should note that all the involved distribu-

tions are not normal. Even the range of the orientation parameter as well as its separate

components (XM and Xt) is limited to −0.5 ... 1.
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