
Algorithms for Weighted Mat
hingLeena Salmela and Jorma Tarhio⋆Helsinki University of Te
hnology{lsalmela, tarhio}�
s.hut.fiAbstra
t. We
onsider the mat
hing of weighted patterns against anunweighted text. We adapt the shift-add algorithm for this problem. Wealso present an algorithm that enumerates all strings that produ
e a s
orehigher than a given s
ore threshold when aligned against a weighted pat-tern and then sear
hes for all these strings using a standard exa
t mul-tipattern algorithm. We show that both of these approa
hes are fasterthan previous algorithms on patterns of moderate length and high sig-ni�
an
e levels while the good performan
e of the shift-add algorithm
ontinues with lower signi�
an
e levels.1 Introdu
tionIn a weighted mat
hing problem the text or the pattern is a weighted sequen
ewhere in ea
h position a weight is assigned to ea
h
hara
ter of the alphabet.In this paper we
onsider the
ase where the pattern is weighted and the textunweighted and we are interested in �nding alignments where the s
ore, whi
his the sum of the weights in the pattern
orresponding to the aligned
hara
tersin the text, is larger than some given s
ore threshold.Weighted patterns arise for example in the modeling of trans
ription fa
torbinding sites in bioinformati
s. In bioinformati
s weighted patterns are
alled po-sition weight matri
es, position spe
i�
 s
oring matri
es or pro�les. The weightof a nu
leotide in a given position des
ribes the log probability of that nu
leotideappearing in that position in a trans
ription fa
tor binding site. Therefore thes
ore of an alignment is the log probability of that alignment being a trans
rip-tion fa
tor binding site. Many methods in bioinformati
s rely on the large s
ales
anning of these weighted patterns against a genome and there are large publi
databases, like TRANSFAC [5℄
ontaining su
h patterns.In this paper we adapt some standard string mat
hing te
hniques to theweighted mat
hing problem and
ompare the performan
e of these algorithmsagainst the algorithm by Liefooghe et al. [4℄. In Se
tion 4, we adapt the shift-add[1℄ algorithm to handle weighted patterns and in Se
tion 5 we
onsider the enu-meration of all strings mat
hing a given weighted pattern and sear
hing for thesestrings by a standard multipattern algorithm. We
ompare our new approa
hesto the previous algorithm by Liefooghe et al. [4℄ in Se
tion 6. The preliminaryexperimental results show that for high signi�
an
e levels the enumeration ap-proa
h is the fastest for pattern lengths 7 to 19 while the shift-add algorithm is
⋆ Work by Jorma Tarhio was supported by A
ademy of Finland.

i 1 2 3 4 5 6 7 8 9 10 11 12a 7 −6 −5 −10 −8 −10 4 −10 −10 −2 −10 −10
 −5 −8 −10 14 −10 −8 −10 −10 −10 11 −10 −10t 6 13 −10 −8 −10 12 −10 −10 −10 −3 −10 9g −5 −6 13 −10 14 −1 11 14 14 −10 14 6Fig. 1. An example weighted pattern
orresponding to the EGR-1 family extra
tedfrom TRANSFAC.the fastest for shorter and longer patterns. For the longest patterns either thealgorithm by Liefooghe et al. or the shift-add algorithm is the fastest. For lowersigni�
an
e levels the shift-add algorithm is the fastest.After submitting this paper we learned that Pizzi et al. [7℄ have also developedan algorithm based on the enumeration approa
h. However, they use a di�erentmultipattern algorithm to sear
h for the enumerated strings while we use analgorithm tuned for very large pattern sets and low expe
ted number of hits.2 De�nitionsWe
onsider the mat
hing of weighted patterns against an unweighted text. Thetext is a sequen
e of
hara
ters from an alphabet Σ of size σ. The weightedpattern assigns weights to all
hara
ters of the alphabet for ea
h position of thepattern.De�nition 1. A weighted pattern of length m is an m × σ matrix p of integer
oe�
ients p[i, c] whi
h give the weight of the
hara
ter c ∈ Σ at position i where
1 ≤ i ≤ m.Figure 1 shows an example of a weighted pattern. Here we will only
onsiderweighted patterns with integer weights. Weighted patterns are obtained fromentropy or log odd matri
es that have real
oe�
ients but in pra
ti
e these arerounded to integer matri
es to allow for more e�
ient
omputation.Given a weighted pattern and a string of
hara
ters from the alphabet Σ thes
ore of this string is de�ned as follows:De�nition 2. Given a weighted pattern p of length m and a string t of length
m from the alphabet Σ, the s
ore of the pattern aligned with the string is de�nedas:

score(p, t) =

m
∑

i=1

p[i, ti]In the weighted mat
hing problem we are interested in �nding all those align-ments of a text with the pattern that yield a large enough s
ore:De�nition 3. Given a weighted pattern p of length m, a s
ore threshold α andan unweighted text t1...n, �nd all su
h alignments i of the pattern with the textthat score(p, ti...i+m−1) ≥ α.

Given a weighted mat
hing problem, p-value [2,10℄ is a measure that
anbe used to estimate the statisti
al signi�
an
e of the returned alignments. The
p-value is de�ned as follows:De�nition 4. Given a weighted mat
hing problem with pattern p and s
orethreshold α, p-value(p, α) is the probability that a given ba
kground model ofthe sequen
e produ
es a s
ore equal to or greater than the s
ore threshold α.In this paper we assume that the ba
kground model is the standard randomstring model where ea
h
hara
ter of the sequen
e is
hosen independently anduniformly. In this
ase the p-value
an be
omputed with the following re
ursion:

p-value(p[1...0], α) =

{

1 if α ≤ 0
0 otherwise

p-value(p[1...i], α) =
1

σ

∑

c∈Σ

p-value(p[1...i − 1], α − p[i, c])3 Previous WorkThe brute for
e algorithm for the weighted mat
hing problem
al
ulates the s
orefor ea
h alignment of the pattern with the text and reports those alignments thatyield a s
ore higher than the s
ore threshold. Lately various te
hniques have beenproposed to speed up this s
heme. Here we will review those te
hniques that arerelevant to our work. See [8℄ for a survey on previous work.Several algorithms use the lookahead te
hnique [11℄ whi
h provides a way toprune the
al
ulation in a single alignment. For all su�xes of the pattern, there isa maximum s
ore that they
an
ontribute to the overall s
ore. If after mat
hingthe pre�x of the pattern, the s
ore is not at least the s
ore threshold minusmaximum s
ore of the su�x, there
annot be a mat
h at this alignment. By
al
ulating the maximum s
ore for ea
h pattern su�x, the overall
omputationtime
an be signi�
antly redu
ed.In Se
tion 6 we will
ompare our algorithms to the algorithm by Liefooghe etal. [4℄. Their algorithm uses the lookahead te
hnique and in addition it dividesthe pattern into submatri
es and pre
al
ulates for all possible strings the s
oreyielded by ea
h submatrix. For example, if we had a pattern of length 12, we
ould divide it to three submatri
es of length four and then pre
al
ulate thes
ores of ea
h submatrix for all the σ4 possible strings. At mat
hing time we
anthen just lookup the s
ores of ea
h submatrix in a table.4 Shift-Add for Weighted Mat
hingIn this se
tion we will adapt the shift-add algorithm [1℄ to weighted mat
hing.Originally the shift-add algorithm was designed for the k-mismat
h problemwhere the task is to �nd all substrings of the text that mat
h the pattern withat most k mismat
hes. The algorithm works as follows.

For ea
h pattern position i from 1 to m the algorithm has a variable siindi
ating with how many mismat
hes the su�x of length i of the text read so farmat
hes the pattern pre�x of length i. If the variables si
an be represented in bbits, we
an
on
atenate all these variables into a single ve
tor s = smsm−1 . . . s1of length mb. In the prepro
essing phase we initialize for ea
h symbol c in thealphabet a ve
tor T [c] where the bits in the position of si are 0b if c equals piand 0b−11 otherwise. The ve
tor s (and hen
e also the variables si)
an then inthe mat
hing phase be all updated at the same time when the next
hara
ter cfrom the text is read:
s = (s ≪ b) + T [c]The algorithm has found a mat
h if sm ≤ k.If the variables si
ount mismat
hes, the maximum value that they
an rea
his m. However, in the k-mismat
h problem it is enough to be able to representvalues in the range [0, k + 1] yielding b = ⌈log(k + 1)⌉. However, we need anadditional bit so that the possible
arry bits do not interfere with the nextvariable. With this modi�
ation the update operation of the algorithm be
omes:

s = (s ≪ b) + T [c]

of = (of ≪ b) | (s & (10b−1)m)

s = s & (01b−1)mHere the �rst line updates the variables si, the se
ond one keeps tra
k of thosevariables si that have over�owed and the last one
lears the
arry bits. When
he
king for a mat
h, we now also need to
he
k that the variable sm has notover�owed whi
h
an be seen from the of ve
tor. The shift-add algorithm for the
k-mismat
h problem has time
omplexity O(n⌈mb

w ⌉) where b = ⌈log(k + 1)⌉ + 1and w is the size of the
omputer word in bits.We will now present the shift-add algorithm for weighted mat
hing with posi-tive restri
ted weights. Then we will show how a general weighted pattern mat
h-ing problem
an be transformed into su
h a restri
ted problem. The weights ofthe weighted mat
hing problem with positive restri
ted weights have the follow-ing properties:1. ∀i, 1 ≤ i ≤ m, ∀c ∈ Σ, 0 ≤ p[i, c] ≤ α2. ∀i, 1 ≤ i ≤ m ∃c ∈ Σ su
h that p[i, c] = 0where p is the weighted pattern of length m and α is the s
ore threshold. Property1 is needed for the
orre
t operation of the shift-add algorithm while Property 2merely serves as a way to lower the s
ore threshold and thus lower the numberof bits needed for the variables si as will be seen later.The adaptation of the shift-add algorithm to weighted mat
hing with positiverestri
ted weights is quite straightforward. Now instead of
ounting mismat
hes,we will be
al
ulating s
ores so the variables si
ontain the s
ore of the su�x oflength i of the text read so far as
ompared to the pre�x of length i of the pattern.For the update operation the bits
orresponding to si in the prepro
essed ve
tors
T [c] now
ontain the weight of the
hara
ter c at position i. The update operation

is exa
tly as in the shift-add algorithm for the k-mismat
h problem. If after theupdate operation the s
ore sm ≥ α or the variable sm has over�owed, a mat
his reported.Property 1 of the weighted mat
hing problem with positive restri
ted weightsstates that all weights are non-negative and thus
score(p1...i, tj...j+i+1) ≤ score(p1...i+1, tj...j+i+2) .Be
ause the s
ore
an only in
rease when reading a new
hara
ter, we
an trun-
ate the s
ore values to α. Property 1 further states that all weights are atmost α. Thus, if we trun
ate the s
ore values to α, after the update operationthe variables si ≤ 2α so 1
arry bit is enough. Therefore we need to reserve

b = ⌈log α⌉+1 bits for ea
h variable si and the time
omplexity of the algorithmis O(n⌈m(⌈log α⌉+1)
w ⌉).In the weighted mat
hing problem the weights
an be, and in pra
ti
e oftenare, negative. The following observation points us to a way to transform anyweighted mat
hing problem to a weighted mat
hing problem with positive re-stri
ted weights. Let p be a weighted pattern of length m and let p′ be a weightedpattern su
h that for some i, 1 ≤ i ≤ m, p′[i, c] = p[i, c] + h for all c ∈ Σ andsome
onstant h, and for all j 6= i , 1 ≤ j ≤ m, and all c ∈ Σ, p′[j, c] = p[j, c].Then the following holds for the s
ores of p and p′ aligned with any string t oflength m:

score(p′, t) = score(p, t) + hTherefore the weighted pattern mat
hing problem for a text t, pattern p ands
ore threshold α returns exa
tly the same alignments as the weighted patternmat
hing problem for a text t, pattern p′ and s
ore threshold α′ = α + h.Now given a weighted pattern mat
hing problem with a s
ore threshold αand a pattern p
ontaining any integer weights we
an transform the probleminto an equivalent problem with a s
ore threshold α′ and a pattern p′
ontainingonly non-negative weights.To redu
e the s
ore threshold (and thus also the number of bits needed forthe variables si) we further transform the pattern so that in ea
h position atleast one of the weights equals zero by adding an appropriate negative
onstant
h to all weights in that position and by adjusting the s
ore threshold also by
h. Furthermore, if now any weight is larger than the s
ore threshold, it
anbe trun
ated to the s
ore threshold without a�e
ting the returned alignmentsbe
ause the s
ore of an alignment
annot get smaller as more
hara
ters areread. The s
ores of those alignments will however be lower. As a result we havetransformed a weighted mat
hing problem into a weighted mat
hing problemwith positive restri
ted weights.In pra
ti
e weighted patterns are obtained by rounding log-odd or entropymatri
es to integer matri
es. Thus the values of the weights depend on howmu
h pre
ision is preserved by this rounding and furthermore pra
ti
al valuesof the threshold α depend on the weights. Be
ause of the ⌈log α⌉ + 1 fa
tor inthe running time the shift-add algorithm is somewhat sensitive to the pre
isionof this rounding unlike other algorithms.

enumerate(p, α)1. re
urse(1, 0)string sre
urse(i, score)1. if (α > score + max_score(i...m))2. return3. if (i > m and score ≥ α)4. add_string(s)5. else6. for ea
h c ∈ Σ7. s[i] = c8. re
urse(i + 1, score + p[i, c])Fig. 2. Pseudo
ode for enumerating all strings that produ
e a s
ore higher than orequal to the s
ore threshold α.5 Enumeration AlgorithmsFor short patterns it is possible to enumerate all mat
hing strings whi
h are thestrings that produ
e a s
ore higher than the s
ore threshold when aligned withthe weighted pattern. The enumerated strings
an then be sear
hed for with anexa
t multipattern mat
hing algorithm.The enumeration of mat
hing strings is done with a re
ursive algorithm. Atre
ursion level i we have
onstru
ted a string of length i − 1 that is a possiblepre�x of a mat
hing string and we try to expand that pre�x with all
hara
tersof the alphabet. This way we have to
al
ulate the s
ore of ea
h pre�x only on
e.The re
ursion
an further be pruned with the lookahead te
hnique. Suppose wehave enumerated a pre�x of length i − 1 with s
ore scorei and the maximums
ore of a su�x of length m − i is max_score(i...m) then if the s
ore threshold
α > scorei + max_score(i...m) then at this bran
h of the re
ursion no mat
hingstrings
an be found. The pseudo
ode for enumerating the mat
hing strings isgiven in Fig. 2.Be
ause the number of enumerated strings is often very large, we used themultipattern BNDM with q-grams (BG) [9℄ algorithm whi
h is espe
ially tunedfor large pattern sets. The BG algorithm �rst builds a �lter, whi
h is a patternof
lasses of
hara
ters. In this �lter all
hara
ters that appear in any of thesingle patterns in position i are a

epted at that position. The ba
kward nonde-terministi
 DAWG mat
hing (BNDM) [6℄ algorithm is then used to s
an the textwith this �lter. The returned alignments are veri�ed with a Rabin-Karp [3℄ stylealgorithm. When the number of patterns grows the �ltering is no longer e�
ientenough be
ause almost every alignment will mat
h the �lter. To boost the �lter-ing e�
ien
y, the BG algorithm uses q-grams instead of single
hara
ters in the�ltering phase. If mat
hes are su�
iently rare (i.e. the p-value(p, α) is su�
iently

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30

mFig. 3. The length distribution of patterns in the TRANSFAC database.low), the BG algorithm has average
ase running time O(n log1/d m/m) where
d = 1 − (1 − 1/σq)r where r is the number of patterns.

p-value(p, α) gives the probability of a random string to produ
e a s
oreequal to or greater than α when aligned with the weighted pattern p. If theba
kground model assumes that all
hara
ters are
hosen independently anduniformly, p-value(p, α) gives the proportion of all possible strings for whi
hthe s
ore is at least α. Thus the expe
ted number of enumerated strings is
σmp-value(p, α) be
ause there are σm di�erent strings of length m.In pra
ti
e, it turned out to be reasonably fast to enumerate mat
hing stringsup to pattern length 16. With larger patterns we enumerated only 16
hara
terslong pre�xes of the mat
hing strings and the algorithm veri�es the found mat
heslater.The enumeration approa
h is easy to adjust to sear
hing for multiple weightedpatterns at on
e. All we need to do is to enumerate for all of the weighted pat-terns the strings produ
ing high enough s
ores and then sear
h for all theseenumerated strings.6 Experimental ResultsFor all experimental testing we used a
omputer with a 2.0 GHz AMD Opterondual-pro
essor and 6 GB of memory. The ma
hine was running the 64-bit versionof Linux 2.6.15. The tests were written in C and
ompiled with the g

 4.1.0
ompiler. The patterns were extra
ted from the TRANSFAC database [5℄. Figure3 shows the length distribution of the patterns. As
an be seen the length ofmost patterns is between 8 and 22 nu
leotides. In parti
ular there are only a fewpatterns of length over 22 and thus the results
on
erning these pattern lengthsare only tentative. The text we used was a
hromosome from the fruit�y genome(20 MB).Figure 4 shows a runtime
omparison of the algorithm by Liefooghe, Touzetand Varré (LTV) [4℄, shift-add algorithm (sa) and the enumeration algorithm(ebg) for two p-values. The algorithms were run 10 times with ea
h pattern

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 5 10 15 20 25 30

R
un

tim
e

(s
)

m

sa
ebg
ltv

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 5 10 15 20 25 30

R
un

tim
e

(s
)

m

sa
ebg
ltv
ebg (r=10, amortized)
ebg (r=100, amortized)

(a) (b)Fig. 4. Runtime
omparison of di�erent methods for p-values (a) 10−3 and (b) 10−5.and the average runtime was
al
ulated. The �gure shows average runtimes ofpatterns of same length. The measured runtime ex
ludes the time used for pre-pro
essing.For the LTV algorithm we did not
ount the optimum length of the submatri-
es as presented in the original paper by Liefooghe et al. [4℄ be
ause the optimumlength
al
ulation does not take into a

ount
a
he e�e
ts and these surely havea signi�
ant e�e
t on the runtime. Instead we tried the algorithm with submatrixlengths from 4 to 8 and in
luded the best results in the
omparison. With thismodi�
ation the method is a
tually the same as the superalphabet algorithm ofPizzi et al. [7℄.The optimal value for q in the LTV algorithm is lower for shorter patterns andfor higher p-values but it does not a�e
t the runtime of the algorithm very mu
huntil it rea
hes the value 8 when the tables no longer all �t into the
a
he. We
ansee that for the p-value 10−3 the runtime in
reases slowly until pattern length 11and for the p-value 10−5 the runtime stays almost
onstant until pattern length15. Until that time it is almost always su�
ient to
al
ulate the index of the�rst pre
al
ulated s
ore table
orresponding to the �rst submatrix be
ause thelookahead te
hnique then reports that a mat
h at that position is not possible.When the pattern length in
reases further, more and more a

esses are neededto the se
ond pre
al
ulated table until at pattern length 14 for the p-value 10−3and at pattern length 19 for the p-value 10−5 at almost every position we needto
onsult both the �rst and the se
ond pre
al
ulated table.Figure 4 shows that the runtime of the shift-add algorithm in
reases ea
htime we need more words to represent the state ve
tor. For pattern lengths
{5−8, 8−14, 15−21, 19−24, 25−30} we need state ve
tors of size {1, 2, 3, 4, 5}words, respe
tively. Between lengths 19 and 21 some patterns need state ve
torsof 3 words while others need 4 words. Similarly for pattern length 8 some patternsneed state ve
tors of 1 word while others need already 2 words. The number ofwords needed does not
hange from the p-value 10−3 to the p-value 10−5.

We ran the enumeration algorithm with several di�erent values of q and
hosethe value that gives the best runtime. For the p-value 10−3 and pattern lengths
{5 − 7, 8 − 9, 10, 11, 12− 15} the values {4, 5, 6, 7, 8}, respe
tively, gave the bestresults and for the p-value 10−5 and pattern lengths {5 − 11, 12, 13, 14, 15 −
20} the values {4, 5, 6, 7, 8}, respe
tively, gave the best results. We did not runthe enumeration algorithm for longer pattern lengths be
ause the number ofenumerated patterns grew too large and already with these pattern lengths thealgorithm started to signi�
antly slow down.Overall Fig. 4 shows that for low signi�
an
e levels (i.e. high p-values) theshift-add algorithm is the fastest. For higher signi�
an
e levels (i.e. smaller
p-values) the shift-add algorithm is the fastest for pattern lengths smaller than7. The enumeration algorithm is fastest for patterns lengths 8 to 16. For longerpatterns the shift-add algorithm is the fastest at least until pattern length 25.After that the di�eren
es between shift-add and LTV are so small that it is hardto say anything
on
lusive be
ause the TRANSFAC database
ontained so fewlong patterns.The prepro
essing of the shift-add algorithm is very fast taking less than0.01 s regardless of the pattern length. The prepro
essing time for the LTValgorithm ranges from less than 0.01 s to 0.09 s. The prepro
essing time of theenumeration algorithm is exponential in the length of the pattern. It stays under0.01 s until pattern length 12 for the p-value 10−3 and until pattern length 16 forthe p-value 10−5. For longer patterns the prepro
essing time in
reases to 0.93 sfor the p-value 10−3 and pattern length 15 and to 0.40 s for the p-value 10−5and pattern length 20.We also ran some experiments with the multiple pattern version of the enu-meration algorithm. Be
ause the single pattern algorithm worked well only forhigh signi�
an
e levels we ran the multiple pattern version only for the p-value
10−5. To get reliable results, we needed more patterns of ea
h length than isprovided by the TRANSFAC database. To in
rease the number of patterns forea
h pattern length we took pre�xes of longer patterns and added these to ourpool of patterns until we had a hundred patterns of ea
h length. This workedup to pattern length 16 after whi
h in
luding pre�xes of all longer patterns didnot bring the number of patterns to one hundred.Figure 5 shows how the runtime of the algorithm behaves as a fun
tion ofpattern length and pattern set size r. As
an be seen, the runtime de
reases forall pattern sets as pattern length in
reases until pattern length 8 be
ause the BGalgorithm
an make longer shifts. After pattern length 12 the �ltering e�
ien
yof the BG algorithm starts to deteriorate and we need to make more veri�
a-tions whi
h in
reases the runtime. The �ltering e�
ien
y
ould be boosted byin
reasing the value of parameter q but this would in
rease the amount of mem-ory needed so that the stru
tures frequently used by the algorithm no longer �tin the data
a
he and this imposes an even larger penalty on the runtime.Figure 5b shows that the runtime in
reases only slightly when the patternset size is in
reased for pattern lengths 8 through 14. For shorter pattern lengthsthe performan
e of the algorithm deteriorates faster be
ause so many positions

 0

 0.5

 1

 1.5

 2

 4 6 8 10 12 14 16 18 20

R
un

tim
e

(s
)

m

r=100
r=90
r=70
r=50
r=30
r=10

 0

 0.5

 1

 1.5

 2

 10 20 30 40 50 60 70 80 90 100

R
un

tim
e

(s
)

r

m=5
m=6
m=8

m=12
m=14
m=16
m=18

(a) (b)Fig. 5. The runtime of the multipattern enumeration algorithm as a fun
tion of (a)pattern length and (b) pattern set size.
 0.001

 0.01

 0.1

 1

 10

 100

 12 13 14 15 16 17 18 19 20

P
re

pr
oc

es
si

ng
 ti

m
e

(s
)

m

r=100
r=90
r=70
r=50
r=30
r=10Fig. 6. Prepro
essing times for the multiple pattern enumeration algorithm.mat
h at least one of the patterns. For longer patterns the �ltering e�
ien
y isa problem even when sear
hing for a single pattern and this problem is furtheremphasized by in
reasing the pattern set size.Prepro
essing time of the multipattern algorithm is less than 0.01 s for allpattern set sizes when the pattern length is at most 11. Figure 6 shows theprepro
essing times for longer patterns and various pattern set sizes.The amortized running times (i.e. the running times per pattern) for themultipattern enumeration algorithm are shown also in Fig. 4b for pattern setsizes 10 and 100. As
an be seen these times are mu
h lower than the runningtimes of the other algorithms until pattern length 16. After that the runtimestarts to in
rease and after pattern length 20 it is probably faster to mat
h onepattern at a time using either the shift-add or the LTV algorithm.

7 Con
lusionsWe have presented two e�
ient algorithms for sear
hing weighted patterns inan unweighted text. We have showed that the algorithms are fast in pra
ti
eby
omparing their performan
e on real data against the previous algorithm byLiefooghe et al. [4℄.Referen
es1. Baeza-Yates, R., Gonnet, G.: A new approa
h to text sear
hing. Communi
ationsof the ACM 35(10) (1992) 74�822. Claverie, J.M., Audi
, S.: The statisti
al signi�
an
e of nu
leotide position-weightmatrix mat
hes. Computer Appli
ations in Bios
ien
es 12(5) (1996) 431�4393. Karp, R., Rabin, M.: E�
ient randomized pattern-mat
hing algorithms. IBMJournal of Resear
h and Development 31 (1987) 249�1604. Liefooghe, A., Touzet, H., Varré, J.S.: Large s
ale mat
hing for position weightmatri
es. In: Pro
eedings of 17th Symposium on Combinatorial Pattern Mat
hing.Volume 4009 of LNCS, Berlin, Springer-Verlag (2006) 401�4125. Matys, V., Fri
ke, E., Ge�ers, R., Göÿling, E., Haubro
k, M., Hehl, R., Hornis
her,K., Karas, D., Kel, A., Kel-Margoulis, O., Kloos, D., Land, S., Lewi
ki-Potapov,B., Mi
hael, H., Mün
h, R., Reuter, I., Rotert, S., Saxel, H., S
heer, M., Thiele, S.,Wingender, E.: TRANSFAC: trans
riptional regulation, from patterns to pro�les.Nu
lei
 A
ids Res. 31 (2003) 374�3786. Navarro, G., Ra�not, M.: Fast and �exible string mat
hing by
ombining bit-parallelism and su�x automata. ACM Journal of Experimental Algorithmi
s 5(4)(2000) 1�367. Pizzi, C., Rastas, P., Ukkonen, E.: Fast sear
h algorithms for position spe
i�
s
oring matri
es. In: Pro
eedings of 1st International Conferen
e on Bioinformati
sResear
h and Development. Volume 4414 of LNBI, Berlin, Springer-Verlag (2007)239�2508. Pizzi, C., Ukkonen, E.: Fast pro�le mat
hing algorithms � a survey. Theoreti
alComputer S
ien
e (to appear).9. Salmela, L., Tarhio, J., Kytöjoki, J.: Multi-pattern string mat
hing with q-grams.ACM Journal of Experimental Algorithmi
s 11 (2006) 1�1910. Staden, R.: Methods for
al
ulating the probabilities of �nding patterns in se-quen
es. Computer Appli
ations in Bios
ien
es 5 (1989) 89�9611. Wu, T., Neville-Manning, C., Brutlag, D.: Fast probabilisti
 analysis of sequen
efun
tion using s
oring matri
es. Bioinformati
s 16(3) (2000) 233�244

