Experiments on Block Indexing

QOuti Lehtinen, Erkki Sutinen, Jorma Tarhio

Department of Computer Science, P.O. Box 26 (Teollisunskatu 23)
FIN-00014 University of Helsinld, Finland.
E-mail:{olehtine,sutinen,tarhio}@cs. helsinki.fi
The work was supported by the Academy of Finland.

Abstract. We present a block indexing scheme based on g-grams for
personal data archives. The scheme marks for each continuous or gapped
g-gram u those text blocks where u occurs. The index is applied in a
similar way as in the widely-used Glimpse system to searching for given
keywords. Experiments show that our approach is a compromise between
the size of the index and the speed of retrieval. Our scheme produces
small indexes especially for archives containing texts of a highly inflected
langnage or of many languages.

1 Introduction

Managing a personal data archive, consisting of several megabytes of text, is
getting a more and more important task. The task has a close connection with
various methods applied for CD-ROM indexing and retrieval {2]. In practice, an
efficient information retrieval mechanism is the most cructal factor for a success-
ful data managerment.

Manber and Wu [5] present a tool called Glimpse, which is a search engine
working at the file system level. Glimpse allows also approximate searches, Le.
it is able to find approximate matches of the given keyword. Glimpse applies
block indezing. First, the file system to be indexed is divided into at most 256
blocks. Second, all words are included in the index; an index entry for a word
is a profile indicating the blocks where the word occurs. Third, to locate the
occurrences, Glimpse applies agrep [9], a general-purpose search program, in
two phases: first, agrep finds the index words which contain the approximate
maiches of the keyword; second, it checks the corresponding blocks, according
to the profile of the found index words. In a typical case, the index consumes
not more than 2-4% space of the size of the text, according to Manber and Wu
[5].

In highly inflected languages, like Finnish, a word can have even thousands
of different forms. For such languages the word indexing scheme of Glimpse
produces much larger indexes — typically over 20% of the text — than for
English. This is because each occurring form of a word is stored separately
in the index. For example, a Finnish word ‘yhdistelméttomyydestinsikszan’,
meaning ‘even though of its uncombinational character’, is formed adding suffixes
“1ma’, ‘-tdn’, ‘-yys’, “-std’, “nsd’, and “-kdan’ to root ’yhdiste’; which means ‘a
combination’.

The heterogeneousness of data is another reason for larger indexes. Sup-
pose, for example, that there are files in different languages which is a common
situation in & non-English speaking country. Then, each additional language in-
creases substantially the size of the word index, because of is distinctive vocab-
ulary.

For the reasons stated above, there are cases when the two-level approach
of Glimpse can benefit from refinements in its indexing mechanism. We have
experimented with different indexing schemes and also enlargened the generaliz-
ation by Baeza- Yates [1], which has been applied, for instance, by Barbosa and
Ziviani [3].

In the generalization of Baeza-Yates [1], the index stores all the g-grams {8],
1.e. sirings of length g, of the text. An entry of the index, corresponding to
g-gram d, points to the blocks containing an occurrence of d. Depending on the
situation, the index can be restricted to g-grams starting a word. In addition $o
length ¢, the other parameter of the approach is block size b of the indexed text.

Barbosa and Ziviani [3] combine the suffix array to the two-level approach of
Manber & Wu and Baeza-Yates. The novelty of their contribution [3] lies in ifs
distributed search mechanism: the suffix array resides on disk, and each entry
of the index of sequences of length & has only one pointer to the suffix array.

In this paper, we introduce a variation of Glimpse, called Grampse for GRAM
based Pattern SEarch. Instead of indexing words, Grampse indexes ¢-grams. For
example, a phrase ‘limmin m#mmi’, meaning & Finnish Easter dish, consists
of continwous 4-grams ‘lamm’, ‘mmi’, ..., ‘m#mm’. In additicn, it includes
several gapped A-grams [6], like ‘4mnm’. Parameters length ¢ and gapwidth 4§
fix the g-grams to be included in the index. For example, the index of text
T = “This paper...” for ¢ = 3 and § — 1 would include 1-gapped 3-grams “Ti
', ‘hsp’ and so forth.! The reason for using gapped g¢-grams is obvious: they
include more information of a word than confinuous ¢-grams, which more or
less reflect the language than a specific word, because of the strong correlation
between the subsequent characters.

The ¢g-gram index is used for searching for a keyword P as follows. First,
the algorithm constructs set S of J-gapped g-grams of P. Then, depending
on variation v of the algorithm, it looks up the blocks of text containing an
occurrence of each of the g-grams in subset v(5). For example, if v is the ‘most-
infrequent’ heuristic, v{S) is defined as the most infrequent g-gram of S in the
text. The found blocks are checked using agrep.

Besides applying g-grams, the implementation of Grampse is based on two
other ideas. First, to cut down the g-gram index size or to be able to apply a
larger value for ¢, we reduce the alphabet by encoding a set of characters to one
code. This clustering of characters is based on their frequencies. Second, the
algorithm can adjust the width of a block. The details are described in Section 2.

We analyze the method in Section 3, using the 1.1.d. model where the char-
acters of the text and the pattern are independently and identically distributed.
For a natural language, the assumption is, however, not appropriate. There-

! Pevzner and Waterman [6] use the term gapsize which is gapwidth plus omne.

fore, we have tested the efficiency of Grampse in several experiments, which are
reported in Section 4.

It turns out that Grampse falls in between agrep and Glimpse, as far as
search speed is concerned. The main benefit of Grampse, compared to Glimpse,
is its lighter space consumption, making it a promising choice also for personal
data archives of size of ocrder 20 MB.

2 TImplementation

In this section, we will introduce the basic ideas behind the implementation of
Grampse.

2.1 Definitions

Let the text be 7' = T[l...n] and the pattern P = P[l...m]. The characters
of T and P belong to alphabet X of size ¢. By a g-gram of another string
we mean a string of length ¢ whick can be either continuous or gapped. String
U = 81845G3125 - - - Gy 15 called a &-gapped q-gram, denoted (g, §)-gram, of string
v, if w = a1ay...ay is a continuous ¢'-gram of v where ¢’ = (g — 1)(6 +1) + 1.
In other words, (g, é)-gram u is formed by taking every (§ + 1)th character of
w. Note that a continuous g-gram is a (g, 0)-gram. When there is no danger of
confusion, a ¢-gram denotes a {g, 0)-gram.

2.2 The ¢g-Gram Index

In order to index the ¢-grams of text T, we divide T' into N blocks of length
b — n/N. At the implementation level, one has to take care of an overlap of
(g — 1)(8 + 1) characters between subsequent blocks. Then, the (g, d)-grams of
T are scanned. For each g-gram u of text T, the algorithm builds a list of blocks
where u occurs. The list can be implemented either as an array or as a bit
vector.

2.3 Search Heuristics

Let set S consisé of all the (g, §)-grams of pattern P using the same length ¢ and
gapwidth § as in the index. The search itself applies a subset of S, and there are
several heuristics of selecting this subset. Let ¥(S) be the subset of § according
to heuristic v.

The search consists of two phases. First, Grampse marks the blocks contain-
ing every {g, d)-gram of ¥(5). Themn, it checks the marked blocks. The heuristics
described below differ from each other mainly in the balance of the execution
times of the two phases.

— The ‘total’ heuristic selects the entire set and looks for blocks with an oc-
currence of each (g,4d)-gramin S. The advanéage of restricting the number
of blocks with the AND relation is shadowed by the timne consumed for
marking the blocks.

- The ‘non-overlapping’ heuristic selects only consecuiive, non-overlapping
(g,9)-grams of the pattern. Compared to the ‘total’ heuristic, it marks
more blocks, but faster.

- The ‘most-infrequent’ heuristic selects only one {g,4)-gram: among all
pattern (g,d}-grams, it is the most infrequent in the text. The heuristic
results in a fast mark phase.

2.4 Clustering the Alphabet

One way to reduce the size of the index is to cluster the alphabet. The basic
method is similar to the Huffman compression [4]. Assume that the wanted size
of the alphabet is ¢/. Two of the most infrequent characters are identified, with
a frequency equal to the sum of their original frequencies. This procedure is
repeated until the size of the clustered alphabet is ¢’

The Huffman clustering described above produces an almost uniform dis-
tribution for the target alphabet. We consider also skew distributions, Let p,
0 < p < 1, denote the skewness of the distribution. Let us consider a simple way
to build a p-skew alphabet of ¢’ characters. Let f;,i = 1,...,c¢ be the relative

-1

frequency of the ith character in the skew distribution. Then f; = p(1 — p)*~",
when i < ¢, and fo = 1— 35" fi.

=1

Clustering the alphabet makes it possible to use larger values for q.

3 Analysis

We will analyze the efficiency of Grampse in a so called i.i.d. model, where the
characters of T" and P are disiributed identically and independently. Let ¢ denote
the size of the alphabet and let & denote the length of a block. In an i.i.d. model,
the probability p for an occurrence of any (g, §)-gram is constant, i.e. p= 1/cq.

Let the searched (g,d)-gram be u. We denote by E{u} the expected number
of occurrences of u in a block. According to Régnier and Szpankowski [7]?,

The minimal requirement, for an efficient indexing is that the expected mm-
ber of the searched (g,d)-gram is less than 1. Since E(u) remains the same for
each u, we denote £ = E(u). We get the efficiency condition: £ < 1, which
leads to the inequality:

b <l

To get a flavor of how to choose b, consider case ¢ = 30 and ¢ = 3. Using
the previous formula, we get b < 27.000. Assuming that the number of blocks

?The formula for () is not trivial to derive since the probabilities for an occurrence
of u in subsequent positions of a block are not independent of each other.

equals to 256, this leads to a maximum applicable text size of 27.000 - 2566, which
is about 6.9 MB. If ¢ = 4, Grampse can handle a texi archive of size 207 MB.

The problem of using the i.i.d. mode! in the analysis comes from its unsuit-
ability for natural language text. In a natural language, only a fraction of all
possible (g, d}-grams are used. In addition, the distribution is far from uniform.
For example, a g-gram ‘bhh’ is extremely rare in an English text; at least, it is
much more infrequent than ‘the’. However, the idea of using gapped ¢-grams in-
creases the number of (¢, d)-grams and, at the same time, makes the distribution
more balanced.

4 Experimental Results

Onur test data consisted of about 7.6 MB of Finnish text. Searched patterns were
either Finnish words or their prefixes or phrases. For each pattern length we
searched for 50 different patterns and calculated the average search times. All
experiments were executed on a Linux workstation with 32 MB RAM and a 133
MHz Pentium processor.

The implementation of Grampse is based on the Glimpse version 3.0 which
was also used for comparison in all the tests. The implementation language is
C.

Qur experiments consisted of three parts. We examined the effect of block
size and alphabet clustering to the size of an index. We tested how effectively
Grampse filtrates blocks to be checked. And last we compared search times for
Glimpse and Grampse, using both words and phrases as patterns.

4.1 Index Size

Figure 1 shows how the block size affected the index size when the block list
was implemented as an array. When the block size got smaller the index grew,
because the number of blocks increased.

We made experiments with two kinds of alphabet clustering: an almost uni-
form distribution and a skew distribution. Table 1 shows the effect of the cluster-
ing methods on the index size. In this test the target alphabet had 10 characters
and ¢ had values 3 and 4. Clustering the alphabet to 10 characters so that the
distribution became almost uniform made the index smaller than the unclustered
g-gram index. This is because there are only at most 10¢ different g-grams. The
usage of a skew distribution resulted in considerably smaller indexes. In the case
of the skew distribution there are only a few frequent characters and infrequent
characters are very rare. In this case 4 gram indexes using the skew distribution
were even smaller than the 3-gram index without clustering.

4.2 TFiltration Efficiency

The block size is an imporiant parameter of Grampse. Looking for (g, d)-grams
instead of words leads to checking extra blocks that may not contain accurate

3]
- ‘prampse-gram’ ——
ol s grampse-gapped-3gram’ o
71 - e
E -
o o
W
g 9
.é 1
g = ==
1 ;
1w W 50 6 70 8 90 100
block size

Fig.1. Index sizes for different block sizes {kbytes). Grampse uses the value g = 3.

Table 1. Index sizes for different target alphabets, when the block size is- 50 kB.

“the index type

“index mize (0

Cilminee 1 764
3-gram 378
3-gram, ¢ = 10, uniform 132
3-gram, ¢ = 1), 0.4-skew 80
3-gram, ¢ = 10, 0.5-skew T4
3-gram, ¢ = 10, 0.6-skew 57
4-gram 965
4-gram, ¢ = 10, uniform 796
4-gram, ¢ = 10, 0.4-skew 368
4-gram, ¢ = 10, 0.5-skew 303
4-gram, ¢ = 10, 0.6-skew 202

matches of the query. When the block size was over 50 kB and ¢ = 3, Grampse
had to check almost every block. This happened because 3-grams are so common
that almost all of them were included in every block. Table 2 shows that for
short patterns Grampse had to check over 80% of all blocks when the block size
was 50 kB. When the block size was cut down to 10 kB, the percentage of the
checked blocks fell below 60%. Using the ‘most-infrequent’ heuristic or gapped
g-grams the checking perceniage became smaller when the pattern got longer,
because then the probability to find a rare ¢-gram in the pattern increased.

Table 2. Percentage of the checked blocks using (3,d)-grams when the block size is
50 kB and 10 kB. Pattern length varies between 4 and 8. Used search heuristics: (a)
total and non-overlapping, (b) most-infrequent, (¢) total with gapped g-grams.

hlock slee 50 kH | block size 10 kB
|;—||-.T |""|m!'-[-! =] m | &) [B) | (€]
4|85 [80 | - 4 15288 | -
5 | 84 | 83 | 99 5 | 62 | 58 | 99
6 | 82 | 78 | 89 6 | 59 | 49 | 68
7|81 | 65 | T7T T | 87T | 31 | 41
5 | &1 T4 | T2 8§ | 88 | 46 | 37

Filtering with 3-grams does not seem to be very efficient for short patterns.
Most of the 3-grams are very common in a Finnish text. Better results can be
achieved by using 4-grams at the expense of larger indexes.

4,3 Search Times

We implemented a version of Grampse which uses hashing for retrieving con-
tinuous g-grams from the index. We saved hash values instead of ¢-grams in the
index file. Searching was done by first reading the entire index into a hash table
in memory and then getting the block profiles of the searched ¢-grams. With
this approach we used the ‘most-infrequent’ heuristic, because it turned out to
be the most efficient hearistic. Omnly the most infrequent ¢g-gram of the pat-
tern was chosen and the corresponding blocks were checked. Figure 2 presents
search times of Grampse using hashing and a preloaded index. In this case the
index size affected heavily search times. The search time was shorter for smaller
indexes, because the time for loading the index was short.

Figure 3 shows search times of Grampse when the index is already in memory.
Search times no longer depended on the size of an index. Grampse in a case of
4-grams and a 15-character alphabet was the slowest one in Figure 2, because
the index was also the biggest. In Figure 3 it was the fastest, because the index
contained more information than in other cases.

In Figure 4 the search times of Grampse with different clustering methods are
compared using 4-grams of a 10-character alphabet. Search times for the both

400
e~ el ' e
X o S *sraminee.3 A o
350 | e S ambte. deranr’ o
T #, 107 =
= ‘grampra-dpram-¢15° ——
W P—— - eI 5
5 250 " T -.__:_' = I
g " A E
g 25 Hl. .u - 7]
150 T
.
10G —— .
hiH
4 5 6 7]
pattern langth

Fig. 2. Search times of Grampse (the index is not stored in the memory) and Glimpse.
The block size is 50 kB.

400 1 T T
'IJIT'F"E' ST
pampEE-Ean v
350 SmmEs- AT me
"grempe -l -
{prliyie-dgin-e g —
300
B mof STmm—
et N e
ﬁ . " - 1—.‘
5 b T,
B - e
M e, -
150 *a,\: S
100 e e =TT -
e
50 i I
4 3 & 3
pattern length

Fig.3. Search times of (Grampse (the index is stored in the memory) and Glimpse.
The block size is 50 kB.

clustering methods were a litile slower than the search time when no clustering
was used. Using the uniform distribution appeared to be faster than using the
skew distributions.

LT T —
'prampse-dpram’ ——
'grampse-dgram-cl0' -+---
yy = ‘gmngwn{{g-_ggg' e
- ! prampse-4 gram-¢ oM
e ‘grampse-4pram-c10-60%" ——

) ¥

[E I T
r

&
pattern length

Fig.4. The effect of different clustering methods on search times. The block size is 50
kB and g = 4.

Searching for phrases is slow with Glimpse especially when the searched
phrase contains common words. Glimpse has to search for every word of a phrase
separately and then combine their block profiles to get the answer. Common
words are likely to appear in almost every block and that results in checking
of extra blocks. Grampse chooses the most infrequent g-gram from the search
phrase and checks only the blocks containing it. Though the words are common,
the phrase may contain a rare ¢-gram, which helps to cut down the number of
blocks.

Table 8 shows the search times of Glimpse and Grampse when the search
phrases contained three words of which at least one was two characters long and
one was three characters long. In this task Glimpse was considerably slower than
Grampse. Glimpse needed on the average over a second to answer this kind of
query when Grampse needed only about 0.2 seconds.

The block size has influence on the search times in Glimpse. In our experi-
ments it became clear that the search gets faster when the block size decreases.
Intuitively, the search gets more accurate and fewer blocks have to be checked.
The same applies also to Grampse. The careful selection of the block size is im-
portant, because it affects to the filtration efficiency and that way also to search
times.

Glimpse was faster than Grampse when searching for words or parts of word.
But when we kept the index in the memory and used 4-grams with the ‘most-
infrequent’ heuristic, the search times for Glimpse and Grampse were close to
each other. Clustering the alphabet provides the possibility to choose a smaller

Table 3. Search times for phrases in milliseconds, when (a) the index is not stored in
the memory, and (b) the index is stored in the memory. The block size is 50 kB.

the index type [w] | (b
glimpse T130 [=
3-gram 210 | 170
4-gram 240 | 140
4-gram, ¢ = 10 230 | 150

4 gram, ¢ = 10, 0.4-skew 220 | 180
4 gram, ¢ = 10, 0.5-skew 210 | 170
4 gram, ¢ = 10, 0.6-skew | 210 | 180

index with a little longer search times. The best case for Grampse was searching
for phrases containing common words, when it was clearly faster than Glimpse.

5 Concluding Remarks

We have presented a new tool, called Grampse, for searching a pattern in a
personal file archive. The tool is a modification of the widely used Glimpse
system, differing from it mostly in the index structure. The indexing is based
on {g,d)-grams and is thus a natural choice for highly inflected languages like
Finnish. Therefore, we ran our tests with a Finnish text of 7.6 MB, exemplifying
a personal file collection.

Compared to Glimpse, Grampse produced smaller indexes. While the index
size of Glimpse was around 256% of the text, Grampse needed about 5%. Of
course, the index size for Grampse depends on the block size: the longer the
blocks, the smaller the index.

Since the indexing of Grampse is not based on words but (g, d)-grams, it is
possible to decrease the index size by clustering the alphabet. In this way we
were able to get indexes smaller than 1% of the text.

Since the probability of an occurrence of a (g,)-gram in a block is typically
larger than that of a word, long blocks encourage using Glimpse instead of
Grampse. This fact encouraged us to experiment on shorter blocks. The decrease
in the number of checked blocks was most obvious with the ‘most-infrequent’
heuristic and the ‘total’ heuvristic with gapped g-grams. Thus, gapped g-grams
improve the filtration of Grampse when compared to continuous g-grams. This
is alsc a new feature of Grampse when compared to Baeza-Yates® generalization
[1].

Although slower than Glimpse, Grampse searches faster than agrep; however,
agrep is remarkably fast. The difference between Glimpse and Grampse is not
significant if a hashed index of Grampse is stored in the memory. In addition,
finding phrases with common words is clearly faster with Grampse than with
Glimpse. Decreasing the size of the index with the clustering techniques had an

increasing but tolerable effect on the search time; the increase was larger with a
skew distribution than with a uniform one.

Up till now, we have concentrated on reducing the number of blocks o be
checked by agrep. Our preliminary experiments indicate that there is a combina-
tion of problem parameters n, m, ¢, &, b (block size), and ¢’ (size of the clustered
alphabet) where Grampse is a balanced choice for personal information retrieval.

Glimpse uses agrep to find approximate matches of a keyword in the index.
Though this approach could be applied also in Grampse, it is not practical. This
is because the set of {g,d)-grams of a searched keyword P and its approximate
match P! are different. If the difference between P and P’ is small enough, the
intersection is, however, not empty. This observation can be employed when
revising Grampse for approximate retrieval.

References

i, R.Baeza- Yates: Space-time trade-offs in text retrieval. In: Proc. First South Amer-
ican Workshop on String Processing (ed. R. Baeza-Yates and N. Ziviani), Univer-
sidade Federal de Minas Gerais, 1993, 15-21.

2. R. Baeza-Yates, E. Barbosa, and N. Ziviani: Hierarchies of indexes for text search-
ing in read-only optical disks. In: Proc. First South American Workshop on Siring
Processing (ed. R. Baeza Yates and N. Ziviani), Universidade Federal de Minas
Gerais, 1993, 25-41.

3. E. Barbosa and N. Ziviani: From partial to full inverted lists for text searching. In:
Proc. Second South American Workshop on Siring Processing (ed. R. Baeza-Yates
and U. Manber), Universidad de Chile, 1995, 1-10.

1. T. Bell, J. Cleary, and 1. Witien: Text Compression, Prentice Hall, Englewood
Cliffs, 1990,

&, U. Manber and S. Wu: GLIMPSE: A tool to search throngh entire file systems.
Report TR 93-34, Departmeni of Computer Science, University of Arizona, 1993.

6. P. Pevzner and M. Waterman: Multiple filiration and approximate patiern match-
ing. Algorithmica 13 (1995), 135-154.

M. Régnier and W, Szpankowski: Frequency of pattern occurrences in a (DNA)
sequence. Draft, 1995.

8. 1. Witten, A. Moffat, and T. Bell: Managing Gigabytes, Van Nostrand Reinhold,
New York, 1994.

9. 8. Wu and U. Manber: Fast text searching allowing ervors. Communications of
AGCM 35, 10 (1992), 83-91.

This article was processed using the BTEX 2 macro package with CUP_CS class

