
Algorithms for Weighted MathingLeena Salmela and Jorma Tarhio⋆Helsinki University of Tehnology{lsalmela, tarhio}�s.hut.fiAbstrat. We onsider the mathing of weighted patterns against anunweighted text. We adapt the shift-add algorithm for this problem. Wealso present an algorithm that enumerates all strings that produe a sorehigher than a given sore threshold when aligned against a weighted pat-tern and then searhes for all these strings using a standard exat mul-tipattern algorithm. We show that both of these approahes are fasterthan previous algorithms on patterns of moderate length and high sig-ni�ane levels while the good performane of the shift-add algorithmontinues with lower signi�ane levels.1 IntrodutionIn a weighted mathing problem the text or the pattern is a weighted sequenewhere in eah position a weight is assigned to eah harater of the alphabet.In this paper we onsider the ase where the pattern is weighted and the textunweighted and we are interested in �nding alignments where the sore, whihis the sum of the weights in the pattern orresponding to the aligned haratersin the text, is larger than some given sore threshold.Weighted patterns arise for example in the modeling of transription fatorbinding sites in bioinformatis. In bioinformatis weighted patterns are alled po-sition weight matries, position spei� soring matries or pro�les. The weightof a nuleotide in a given position desribes the log probability of that nuleotideappearing in that position in a transription fator binding site. Therefore thesore of an alignment is the log probability of that alignment being a transrip-tion fator binding site. Many methods in bioinformatis rely on the large salesanning of these weighted patterns against a genome and there are large publidatabases, like TRANSFAC [5℄ ontaining suh patterns.In this paper we adapt some standard string mathing tehniques to theweighted mathing problem and ompare the performane of these algorithmsagainst the algorithm by Liefooghe et al. [4℄. In Setion 4, we adapt the shift-add[1℄ algorithm to handle weighted patterns and in Setion 5 we onsider the enu-meration of all strings mathing a given weighted pattern and searhing for thesestrings by a standard multipattern algorithm. We ompare our new approahesto the previous algorithm by Liefooghe et al. [4℄ in Setion 6. The preliminaryexperimental results show that for high signi�ane levels the enumeration ap-proah is the fastest for pattern lengths 7 to 19 while the shift-add algorithm is
⋆ Work by Jorma Tarhio was supported by Aademy of Finland.

i 1 2 3 4 5 6 7 8 9 10 11 12a 7 −6 −5 −10 −8 −10 4 −10 −10 −2 −10 −10 −5 −8 −10 14 −10 −8 −10 −10 −10 11 −10 −10t 6 13 −10 −8 −10 12 −10 −10 −10 −3 −10 9g −5 −6 13 −10 14 −1 11 14 14 −10 14 6Fig. 1. An example weighted pattern orresponding to the EGR-1 family extratedfrom TRANSFAC.the fastest for shorter and longer patterns. For the longest patterns either thealgorithm by Liefooghe et al. or the shift-add algorithm is the fastest. For lowersigni�ane levels the shift-add algorithm is the fastest.After submitting this paper we learned that Pizzi et al. [7℄ have also developedan algorithm based on the enumeration approah. However, they use a di�erentmultipattern algorithm to searh for the enumerated strings while we use analgorithm tuned for very large pattern sets and low expeted number of hits.2 De�nitionsWe onsider the mathing of weighted patterns against an unweighted text. Thetext is a sequene of haraters from an alphabet Σ of size σ. The weightedpattern assigns weights to all haraters of the alphabet for eah position of thepattern.De�nition 1. A weighted pattern of length m is an m × σ matrix p of integeroe�ients p[i, c] whih give the weight of the harater c ∈ Σ at position i where
1 ≤ i ≤ m.Figure 1 shows an example of a weighted pattern. Here we will only onsiderweighted patterns with integer weights. Weighted patterns are obtained fromentropy or log odd matries that have real oe�ients but in pratie these arerounded to integer matries to allow for more e�ient omputation.Given a weighted pattern and a string of haraters from the alphabet Σ thesore of this string is de�ned as follows:De�nition 2. Given a weighted pattern p of length m and a string t of length
m from the alphabet Σ, the sore of the pattern aligned with the string is de�nedas:

score(p, t) =

m
∑

i=1

p[i, ti]In the weighted mathing problem we are interested in �nding all those align-ments of a text with the pattern that yield a large enough sore:De�nition 3. Given a weighted pattern p of length m, a sore threshold α andan unweighted text t1...n, �nd all suh alignments i of the pattern with the textthat score(p, ti...i+m−1) ≥ α.

Given a weighted mathing problem, p-value [2,10℄ is a measure that anbe used to estimate the statistial signi�ane of the returned alignments. The
p-value is de�ned as follows:De�nition 4. Given a weighted mathing problem with pattern p and sorethreshold α, p-value(p, α) is the probability that a given bakground model ofthe sequene produes a sore equal to or greater than the sore threshold α.In this paper we assume that the bakground model is the standard randomstring model where eah harater of the sequene is hosen independently anduniformly. In this ase the p-value an be omputed with the following reursion:

p-value(p[1...0], α) =

{

1 if α ≤ 0
0 otherwise

p-value(p[1...i], α) =
1

σ

∑

c∈Σ

p-value(p[1...i − 1], α − p[i, c])3 Previous WorkThe brute fore algorithm for the weighted mathing problem alulates the sorefor eah alignment of the pattern with the text and reports those alignments thatyield a sore higher than the sore threshold. Lately various tehniques have beenproposed to speed up this sheme. Here we will review those tehniques that arerelevant to our work. See [8℄ for a survey on previous work.Several algorithms use the lookahead tehnique [11℄ whih provides a way toprune the alulation in a single alignment. For all su�xes of the pattern, there isa maximum sore that they an ontribute to the overall sore. If after mathingthe pre�x of the pattern, the sore is not at least the sore threshold minusmaximum sore of the su�x, there annot be a math at this alignment. Byalulating the maximum sore for eah pattern su�x, the overall omputationtime an be signi�antly redued.In Setion 6 we will ompare our algorithms to the algorithm by Liefooghe etal. [4℄. Their algorithm uses the lookahead tehnique and in addition it dividesthe pattern into submatries and prealulates for all possible strings the soreyielded by eah submatrix. For example, if we had a pattern of length 12, weould divide it to three submatries of length four and then prealulate thesores of eah submatrix for all the σ4 possible strings. At mathing time we anthen just lookup the sores of eah submatrix in a table.4 Shift-Add for Weighted MathingIn this setion we will adapt the shift-add algorithm [1℄ to weighted mathing.Originally the shift-add algorithm was designed for the k-mismath problemwhere the task is to �nd all substrings of the text that math the pattern withat most k mismathes. The algorithm works as follows.

For eah pattern position i from 1 to m the algorithm has a variable siindiating with how many mismathes the su�x of length i of the text read so farmathes the pattern pre�x of length i. If the variables si an be represented in bbits, we an onatenate all these variables into a single vetor s = smsm−1 . . . s1of length mb. In the preproessing phase we initialize for eah symbol c in thealphabet a vetor T [c] where the bits in the position of si are 0b if c equals piand 0b−11 otherwise. The vetor s (and hene also the variables si) an then inthe mathing phase be all updated at the same time when the next harater cfrom the text is read:
s = (s ≪ b) + T [c]The algorithm has found a math if sm ≤ k.If the variables si ount mismathes, the maximum value that they an reahis m. However, in the k-mismath problem it is enough to be able to representvalues in the range [0, k + 1] yielding b = ⌈log(k + 1)⌉. However, we need anadditional bit so that the possible arry bits do not interfere with the nextvariable. With this modi�ation the update operation of the algorithm beomes:

s = (s ≪ b) + T [c]

of = (of ≪ b) | (s & (10b−1)m)

s = s & (01b−1)mHere the �rst line updates the variables si, the seond one keeps trak of thosevariables si that have over�owed and the last one lears the arry bits. Whenheking for a math, we now also need to hek that the variable sm has notover�owed whih an be seen from the of vetor. The shift-add algorithm for the
k-mismath problem has time omplexity O(n⌈mb

w ⌉) where b = ⌈log(k + 1)⌉ + 1and w is the size of the omputer word in bits.We will now present the shift-add algorithm for weighted mathing with posi-tive restrited weights. Then we will show how a general weighted pattern math-ing problem an be transformed into suh a restrited problem. The weights ofthe weighted mathing problem with positive restrited weights have the follow-ing properties:1. ∀i, 1 ≤ i ≤ m, ∀c ∈ Σ, 0 ≤ p[i, c] ≤ α2. ∀i, 1 ≤ i ≤ m ∃c ∈ Σ suh that p[i, c] = 0where p is the weighted pattern of length m and α is the sore threshold. Property1 is needed for the orret operation of the shift-add algorithm while Property 2merely serves as a way to lower the sore threshold and thus lower the numberof bits needed for the variables si as will be seen later.The adaptation of the shift-add algorithm to weighted mathing with positiverestrited weights is quite straightforward. Now instead of ounting mismathes,we will be alulating sores so the variables si ontain the sore of the su�x oflength i of the text read so far as ompared to the pre�x of length i of the pattern.For the update operation the bits orresponding to si in the preproessed vetors
T [c] now ontain the weight of the harater c at position i. The update operation

is exatly as in the shift-add algorithm for the k-mismath problem. If after theupdate operation the sore sm ≥ α or the variable sm has over�owed, a mathis reported.Property 1 of the weighted mathing problem with positive restrited weightsstates that all weights are non-negative and thus
score(p1...i, tj...j+i+1) ≤ score(p1...i+1, tj...j+i+2) .Beause the sore an only inrease when reading a new harater, we an trun-ate the sore values to α. Property 1 further states that all weights are atmost α. Thus, if we trunate the sore values to α, after the update operationthe variables si ≤ 2α so 1 arry bit is enough. Therefore we need to reserve

b = ⌈log α⌉+1 bits for eah variable si and the time omplexity of the algorithmis O(n⌈m(⌈log α⌉+1)
w ⌉).In the weighted mathing problem the weights an be, and in pratie oftenare, negative. The following observation points us to a way to transform anyweighted mathing problem to a weighted mathing problem with positive re-strited weights. Let p be a weighted pattern of length m and let p′ be a weightedpattern suh that for some i, 1 ≤ i ≤ m, p′[i, c] = p[i, c] + h for all c ∈ Σ andsome onstant h, and for all j 6= i , 1 ≤ j ≤ m, and all c ∈ Σ, p′[j, c] = p[j, c].Then the following holds for the sores of p and p′ aligned with any string t oflength m:

score(p′, t) = score(p, t) + hTherefore the weighted pattern mathing problem for a text t, pattern p andsore threshold α returns exatly the same alignments as the weighted patternmathing problem for a text t, pattern p′ and sore threshold α′ = α + h.Now given a weighted pattern mathing problem with a sore threshold αand a pattern p ontaining any integer weights we an transform the probleminto an equivalent problem with a sore threshold α′ and a pattern p′ ontainingonly non-negative weights.To redue the sore threshold (and thus also the number of bits needed forthe variables si) we further transform the pattern so that in eah position atleast one of the weights equals zero by adding an appropriate negative onstant
h to all weights in that position and by adjusting the sore threshold also by
h. Furthermore, if now any weight is larger than the sore threshold, it anbe trunated to the sore threshold without a�eting the returned alignmentsbeause the sore of an alignment annot get smaller as more haraters areread. The sores of those alignments will however be lower. As a result we havetransformed a weighted mathing problem into a weighted mathing problemwith positive restrited weights.In pratie weighted patterns are obtained by rounding log-odd or entropymatries to integer matries. Thus the values of the weights depend on howmuh preision is preserved by this rounding and furthermore pratial valuesof the threshold α depend on the weights. Beause of the ⌈log α⌉ + 1 fator inthe running time the shift-add algorithm is somewhat sensitive to the preisionof this rounding unlike other algorithms.

enumerate(p, α)1. reurse(1, 0)string sreurse(i, score)1. if (α > score + max_score(i...m))2. return3. if (i > m and score ≥ α)4. add_string(s)5. else6. for eah c ∈ Σ7. s[i] = c8. reurse(i + 1, score + p[i, c])Fig. 2. Pseudo ode for enumerating all strings that produe a sore higher than orequal to the sore threshold α.5 Enumeration AlgorithmsFor short patterns it is possible to enumerate all mathing strings whih are thestrings that produe a sore higher than the sore threshold when aligned withthe weighted pattern. The enumerated strings an then be searhed for with anexat multipattern mathing algorithm.The enumeration of mathing strings is done with a reursive algorithm. Atreursion level i we have onstruted a string of length i − 1 that is a possiblepre�x of a mathing string and we try to expand that pre�x with all haratersof the alphabet. This way we have to alulate the sore of eah pre�x only one.The reursion an further be pruned with the lookahead tehnique. Suppose wehave enumerated a pre�x of length i − 1 with sore scorei and the maximumsore of a su�x of length m − i is max_score(i...m) then if the sore threshold
α > scorei + max_score(i...m) then at this branh of the reursion no mathingstrings an be found. The pseudo ode for enumerating the mathing strings isgiven in Fig. 2.Beause the number of enumerated strings is often very large, we used themultipattern BNDM with q-grams (BG) [9℄ algorithm whih is espeially tunedfor large pattern sets. The BG algorithm �rst builds a �lter, whih is a patternof lasses of haraters. In this �lter all haraters that appear in any of thesingle patterns in position i are aepted at that position. The bakward nonde-terministi DAWG mathing (BNDM) [6℄ algorithm is then used to san the textwith this �lter. The returned alignments are veri�ed with a Rabin-Karp [3℄ stylealgorithm. When the number of patterns grows the �ltering is no longer e�ientenough beause almost every alignment will math the �lter. To boost the �lter-ing e�ieny, the BG algorithm uses q-grams instead of single haraters in the�ltering phase. If mathes are su�iently rare (i.e. the p-value(p, α) is su�iently

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30

mFig. 3. The length distribution of patterns in the TRANSFAC database.low), the BG algorithm has average ase running time O(n log1/d m/m) where
d = 1 − (1 − 1/σq)r where r is the number of patterns.

p-value(p, α) gives the probability of a random string to produe a soreequal to or greater than α when aligned with the weighted pattern p. If thebakground model assumes that all haraters are hosen independently anduniformly, p-value(p, α) gives the proportion of all possible strings for whihthe sore is at least α. Thus the expeted number of enumerated strings is
σmp-value(p, α) beause there are σm di�erent strings of length m.In pratie, it turned out to be reasonably fast to enumerate mathing stringsup to pattern length 16. With larger patterns we enumerated only 16 haraterslong pre�xes of the mathing strings and the algorithm veri�es the found matheslater.The enumeration approah is easy to adjust to searhing for multiple weightedpatterns at one. All we need to do is to enumerate for all of the weighted pat-terns the strings produing high enough sores and then searh for all theseenumerated strings.6 Experimental ResultsFor all experimental testing we used a omputer with a 2.0 GHz AMD Opterondual-proessor and 6 GB of memory. The mahine was running the 64-bit versionof Linux 2.6.15. The tests were written in C and ompiled with the g 4.1.0ompiler. The patterns were extrated from the TRANSFAC database [5℄. Figure3 shows the length distribution of the patterns. As an be seen the length ofmost patterns is between 8 and 22 nuleotides. In partiular there are only a fewpatterns of length over 22 and thus the results onerning these pattern lengthsare only tentative. The text we used was a hromosome from the fruit�y genome(20 MB).Figure 4 shows a runtime omparison of the algorithm by Liefooghe, Touzetand Varré (LTV) [4℄, shift-add algorithm (sa) and the enumeration algorithm(ebg) for two p-values. The algorithms were run 10 times with eah pattern

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 5 10 15 20 25 30

R
un

tim
e

(s
)

m

sa
ebg
ltv

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 5 10 15 20 25 30

R
un

tim
e

(s
)

m

sa
ebg
ltv
ebg (r=10, amortized)
ebg (r=100, amortized)

(a) (b)Fig. 4. Runtime omparison of di�erent methods for p-values (a) 10−3 and (b) 10−5.and the average runtime was alulated. The �gure shows average runtimes ofpatterns of same length. The measured runtime exludes the time used for pre-proessing.For the LTV algorithm we did not ount the optimum length of the submatri-es as presented in the original paper by Liefooghe et al. [4℄ beause the optimumlength alulation does not take into aount ahe e�ets and these surely havea signi�ant e�et on the runtime. Instead we tried the algorithm with submatrixlengths from 4 to 8 and inluded the best results in the omparison. With thismodi�ation the method is atually the same as the superalphabet algorithm ofPizzi et al. [7℄.The optimal value for q in the LTV algorithm is lower for shorter patterns andfor higher p-values but it does not a�et the runtime of the algorithm very muhuntil it reahes the value 8 when the tables no longer all �t into the ahe. We ansee that for the p-value 10−3 the runtime inreases slowly until pattern length 11and for the p-value 10−5 the runtime stays almost onstant until pattern length15. Until that time it is almost always su�ient to alulate the index of the�rst prealulated sore table orresponding to the �rst submatrix beause thelookahead tehnique then reports that a math at that position is not possible.When the pattern length inreases further, more and more aesses are neededto the seond prealulated table until at pattern length 14 for the p-value 10−3and at pattern length 19 for the p-value 10−5 at almost every position we needto onsult both the �rst and the seond prealulated table.Figure 4 shows that the runtime of the shift-add algorithm inreases eahtime we need more words to represent the state vetor. For pattern lengths
{5−8, 8−14, 15−21, 19−24, 25−30} we need state vetors of size {1, 2, 3, 4, 5}words, respetively. Between lengths 19 and 21 some patterns need state vetorsof 3 words while others need 4 words. Similarly for pattern length 8 some patternsneed state vetors of 1 word while others need already 2 words. The number ofwords needed does not hange from the p-value 10−3 to the p-value 10−5.

We ran the enumeration algorithm with several di�erent values of q and hosethe value that gives the best runtime. For the p-value 10−3 and pattern lengths
{5 − 7, 8 − 9, 10, 11, 12− 15} the values {4, 5, 6, 7, 8}, respetively, gave the bestresults and for the p-value 10−5 and pattern lengths {5 − 11, 12, 13, 14, 15 −
20} the values {4, 5, 6, 7, 8}, respetively, gave the best results. We did not runthe enumeration algorithm for longer pattern lengths beause the number ofenumerated patterns grew too large and already with these pattern lengths thealgorithm started to signi�antly slow down.Overall Fig. 4 shows that for low signi�ane levels (i.e. high p-values) theshift-add algorithm is the fastest. For higher signi�ane levels (i.e. smaller
p-values) the shift-add algorithm is the fastest for pattern lengths smaller than7. The enumeration algorithm is fastest for patterns lengths 8 to 16. For longerpatterns the shift-add algorithm is the fastest at least until pattern length 25.After that the di�erenes between shift-add and LTV are so small that it is hardto say anything onlusive beause the TRANSFAC database ontained so fewlong patterns.The preproessing of the shift-add algorithm is very fast taking less than0.01 s regardless of the pattern length. The preproessing time for the LTValgorithm ranges from less than 0.01 s to 0.09 s. The preproessing time of theenumeration algorithm is exponential in the length of the pattern. It stays under0.01 s until pattern length 12 for the p-value 10−3 and until pattern length 16 forthe p-value 10−5. For longer patterns the preproessing time inreases to 0.93 sfor the p-value 10−3 and pattern length 15 and to 0.40 s for the p-value 10−5and pattern length 20.We also ran some experiments with the multiple pattern version of the enu-meration algorithm. Beause the single pattern algorithm worked well only forhigh signi�ane levels we ran the multiple pattern version only for the p-value
10−5. To get reliable results, we needed more patterns of eah length than isprovided by the TRANSFAC database. To inrease the number of patterns foreah pattern length we took pre�xes of longer patterns and added these to ourpool of patterns until we had a hundred patterns of eah length. This workedup to pattern length 16 after whih inluding pre�xes of all longer patterns didnot bring the number of patterns to one hundred.Figure 5 shows how the runtime of the algorithm behaves as a funtion ofpattern length and pattern set size r. As an be seen, the runtime dereases forall pattern sets as pattern length inreases until pattern length 8 beause the BGalgorithm an make longer shifts. After pattern length 12 the �ltering e�ienyof the BG algorithm starts to deteriorate and we need to make more veri�a-tions whih inreases the runtime. The �ltering e�ieny ould be boosted byinreasing the value of parameter q but this would inrease the amount of mem-ory needed so that the strutures frequently used by the algorithm no longer �tin the data ahe and this imposes an even larger penalty on the runtime.Figure 5b shows that the runtime inreases only slightly when the patternset size is inreased for pattern lengths 8 through 14. For shorter pattern lengthsthe performane of the algorithm deteriorates faster beause so many positions

 0

 0.5

 1

 1.5

 2

 4 6 8 10 12 14 16 18 20

R
un

tim
e

(s
)

m

r=100
r=90
r=70
r=50
r=30
r=10

 0

 0.5

 1

 1.5

 2

 10 20 30 40 50 60 70 80 90 100

R
un

tim
e

(s
)

r

m=5
m=6
m=8

m=12
m=14
m=16
m=18

(a) (b)Fig. 5. The runtime of the multipattern enumeration algorithm as a funtion of (a)pattern length and (b) pattern set size.
 0.001

 0.01

 0.1

 1

 10

 100

 12 13 14 15 16 17 18 19 20

P
re

pr
oc

es
si

ng
 ti

m
e

(s
)

m

r=100
r=90
r=70
r=50
r=30
r=10Fig. 6. Preproessing times for the multiple pattern enumeration algorithm.math at least one of the patterns. For longer patterns the �ltering e�ieny isa problem even when searhing for a single pattern and this problem is furtheremphasized by inreasing the pattern set size.Preproessing time of the multipattern algorithm is less than 0.01 s for allpattern set sizes when the pattern length is at most 11. Figure 6 shows thepreproessing times for longer patterns and various pattern set sizes.The amortized running times (i.e. the running times per pattern) for themultipattern enumeration algorithm are shown also in Fig. 4b for pattern setsizes 10 and 100. As an be seen these times are muh lower than the runningtimes of the other algorithms until pattern length 16. After that the runtimestarts to inrease and after pattern length 20 it is probably faster to math onepattern at a time using either the shift-add or the LTV algorithm.

7 ConlusionsWe have presented two e�ient algorithms for searhing weighted patterns inan unweighted text. We have showed that the algorithms are fast in pratieby omparing their performane on real data against the previous algorithm byLiefooghe et al. [4℄.Referenes1. Baeza-Yates, R., Gonnet, G.: A new approah to text searhing. Communiationsof the ACM 35(10) (1992) 74�822. Claverie, J.M., Audi, S.: The statistial signi�ane of nuleotide position-weightmatrix mathes. Computer Appliations in Biosienes 12(5) (1996) 431�4393. Karp, R., Rabin, M.: E�ient randomized pattern-mathing algorithms. IBMJournal of Researh and Development 31 (1987) 249�1604. Liefooghe, A., Touzet, H., Varré, J.S.: Large sale mathing for position weightmatries. In: Proeedings of 17th Symposium on Combinatorial Pattern Mathing.Volume 4009 of LNCS, Berlin, Springer-Verlag (2006) 401�4125. Matys, V., Frike, E., Ge�ers, R., Göÿling, E., Haubrok, M., Hehl, R., Hornisher,K., Karas, D., Kel, A., Kel-Margoulis, O., Kloos, D., Land, S., Lewiki-Potapov,B., Mihael, H., Münh, R., Reuter, I., Rotert, S., Saxel, H., Sheer, M., Thiele, S.,Wingender, E.: TRANSFAC: transriptional regulation, from patterns to pro�les.Nulei Aids Res. 31 (2003) 374�3786. Navarro, G., Ra�not, M.: Fast and �exible string mathing by ombining bit-parallelism and su�x automata. ACM Journal of Experimental Algorithmis 5(4)(2000) 1�367. Pizzi, C., Rastas, P., Ukkonen, E.: Fast searh algorithms for position spei�soring matries. In: Proeedings of 1st International Conferene on BioinformatisResearh and Development. Volume 4414 of LNBI, Berlin, Springer-Verlag (2007)239�2508. Pizzi, C., Ukkonen, E.: Fast pro�le mathing algorithms � a survey. TheoretialComputer Siene (to appear).9. Salmela, L., Tarhio, J., Kytöjoki, J.: Multi-pattern string mathing with q-grams.ACM Journal of Experimental Algorithmis 11 (2006) 1�1910. Staden, R.: Methods for alulating the probabilities of �nding patterns in se-quenes. Computer Appliations in Biosienes 5 (1989) 89�9611. Wu, T., Neville-Manning, C., Brutlag, D.: Fast probabilisti analysis of sequenefuntion using soring matries. Bioinformatis 16(3) (2000) 233�244

