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Introduction and orientation
Quantum mechanics
• was needed to interpret and explain new experimental observations
• replaces Newton's equation of motion by Schrödinger equation, which is the "equation of
motion" of very small particles

"replacing zero by Planck's constant h"
• yields classical mechanics for macroscopic objects as a limiting case, if  h → 0.
• leads to the concept wave function and quantization of energy, and consequently,
particle–wave dualism, uncertainty relation, probability interpretation and quantum state

• all experimental observations, so far,
support quantum theory

Quantum theory and relativity are called
modern physics.

Next, we will briefly consider the "new
experimental observations" more than
100 years, ago, which led to the need of
formulation of quantum mechanics.

0.1 Black-body radiation

Black body (musta kappale):
• absorbs all radiation
• emits according to Stefan–Boltzmann law

where

For example 1 cm2 area at 1000 K temperature emits
power of about 6 W.

The power distribution in wave length or frequency cannot
be explained in classical physics.
For the maximum of power Wien's displacement law

λmax T =  constant
= 2.9 mmK.
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Fig. 0.1.

Fig. 0.2.



Let us assume that the electromagnetic field is
composed of oscillators, whose energy depends on
frequency and the energy distribution is continuous for
each frequency according to the Boltzmann distribution

Planck's quantum hypothesis:
Oscillator energies are
multiples of  hν  (plus possible
zero point shift), where h is a
constant.   Thus, hν is the
quantum of energy.

Planck distribution for
the spectral density (1900) is

Example. The 2.7 K cosmic background radiation contains about 400 photons / cm3.
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0.2 Heat capacities
Dulong and Petit formulated (1819) a theory for the heat capacities of
solids.  It is based on a hypothesis of atoms being the oscillators,
similarly as the EMF, above.  This allows classical formulation of
internal energy and heat capacity of solids, valid for insulator type
solids in room temperature and higher, but not at very low
temperatures.
Einstein in 1906 realized the analogy between oscillating matter
particles and those of EMF, "quantized" energies of oscillating atoms
and derived the theory of heat capacities of solids, valid also at very
low temperatures.

0.3 Photoelectric and Compton effects
In 1906 Einstein explained the photoelectric effect in terms of quanta  hν  of light given to the
emitted electrons from the metal.  Therefore,  the kinetic energy of an electron becomes as

1/2 m v2  =  hν – φ.
This implies, that the quanta of
light have to be "localized" and
the light itself is a stream of
particles, i.e. the photons.
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Fig. 0.3.



Compton effect
If photons are particles with energy hν and zero restmass, they should carry momentum  

p  =  hν / c.     
In 1923 Compton demonstrated by using x-rays
that this is the case.

0.4 Atomic spectra
Atomic emission and absoption spectra show
discrete "lines", that can be understood only by
allowing discrete energy states for atoms, i.e.
quantization.  Balmer noticed in 1885, that spectral
lines of hydrogen (in visible region) can be fitted to
relation

where RH = 1.09678 × 105 cm–1, known as Rydberg
constant, and n = 3, 4, 5, ... .  Thus, 2 and n
correspond different states of hydrogen atom.
Based on this observation Bohr in 1913 developed
his atomic model by quantizing the energies of
electrons in hydrogen atom.
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0.5 Duality of matter
After realizing the analogy between Fermat's principle (in optics) and Hamilton's principle (in
mechanics) in 1924 de Broglie suggested, that with a moving body there is an associated
wave, whose wave length is

λ  =  h / p.

Davisson and Germer in 1925 observed diffraction
of electrons and verified the above relation (0.14).
G. P. Thomson in v. 1927 also found diffraction of
electrons as waves.

Uncertainty principle
From particle–wave dualism it follows the sc.
uncertainty principle (epätarkkuusperiaate) or
principle of indeterminacy (Heisenberg 1927),
according to which, sc. complementary pairs of properties of a system can be known
simultaneously with a limited precision, only.  For the simultaneous particle position and
momentum, e.g., it holds ∆x ∆px  ≥  !/2, where ∆x and ∆px are standard deviations of the
quantities.
One should note, that this does not relate to limited accuracy in carrying out the
measurement, but the fact that simultaneus exact values do not really exist.
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1. Foundations of quantum mechanics
Next, the basic concepts and postulates of quantum mechanics will be briefly presented.
Also, the usual notations and direct consequences of postulates are introduced.

Operators in quantum mechanics
In classical mechanics measurable observables are functions (of time, position, ...), whereas
in quantum mechanical description observables are operators, whose eigenvalues are
measured. Usually the same notation is used for observables and operators, e.g., Ω.

1.1. Linear operators
An operator Ω is a linear operator, if for all relevant functions f and g

Ω (af+bg)  =  aΩf + bΩg,
where a and b are some constants.

1.2. Eigenfunctions and eigenvalues
Function f is the eigenfunction of an operator Ω (ominaisfunktio), if

Ω f = ω f,
and then, ω is the corresponding eigenvalue (ominaisarvo).
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(1.2)

Eigenfunctions { fn}  of an operator Ω  form a complete set  (täydellinen joukko), a basis, in
which any other function g can be expanded as a linear combination

This is useful, if the eigenfunctions and eigenvalues are known, as

If more than one eigenfunction correspond to the same eigenvalue ω, the state is called
degenerate.  Linear combinations of degenerate eigenfunctions correspond to the same ω.
Example.  Hydrogen atom p orbitals and d orbitals.

Functions g1, g2, ..., gn are linearly independent, if constants c1, c2, ..., cn, such that
Σi ci gi  =  0

do not exist. Otherwise functions gi are linearly dependent and one of the functions gi can be
presented as a linear combination others.
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1.3. Representations
The choice of operators corresponding to the observables is not unique.  Also, the formal
operators can be chosen different ways, but usually differential operators or matrices are used.
Most often the operator corresponding to position is chosen to be coordinate x  (or vector r), as

x  →  x and px  →  –i! ∂/∂x.
That is called position representation.  In momentum representation we have

x  →  i! ∂/∂px        and px  →  px.
There are also other possible representations.

1.4. Commutation and non-commutation
For the operators A and B generally AB ≠ BA.  If so, the operators do not commute.  Operators
commute, if AB = BA. We define the commutator as

[A, B]  =  AB – BA.
Example 1.3.  Find [x, px] in position representation.
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1.5. Construction of operators
Many other physical operators can be constructed from the position and momentum
operators.  For the kinetic energy T = p2 / 2m  we obtain the corresponding operator

for the one dimensional motion on x-axis.  In three dimensions we can derive

Usually the potential energy depends on the position, only.  Thus, the potential energy
operator of an electron in the electrostatic field of a nucleus is simply

where r is the electron–nucleus distance.  For the total energy or Hamilton's function
H  = T + V

the corresponding hamiltonian (operator) becomes as
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1.6. Integrals over operators
Often, as matrix elements we need to evaluate integrals

             I  =  ∫ f* Ω g dτ,
where f* is the complex conjugate of f and dτ is volume element for integration over the
whole volume.  Scalar product of functions f and g 

    S  =  ∫ f* g dτ

is called as overlap integral.  If functions are normalized such, that
∫ f* f dτ  =  1 and ∫ g* g dτ  =  1,

the overlap integral is a measure of similarity of the two functions given in range  0 ≤ S ≤ 1.
If S = 0, the functions f and g are called orthogonal.
Functions g1, g2, ..., gn are orthonormal to each other, if

          ∫ gn* gm dτ  =  δnm,
where δnm is the Kronecker delta function.
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(1.19)

Example 1.4.  Normalize the function fn = N sin(nπx/L)  in 0 < x < L.  Consider orthogonality
of functions fn.

1.7. Dirac bracket and matrix notation
Let us denote by using angle brackets

     〈m|Ω|n〉  =  ∫ ψm* Ω ψn dτ,
and

     〈m|n〉  =  ∫ ψm* ψn dτ  =  δmn.
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Thus, the orthonormality condition can be written as
   〈m|n〉  =  δmn.

We also denote  Ω |n〉 = ωn |n〉, where |n〉 = ψn, and furthermore  〈n| = ψn*, thus 
 〈m|n〉 = 〈n|m〉*.

Operator and commutation relations can be described also by using matrices as an
alternative for differential operators.  
A product of matrices A and B as C = AB can be written in terms of matrix elements

             Crc  =  ∑s Ars Bsc.
Thus, in general AB ≠ BA.
The above integrals 〈m|Ω|n〉 are matrix elements of ΩΩΩΩ, as Ωmn = 〈m|Ω|n〉.  Thus,

              〈r|C|c〉  =  ∑s 〈r|A|s〉〈s|B|c〉  =  〈r|AB|c〉,
because C = AB.  Therefore, we make an interpretation

  ∑s |s〉〈s| =  1.
This is called completeness relation or closure relation, because these orthogonal functions
|s〉 span the whole functional space.  Therefore, any function |ψ〉  can be expanded as

|ψ〉  =  ∑s cs |s〉.
By multiplying this from left with 〈r|, we obtain 〈r|ψ〉 = cr  and change to position representation

    〈r|ψ〉  =  ∑r 〈r|ψ〉 |r〉  =  ψ(r).
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(1.22)

(1.23)

(1.3)

(1.25)

(1.24)

Example: Diagonal hamiltonian
Consider Schrödinger equation  Hψ = Eψ  as a matrix equation.  Now, substitute 
which gives
By multiplying from left with bra vector  〈m|,  we obtain

and because         we have

for the hamiltonian in basis { |n〉 }.
Now, if we find a basis { |n〉 }, which makes hamiltonian diagonal, i.e.,  Hmn = 0,  if  m ≠ n,  it
follows that

Hnn cn = En cn .
This means that the diagonal matrix elements are the eigenvalues, Hnn = En.  Furthermore, it
can be shown that the eigenvectors are the corresponding eigenfunctions.  Thus, we have
the solution to the Scrödinger equation, and for this reason, solving the Scrödinger equation
is often called  diagonalization of the hamiltonian.
This procedure is limited by the finite dimension of the hamiltonian or the quality of the finite
basis set.  However, there are efficient numerical algorithms for diagonalization of high
dimensional matrices, i.e., finding the the eigenvalues and eigenvectors of non-singular
matrices.  Therefore, this is the most popular method in practical numerical and theoretical
approaches.
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1.8. Hermitian operators
An operator Ω is hermitian, if

        ∫ ψm* Ω ψn dτ  =  { ∫ ψn* Ω ψm dτ }*
for any two functions ψm and ψn.  Alternatively,

         ∫ ψm* Ω ψn dτ  =  ∫ {Ω ψm}* ψn dτ,
where integrations are over the whole space.
With bracket notation the hermiticity condition (1.26a) is

〈m|Ω|n〉 = 〈n|Ω|m〉*.

Example 1.5. Show that the operators x and px are hermitian.
For x:
              〈m|x|n〉 = x 〈m|n〉 = x 〈n|m〉* = 〈n|x|m〉* 
                                                                            QED.
For px:
               ∫ ψm* px ψn dτ  =   –i!  ∫ ψm*  ∂ψn/∂x dτ  =   –i! { / ψm* ψn  –  ∫ ∂ψm*/∂x  ψn dτ }

                                          =   –i! { 0 –  ∫ ∂ψm*/∂x  ψn dτ }  =   –i! { –  ∫ ∂ψm*/∂x  ψn dτ }

                                          =   –i! { –  ∫ ψn*  ∂ψm/∂x dτ }*  =  { –i!  ∫ ψn*  ∂ψm/∂x dτ }*  
                                          =   { ∫ ψn* px ψm dτ }* 
                                                                            QED.
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(1.26a)

(1.26b)

(1.26c)

By using the hermiticity condition  (1.26c)  〈m|Ω|n〉 = 〈n|Ω|m〉*  we can derive two important
properties:

Property 1: Eigenvalues of an hermitian operator are real.
As   Ω |ω〉 = ω |ω〉, then   〈ω| Ω |ω〉 = ω 〈ω|ω〉 = ω
and   〈ω| Ω |ω〉* = ω*.
But  (1.26c)  =>    〈ω| Ω |ω〉  =  〈ω| Ω |ω〉*   =>  ω = ω*.
Therefore, ω has to be real!
                                                QED.
Being real, the eigenvalues of an hermitian operator are good for representing
measurable values of observables.

Property 2: Eigenfunctions corresponding to different eigenvalues of an hermitian operator 
are orthogonal.

Assume   Ω | ω〉  =  ω | ω〉,   Ω | ω' 〉  =  ω' | ω' 〉   and   ω  ≠  ω' .
Now,      〈ω' | Ω | ω〉  =     ω 〈 ω' | ω 〉      =  ω  〈 ω | ω' 〉
  and       〈ω' | Ω | ω〉  =     〈ω | Ω | ω' 〉*    =  ω' 〈 ω | ω' 〉
subtract  --------------------------------------------------------
                      0                          =  ( ω  –  ω' )  〈 ω | ω' 〉  
                       Now,  because         ω  ≠  ω'           =>    〈 ω | ω' 〉   =   0              QED.
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Postulates of quantum mechanics
1.9. States and wavefunctions

Postulate1: The state of a system is fully described by its wave function
Ψ m,n,...(r1, r2, ... ; t) ≡ |m, n, ... ; t 〉.

With bracket notation  |K〉 = ΨK and 〈L| = ΨL*, where K and L are sets of quantum numbers. 

1.10. Fundamental prescription
Postulate 2: Observables are represented by hermitian operators chosen to satisfy 

certain commutation relations
For example  xpx – pxx = i!,  ypx – pxy = 0,  xpy – pyx = 0, etc.

1.11. Outcome of measurements
Postulate 3: For a system in state ψ, repeated measurements of an observable Ω amounts 

to the expectation value 〈Ω〉:
The expectation value of Ω in state ψ is 

or, if ψ is normalized

From now on we assume that ψ is normalized.
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(1.28a)

(1.28b)

In case ψ is an eigenfunction of Ω, i.e., Ω ψ = ω ψ, then
〈Ω〉  =

If ψ is not an eigenfunction of Ω, then ψ = Σn cn ψn, where Ω ψn = ωn ψn.  Then,

〈Ω〉  =

Thus, the expectation value is a weighted sum of eigenvalues with weigths |cn|2.
Postulate 3': When ψ is an eigenfunction of the operator Ω, determination of the value of the 

observable yields the correspondig eigenvalue ω.  When ψ is not an eigen-
function, then a single measurement yields one of the eigenvalues ωn with the 
probability |cn|2.

1.12. Interpretation of the wavefunction
Born interpretation:
Postulate 4: Probability, that the particle will be found in the volume element dτ at the 

position r is |ψ(r)|2 dτ, if ψ is normalized – otherwise propotional to |ψ(r)|2 dτ.
Wavefunction ψ is the probability amplitude and |ψ|2 = ψ* ψ is the probability density.  In
order to define probability density, the wave function needs to be normalizable.
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1.13. Equation for the wavefunction
Postulate 5: The wavefunction  Ψ m,n,...(r1, r2, ... ; t) evolves in time according to the equation 

This is the Schrödinger equation (1926), where H = T + V is the hamiltonian (1.11).  In one
dimensional space (x-axis) and in external potential V(x) for a particle with mass m this
becoms as

1.14. Separation of the Schrödinger equation
The Schrödinger equation can be separated into time and space parts by using a trial
solution
if the potential function is independent of time, i.e.V ≠ V(t).  We obtain

where the left-hand depends on space and the right-hand side on time, only.  Therefore,
both sides have to remain constant E always and everywhere and we can write

and
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(1.33)

(1.34)

(1.35)

(1.36a)

(1.36b)

Solution to the latter is

and if the solution to the former is time-independent ψ(x), the full solution to Eq. (1.34) is

Equation (1.36a) is sc. time-independent Schrödinger equation

and its solutions ψ are called stationary states.  Time dependence of stationary states is,
acconding to (1.38), modulation by a complex phase factor  exp(–iEt/!), but the probability
density

Ψ* Ψ  =  ψ* ψ

is time-independent – therefore the state is called "stationary".
In three dimensional space the Schrödinger
equation becomes as

where
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(1.37)

(1.38)
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Complementarity and time evolution
1.15 Simultaneous observables

Property 2: If two observables have simultaneously precisely defined 
values, then their corresponding operators commute.

In case the two operators do not commute, the observables are
complementary.  The complementary pairs of operators can be found
by inspecting the corresponding commutators, e.g., [x,px] = i! ≠ 0.

1.16. Uncertainty principle
Complementary pairs of observables obey sc. Heisenberg (1927) uncertainty relation, e.g.

∆x ∆px  ≥  !/2.
General form:
If the two operators A and B do not commute, but

[A, B]  =  i C,
then       ∆A ∆B  ≥  |〈C〉| / 2,
where     ∆A  =  {〈A2〉 – 〈A〉2}1/2.

1.17. Consequences of uncertainty principle
Example 1.8.  Consider the
uncertainty relation of x and px
in state ψ = N exp(–x2 / 2σ).
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(1.42)

(1.43a)
(1.43b)

1.18. Uncertainty in energy and time
In quantum mechanics there is no operator corresponding to time.  Thus, time is not an
observable, but a "classical" parameter.  Thus, the time and energy are not complementary
observables the usual way, as often expressed.
Later, in section 6.11, we shall learn the relation between the lifetime τ and uncertainty of the
energy δE of an excited state, who are related as  δE τ  ≈  !.

1.19. Time-evolution and conservation laws
It can be shown that

and  Ω  is called as constant of motion, if

Thus, an operator corresponding to a constant of motion commutes with the hamiltonian. 
It is easy to show that

and according to Eq. (1.44)

thus

This is Newton's II law.  Similarly, it can be shown that

These two relations form the sc. Ehrenfest's theorem.
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d
dt

 px   =  F  .

m d
dt

 x   =  px  .

(1.44)

(1.45)

(1.46a)

(1.46b)

(1.47)



2. Linear motion and harmonic oscillator
Consider next briefly first the general properties of the wave equation, translational motion,
tunneling, and then, particle in a box and parabolic confinement as examples of confinement.

Characteristics of the wavefunction
2.1. "Well-behaving" wavefunctions

The wavefunction should be normalized

and it has to be single valued and finite (except for single points) to allow probablity
interpretation of ψ*ψ, it has to be continuous and possess first and second derivatives.  Also,
the first derivative should be continuous, except for some model potentials.

2.2. Some general remarks on the Schrödinger equation
Some general conclusions can be easily made from the differential equation

like the curvature of its solution
and relation to high or low
potential function, i.e. the
kinetic energy.
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(2.1)

(2.2)

Fig. 2.4.

In case the potential function confines a single particle into some region of space, it defines
boundary conditions, which allow a certain set of solutions and corresponding discrete
energies, only, i.e. QUANTIZATION.
In the matrix mechanics formalism the boundary conditions and quantization come in
implicitly hidden in the basis functions.
The wave function and probablility density ψ*ψ typically penetrates to classically forbidden
region, where the classical kinetic energy is negative.  This is called (quantum) tunneling.

Translational motion
Hamiltonian of the free particle (V(x) ≡ 0) is

and the Schrödinger equation

whose solution is

where                             
or alternatively
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ψ(x) = A eikx + B e–ikx ,

(2.3)

(2.4)

(2.5)

(2.6)



2.3. Energy and momentum
Because                and classically                we can write

In Eq. (2.6) for the wave length λ of sin and cos functions applies kλ = 2π, from which we get
the magnitude of the wave vector k as 

Substituting this to (2.7a) the de Broglien relation results in,

Note, that the energy of the free particle is not quantized!
2.4. Traveling waves and standing waves

Let us determine momentum from the free particle wavefunction ψ (x)  using the 
momentum operator px  = –i! ∂/∂x.  Thus, for ψ = A eikx 

and we get p = !k, and thus, A eikx  is a traveling wave to the direction of positive x-axis.
Similarly, B e–ikx is a traveling wave in direction of negative x-axis.
Consider the "standing wave" free particle wavefunctions  C cos(kx) and  D sin(kx).
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E = p2

2m
 ,

p = h/λ .

k = 2π
λ

 .

(2.7a)

(2.7b)

(2.8)

(2.9)

2.5. Flux density (virtatiheys)

2.6. Wavepackets
A complete wavefunction of a momentum
eigenstate is
and for a wavepacket  propagating on x-axis

where g(k) is the shape or spectral function.

Penetration into and through barriers
2.7.–2.9. Potential barriers and tunneling
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(2.10)

(2.11)

Ψk(x,t) = A eikx e–iEt/! (2.12)

(2.13)

Fig 2.11.



Particle in a box
2.10.–2.13. 1D and 2D confinements

The particle-in-a-box is very useful confining model potential for
nanostructures, such as quantum dots (QD), and in particular, for
non-spherical parallel piped geometries.
The quantum well (QW) is a modified case: A thin layer with an
attractive potential for charge carriers.
We consider here an infinite square-well potential, only.  Its
solutions are those of the free particle waves, which fit to the
boundary conditions

The energies are the corresponding free particle energies

The two and three dimensional
problems trivially separate to
one dimensional problems.
We will consider the particle in
a spehre, later.
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Fig. 2.19.

Fig. 2.22.

(2.31)

(2.30)

Harmonic oscillator
2.14 Solutions

The harmonic oscillator is another, even more useful model potential, not only for
nanostructures but also for many vibrational phenomena in nature.  For example, atoms in
molecules and solids can be successfully modelled as harmonic oscillators.
The harmonic force F = –kx arises from the harmonic (or parabolic) potential

because

Thus, hamiltonian becomes as

and the Schrödinger equation is

whose eigenvalues are
ν = 0, 1, 2, 3, ...

where  ω = (k/m)1/2.  The two lowest energy
eigenfunctions are

and

     where  y  =  (mω/!)1/2 x.  This is easy to verify by substitution to (2.39).
The lowest eigenvalue is called as zero-point energy (nollapiste-energia).
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– dV
dx

 = F.

V(x) = 1
2 k x2 ,

 Eν = ν+ 1
2( )!ω;

ψ0(x) = N0 e-y2/2

ψ1(x) = N1 2y e-y2/2 ,

(2.37)

(2.38)

(2.39)

(2.40)



The general form of the wave function of one-dimensional harmonic oscillator (ODHO) is

where  Hν(y)  are Hermite polynomials, for which
H0(y)  =  1, H1(y)  =  2y   and we have a recursion formula 

The wavefunctions are eigenstates, and therefore, orthogonal and by using the normalization
factor                               

the eigenfunctions (2.41a) become orthonormal

2.15. Properties of solutions
The level spacing of harmonic oscillator is constant !ω, i.e.

       Eν+1 – Eν  =  !ω,
which is a consequence of hidden x2–p2 symmetry.  Another consequence is that for the
ground state the uncertainty principle gives the least for ∆x ∆px  =  !/2.

Furthermore, the two and three dimensional harmonic oscillators are trivially separable to
ODHOs, and consequently, the multidimensional wavefunction is a product of one-
dimensionals, and similarly, the eigenenergies sum up to the multidimensional case.
Because of this the three and two dimensional HO are popular models for circular,
ellipsoidal, spherical and parabolic quantum dots (QD).
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(2.41a)

(2.41b)

(2.42)

The hidden x2–p2 symmetry can also be seen in the following:
Virial theorem: If the potential energy can be written as  V(x) ∝ a xs, where a is a constant,
the mean kinetic and potential energies are related by   

2 〈T〉  =  s 〈V〉.
This theorem originally comes from classical mechanics, but applies also to quantum
mechanics.
Example for the harmonic oscillator  s = 2    =>
         for Coulomb potential s = –1  =>

2.16. Classical limit
At high quantum numbers  the probability density
of quantum harmonic oscillator approaches that of
the classical.  This is one example of the sc.
correspondence principle (vastaavaisuusperiaate).
Time evolution of a wavepacket follows classical
oscillation.  The simplest classical like oscillation is
that of a sc. Glauber or coherent state (1963), the
"ground state wavefunction oscillation".
Generally, in harmonic oscillation classical and
quantum behavior are closely similar, the only
difference being quantization, which may not be
always essential.
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(2.43)



3. Rotational motion and hydrogen atom
Particle on a ring and in a circle

Let us consider particle dynamics on a ring in a plane.  This is equivalent with rotation
around a fixed axis.  As another case, consider a particle in an "infinitely deep circular well",
where the wavefunction can be separated to the angular and radial motions.  Then, the
dynamical states are determined by the moment of inertia I, which in case of a mass on a
ring is  I  =  m r2,  where m and r are particle mass and radius of gyration, respectively.

3.1. Hamiltonian and Schrödinger equation (particle on a ring)
In free rotation around z-axis (V(x,y)=0) the hamiltonian is (with r2 = x2 + y2 = constant)

and in polar coordinates  x = r cosφ  and  y = r sinφ  

Denote the wavefunction as  Φ(φ), and the Schrödinger equation and its solutions are

where  mℓ  is only a short hand notation, like the one in free particle case.
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(3.1)

(3.3)

(3.4)

(3.5)

This short hand notation is a dimensionless number                         , and similarly as for the
free particle, it defines the wave length of the wavefunction, which should be "well-behaving".
Therefore, the boundary condition for the wavefunction (3.5) is uniqueness  Φ(φ) = Φ(φ+2π),
which implies
and thus, ei2πmℓ = 1  and  mℓ = 0, ±1, ±2, ... .
Therefore, the quantized energy is

Thus we see, that the energies are doubly degenerate except for the lowest one with mℓ = 0,
and there is no zero-point energy.

3.2. Angular momentum
The classical rotation energy is ℓa2 / 2I and based
on the above ℓa2 = mℓ2 !2, where ℓa is the angular
momentum around a given axis a.  Classically,
for the rotation around z-axis we have

ℓz  =  x py – y px, 
and thus, the corresponding operator is

Application on  ΦA = A eimℓφ   gives the eigenvalue equation

QTES,  2021       32

(3.6)

(3.7)

(3.9–10)

(3.11)

(3.8)



3.3. Shape of the wavefunction
Thus, ΦA has an angular momentum
mℓ !, which indicates rotation.  Similarly,
ΦB = B e–imℓφ has an angular momentum
–mℓ ! and rotates to the opposite
direction.  Wavefunctions ΦA ( or ΦB )
are orthonormal with different values of
mℓ with the normalization constant

It should be noted that these states are
stationary with constant probability
density, but the angle  (or position on
the ring) is not defined at all, i.e., fully
uncertain.

3.4. Classical limit
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A  =  B  =  1
2π

 . (3.12)

3.5. Circular well (particle in a circle)
Let us consider particle in a 2D circle of radius a, a
typical nanostructure in semiconductor interfaces or
surfaces.
Again, we have the hamiltonian (3.1), now with a
constraint  r ≤ a.  We can separate the radial and
angular motion by  ψ(r)  =  R(r) Φ(φ),  the latter being
the same as above,  ΦC = C e±imℓφ  (3.3–12).
Then, the radial equation becomes as

where  z = kr  and  k2 = 2mE/!2. As mℓ are integer
numbers, solutions to this Bessel's equation are
Bessel functions  Jmℓ(kr), also called as cylindrical
harmonics and can be presented as series
expansion

With the boundary condition
Jmℓ(ka)  =  0

the total energy eigenvalues and the shapes of
some Bessel functions are shown in Figs. (3.8–10).
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(3.23)

(3.24)

(3.25)

Fig. 3.9.Fig. 3.8.

Fig. 3.10.



Particle on a sphere
Consider now the particle motion with a constant radius of rotation r.  This is also the
quantum dynamics of rotation of a solid uniform sphere with a radius a = (2/5)–1/2 r.

3.6. Schrödinger equation and its solution
As the external potential is zero, the hamiltonian is

Writing the Laplace operator in spherical coordinates
x = r sin θ  cos φ ,  y = r sin θ  sin φ  and  z = r cos θ
we have

where

is the angular part of laplacian, sc. Legendre operator.
Thus, the rotational hamiltonian is

and because  mr2 = I  is the moment of inertia, the related Schrödinger equation is

Solutions to this are spherical harmonics  Yℓmℓ(θ,φ), which are eigenfunctions of legendrian

where  ℓ = 0, 1, 2, ...  and  mℓ = ℓ, ℓ–1, ℓ–2, ... , –ℓ.
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∇2 = 1r  ∂
2

∂r2
 r + 1

r2 Λ2 ,

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.33)

(3.31)

Comparison of Eqs. (3.31) and (3.33) shows the quantization

and the degeneracy  (2ℓ+1)  of each eigenenergy:                                                                
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(3.35) ℓ = 0,1,2,...

(3.34)

Fig. 3.13.



3.7. Angular momentum of the particle
Comparison with  Eclass = ℓ2 / 2I  shows that

and that the angular momentum is quantized with
ℓ being also the quantum number.  Thus, we give
two meanings for ℓ.
The spherical harmonics are also eigenfunctions
of ℓz

ℓz Yℓmℓ(θ,φ)  =  mℓ ! Yℓmℓ(θ,φ),
where mℓ = –ℓ, –ℓ+1, ..., ℓ.
The spherical harmonics are not, however, eigenfunctions of
ℓx and ℓy, because these do not commute with ℓz.

3.8. Properties of the solutions
Notice that, again, there is no zero-point energy related with
rotation.  Kind of centrifugal effect is seen as mℓ → ℓ.
The cartesian p-orbitals:
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ℓ → !
√

ℓ(ℓ+ 1) (3.36)

(3.37)

Fig. 3.14–15.

Fig. 3.19.

3.9. Rigid rotor
For two particles m1 and m2 with a constant separation r, but otherwise, in free motion

          H  =  –!2/2m1 ∇21 – !2/2m2 ∇22 ,
which can be separated to center of mass (CM) and relative motion.  Then

1/m1∇21 + 1/m2∇22 = 1/m∇2CM + 1/µ∇2,
where m = m1 + m2 and 

1/µ = 1/m1 + 1/m2.  
where µ is reduced mass.
Thus, the Schrödinger equation is

       –!2/2m ∇2CMΨ – !2/2µ ∇2Ψ  =  EtotΨ

and with the trial  Ψ = ψCM ψ  we get
 –!2 / 2m ∇2CM ψCM  =  ECM ψCM

        – !2 / 2µ ∇2 ψ  =  E ψ,
where  Etot = ECM + E.  The former equation describes the free-particle dynamics (2.5–6),
which is in 3D   ψCM(R) = A exp(ik·R).
Based on (3.28) with r = |r| = constant  ∇2 → Λ2/r2  and the latter takes the form

  – !2 / 2µr2 Λ2 ψ  =  E ψ

With I  =  µr2  this becomes (3.31, 33), whose solutions are spherical harmonics and energies
are given in (3.35)

    EJ MJ  =  J(J+1) !2 / 2I.
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(3.39)

(3.40)

(3.41)

(3.42a)
(3.42b)

(3.43)

(3.44)



3.10. Particle in a spherical well, e.g., an electron in a spherical deep quantum dot
Now the Schrödinger equation takes the form

which separates with
                 ψ(r,θ,ϕ)  =  R(r) Y(θ,ϕ),

where Yℓmℓ(θ,ϕ) is a spherical harmonic in (3.33)
and the radial wavefunction is a solution to

or

with  k2 = 2mE/!2  and z = kr.  Solutions to that
are spherical Bessel functions  jℓ(kr), such as

j0(kr)  =  sin(kr)/(kr)    and
j1(kr)  =  sin(kr)/(kr)2 –  cos(kr)/(kr).

For the infinitely deep well with radius a
we apply the boundary condition

            jℓ(ka)  =  0,

which leads to eigen energies
     Enℓ  =  Fnℓ !2/(2ma2).
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(3.45)

(3.46)

(3.47a)

(3.47b)

Fig. 3.21.Fig. 3.22.

(3.48)

(3.49)

(3.50)

Motion in Coulombic field
The Coulombic potential  ±1/r  is spherical, and thus, the above considered angular motion is
valid as such.  We just need to find solutions to the radial part of full stationary states.

3.11. Schrödinger equation for hydrogenic atoms
The hamiltonian for the electron and nucleus under their attractive Coulomb field is

which can be separated as before, leading to the reduced mass

The center-of-mass is free particle as before and we obtain for the relative motion

or
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(3.51)

(3.53)

(3.54)

(3.52)



3.12. Separation of radial and angular coordinates
Separation goes with the trial wavefunction

      ψ(r,θ,ϕ) = R(r) Y(θ,ϕ),
which leads to the angular equation and quantization    Λ2 Yℓmℓ(θ,ϕ) = – ℓ(ℓ+1) Yℓmℓ(θ,ϕ)
and the equation

The function Y can be cancelled throughout and we are left with radial equation

where  u(r) = r R(r).  Thus, we have an 1D Schrödinger equation for the radial motion with an
effective potential

The effective potential
depends on the angular
momentum, that with the
classical analogy can be
assingned with the
centrifugal force of rotation.
Thus, the Coulomb attraction
contributes to the singularity
for the ℓ = 0 state, only.
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(3.55)

(3.56)

(3.58)

(3.59)

Fig. 3.24.

3.13. Solutions of the radial equation
For ℓ = 0, the solution of equation (3.58) behaves as  u ~ Ar + Br2, when r → 0,  and then
R = u/r → A,  which means that the probability density of the electron at nucleus is  A2 ≠ 0.
For  ℓ ≠ 0,   u → A r ℓ+1   and    R = u/r  → A r ℓ,  when r → 0.
The wavefunctions of the hydrogen atom can be written in terms of associated Laguerre
functions:
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3.4 The unit of length,
sc. Bohr radius
a0  =  (4πε0!2)/(mee2),

is the radius of the electron
in Bohr atomic model
(infinite nuclear mass).
For the hydrogenic atoms,
in general, it is often used

a  =  (4πε0!2)/(μe2)

and
ρ  =  (2Z/na) r.

(replace  –r/na0  by  –ρ/2 )

(3.65)



The radial wavefunctions hydrogen atom:

  Cf. 0.4  
  on p. 5.
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Eigenenergies of the hydrogenic atoms are

|E1| = 1 Ry (Rydberg) = 13.6 eV
= 1/2 Ha  (Hartree).

(3.66)

3.14. Probabilities and radial distribution function
P(r)  =  4π r2 〈|ψ(r)|2〉  is called the radial distribution function.  It is the particle
probability density as a function of r.  For a spherical wavefunction ψ(r)

P(r)  =  u2(r)  =  R2(r) r2 =  4π r2 |ψ(r)|2

3.15. Atomic orbitals
The hydrogenic wavefunctions

are called orbitals.  Their degeneracy is n2 and including the spin 2n2.  
The (2ℓ+1) degeneracy
arises from symmetry,
but n degeneration is
accidental.
The s orbitals are
spherical.  The p0
orbital is a real function
and the same as pz orbital.  The  p+1  and  p–1 are
complex combinations of real px and py,
p+1 = (px – i py)/√2      and        p–1 = i (px + i py)/√2,
see also the example on p. 8.
The hydrogenic orbitals are simplified models for
atomic orbitals.  They are used for classification
in the periodic table of elements.
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  ℓ = 0 1 2 3          (0, 1, ..., n–1)
deg. 1 3 5 7         (2ℓ+1)
n =1 1s

2 2s 2p
3 3s 3p 3d
4 4s 4p 4d 4f

(3.69)



px  =  (p+1 + p–1)/√2
py  =  i (p+1 – p–1)/√2
pz  =  p0

d+2 =
d+1 =
d0 =
d–1 =
d–2 =
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Example The ground state wavefunction of hydrogen atom is
where  a0 = 0.5292 Å.
a) Where is the most probable position of the electron?
b) What is the probability to find the electron in a volume 1 fm3, when  (i) r = 0 and (ii)  r = a0 ?
c) What is the probability to find the electron in a sphere of radius  a0  around the nucleus?
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Schrödingerin yhtälö ja etenevät aallot
Vaikka Schrödingerin yhtälö voidaan postuloida kvanttimekaniikkaan, voidaan sitä myös
"perustella" aalto–hiukkas-dualismin perusteella.

Valoaallon eteneminen
Geometrisessa optiikassa valoaallot etenevät
suoraviivaisesti ns. Fermat'n periaatteen
mukaisesti: valonsäde kulkee tietä, jonka optinen
matka on lyhin (tai saa ääriarvon).  
Fysikaalisessa optiikassa tämä voidaan selittää
Huygensin periaatteen ja interferenssin avulla:
lähekkäiset valoaallot interferoivat konstruktiivi-
sesti siellä missä optinen matka saa ääriarvonsa.

1.23. Hiukkasten eteneminen
Klassillisessa mekaniikassa hiukkaset etenevät
Newtonin liikeyhtälöiden mukaisesti.  Ne voidaan
kuitenkin johtaa ns. Hamiltonin periaatteesta, jo-
ka on analoginen Fermat'n periaatteen kanssa.
Olettamalla etenevälle hiukkaselle aaltoluonne,
voidaan koko kvanttimekaniikka johtaa siitä
Feynmanin polkuintegraaliformalismia käyttäen.
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Hiukkasten eteneminen aaltoina
Kun hiukkaseen liitetään (aallon) amplitudi samoin kuin valoon fysikaalisessa optiikassa ja
sovelletaan sitten Hamiltonin periaatetta, saadaan ajasta riippuva Schrödingerin aaltoyhtälö.
Siten Schrödingerin aaltoyhtälö voidaan johtaa aineaaltohypoteesista lähtien.
Alkeishiukkasten, esim. elektronien, spin ei ole johdettavissa näistä oletuksista vaan se on
postuloitava kokeellisten havaintojen selittämiseksi tai yleistettävä kvanttimekaniikka
relativistiseksi, jolloin elektronin spinit tulevat teoriasta omina kvanttitiloinaan.
Schrödingerin aaltoyhtälön suorassa yleistämisessä suhteellisuusteoreettiseksi on ongelma-
na se, että aika- ja paikkakoordinaattien "rooli" on erilainen: yhtälössä paikan suhteen esiin-
tyy 2. kertaluvun derivaattoja, mutta ajan suhteen vain 1. kertaluvun derivaatta.  Schrödinge-
rin aaltoyhtälö

onkin itseasiassa diffuusioyhtälön

kaltainen.
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