
On Compression of Parse Trees

Jorma Tarhio
Helsinki University of Technology

Department of Computer Science and Engineering
P.O. Box 5400, FIN-02015 HUT, Finland

Jorma.Tarhio@hut.fi

Abstract

We consider methods for compressing parse trees, espe-
cially techniques based on statistical modeling. We regard
a sequence of productions corresponding to a suffix of the
path from the root of a tree to a nodex as the context of
a nodex. The contexts are augmented with branching in-
formation of the nodes. By applying the text compression
algorithm PPM on such contexts we achieve good compres-
sion results. We compare experimentally the PPM approach
with other methods.

1 Introduction

General-purpose text compression works normally at the
lexical level assuming that symbols to be encoded are inde-
pendent or they depend on preceding symbols within a fixed
distance. If the source text has some internal structure, the
successful modeling of the structure will lead better com-
pression. Traditionally such models has been focused on
compression of source programs [7, 13, 17], but also other
areas are feasible [8, 16].

In compression of programs, only syntactically correct
source programs are acceptable as input, and comments and
formatting features are often omitted. A pretty printer is as-
sumed to be available to achieve a readable program from
the decoded one. A program can be represented as a parse
tree and lists of token classes: identifiers, numbers, strings
etc. Each of these components can have a dedicated com-
pression method. E.g. static semantics of the programming
language can be utilized in compressing the occurrences of
identifiers, because the scope rules limit the visibility of
identifiers thus decreasing the coding space. In this paper,
we will concentrate on compression of parse trees, which
is an important and challenging part of syntactical coding.
A parse tree is represented as a sequence of productions,
which is the input of our compression scheme.

For a long time the best known method has been based

on counts of production alternatives of nonterminals [7]. In
this paper we will present a better statistical method, which
utilizes contexts of productions.

Stochastic context-free grammars has been used for
modeling e.g. natural language. In a stochastic grammar
each production has an associated probability, which tells
how often that production is applied. An interesting ap-
proach is the class of weakly restricted stochastic gram-
mars [2], where probabilities are set for a group of two
productions with adjacent nodes in a parse tree. This ap-
proach gave us inspiration for defining contexts in trees to
be able to efficiently apply the text compression algorithm
PPM [3] for syntactical coding. The idea of our compres-
sion method without details has been earlier explained in the
poster [20]. The implementation of the method was finished
in 2000. Recently, similar approaches have been presented
by Cheney [8] and Stork et al. [19]. A related method was
introduced by Lake [15].

The rest of the paper is organized as follows. In Section 2
we consider sequences of productions as representations of
parse trees. In Section 3 we describe the PPM technique in
text compression and explain our context model for coding
of parse trees using PPM. Some aspects on grammar trans-
formations are discussed in Section 4. Compression results
are reported in Section 5 before final discussion in Section
6.

2 Representations of Parse Trees

We introduce basic concepts of parsing following mainly
Aho and Ullman [1]. Acontext-free grammaris a four-tupleG = (N;�; P; Z). The disjoint setsN of nonterminalsand� of terminalsform thevocabularyV = N [�. P �N � V � is the set ofproductions, whereV � consists all
strings overV . A productionp 2 P is writtenX ! �,
whereX 2 N is called theleft-hand sideof p anda 2 V �
is called theright-hand sideof p. The symbolZ 2 N is the
start symbolwhich does not appear on the right-hand side
of any production.

(1) Z ! i := E(2) E ! E + T(3) E ! T(4) T ! T � F(5) T ! F(6) F ! (E)(7) F ! i
Figure 1. Productions of G1.

As an example, we define a grammarG1 for a
small expression language. The productions ofG1 =(fZ;E; T; Fg; fi; :=;+; �g; P; Z) are given in Fig. 1. The
terminal symboli in G1represents variables and numbers.

Thederivation relation) is defined as follows. For any�; � 2 V �, �) � if � = !1A!2; � = !1!0!2 andA !!0 is a production whereA 2 N and!0; !1; !2 2 V �. If!1 2 �� or !2 2 �� we write�)lm � or �)rm b,
respectively. If�)� �, we say that the string� derives
the string� ()� denotes the reflexive closure of)). In
particular, if�)�lm � or �)�rm �, we say that� is ob-
tained by aleftmost derivation, or respectively by aright-
most derivationfrom �. A sequencep1; p2; :::; pk of pro-
ductions is called aleft parseof � in grammarG, if � is
obtained by a leftmost derivation fromZ by applying the
productions in the order. A sequencep1; p2; :::; pk of pro-
ductions is called aright parseof � in the grammarG, if� is obtained by a rightmost derivation fromZ by applying
the productions in the reversed order.

LetM be the total number of productions. We associate
a production number, i.e. a unique integer in[1;M ℄ with
each production. Then we can represent a parse as a se-
quence of production numbers.

A common representation for a parse is aparse tree. The
parse tree for a terminal stringw 2 L(G) is a finite ordered
tree in which every vertex is labeled byX 2 V or by �.
The label of the root isZ. The label of a nodeu is de-
noted byLab(u). If a nodeu has sonsu1; u2; :::; um such
thatLab(u) = X andLab(ui) = Xi; i = 1; :::;m, thenX ! X1:::Xm must be a production inP . The labels of
the leaves of the tree forw, concatenated from left to right,
form w. The parse tree forI = ‘ i := i � (i + i)’ with
nonterminal labels is shown in Fig. 2.

There is an alternative labeling scheme for internal
nodes:Lab0(u) is the production number of the production
applied atu. Then a left parse is simply the sequence of the
labels of the internal nodes of a parse tree in preorder and
and a right parse the sequence of the labels of the internal
nodes in postorder.

The parse tree of Fig. 2 is shown with production num-
bers in Fig. 3. When we traverse the tree in preorder, we get
sequence134576235757which is the left parse ofI . We

+ i)* (ii:=i

Z,,, HHHHH
E

T,,
T

F F F

PPPPPPP
F

E��
E

T

T
QQ����� HHHHH

Figure 2. Parse tree of ‘i := i � (i+ i)’.
call this representation of a parse tree a global production
number sequence or shortly aGPN sequence.

It is not necessary to use global production numbers in
the left parse, for it is sufficient to express only whichpro-
duction alternative of the nonterminalis applied at each
node [7]. The reason is that ifv is an internal node of a
parse tree and ifv is not the root, the production applied at
the father ofv determines the nonterminal associated withv. In addition we apply the following optimization: if a non-
terminal has only one production alternative, occurrencesof
such production are omitted from the sequence. (This could
have been done in GPN sequences as well.) We call such
productionsinsignificantand other productionssignificant.
Each insignificant production could be eliminated from a
grammar by a straightforward transformation. If the pro-
duction alternatives of each nonterminal are numbered start-
ing from one, we get sequence21221122222 for I . We
call this representation a local production number sequence
or shortly anLPN sequence. It is clear that the use of an
LPN sequence leads to better compression than the use of a
GPN sequence if no context information is utilized.

The fact that GPN and LPN sequences represent a parse
tree implies that coding is actually based on an abstract syn-
tax tree instead of the concrete one.

For low-level encoding,arithmetic coding[10, 21] gives
the best compression. The idea of arithmetic coding is as
follows. Relative intervals of the base interval[0; 1) are as-
signed adaptively to the symbols of the high-level model
according to their frequencies. The encoding of a symbol

+ i)* (ii:=i

1,,, HHHHH
3

4,,
5

7 7 7

PPPPPPP
6

2��
3

5

5
QQ����� HHHHH

Figure 3. Parse tree with production numbers.

sequence is an interval. The process starts with the base
interval [0; 1), and each symbol decreases the interval ac-
cording to its own interval. After the last symbol, a special
end symbol must be encoded to make unambiguous decod-
ing possible.

A natural way to code LPN sequences is to maintain
counts of the production alternatives separately for each
nonterminal and to use arithmetic coding encode frequen-
cies. This method was first discovered by Cameron [7]. We
call it LPN coding. An interesting feature of LPN coding
is that no end symbol is necessary in arithmetic coding, be-
cause the end of a sequence is recognized according to the
characteristics of a parse tree. LPN coding will be our ref-
erence method with which we compare other coding tech-
niques.

There are also alternative ways to encode LPN se-
quences. In the simplest model, the sequence is encoded by
keeping only one global distribution (the sequence is han-
dled as a text without caring of its semantics). Another pos-
sibility is to renumber production alternatives adaptively in
order to achieve a skewer distribution: the number of an al-
ternative is maintained to correspond to its position in sorted
counts of the productions of the same nonterminal. These
models are suitable to on-line encoding. The following two-
pass scheme may sometimes improve the compression re-
sult. In the first pass, frequencies of productions are com-
piled. In the second pass, the LPN sequence is encoded as
the productions missing from sequence were missing from

the grammar. In this scheme we need an additional flag for
every production such that its left-hand side nonterminal has
at least two production alternatives. If only one of the pro-
duction alternatives appears in the sequence, occurrencesof
such a production need not to be encoded at all.

3 Application of the PPM Approach

The online modeling algorithmPrediction by Partial
Matching (PPM) [3] produces very good compression on
text files. PPM maintains statistics concerning which sym-
bols have been seen in which contexts of preceding sym-
bols. Practical forms of PPM are based on the escape mech-
anism. Thek preceding symbols of the symbol to be en-
coded form the context of orderk. There is a separate en-
coding model for each context. In the case of ordinary text
compression, single characters are considered as symbols.
Let n be the maximum context length applied. If the next
symbol to be processed is present in the model of ordern,
the symbol is encoded according to that model. Otherwise
an escape code is emitted and the model of ordern � 1
is consulted. Because it is demanded that all the possible
symbols are present in the model of the lowest order, the
search always ends. Normally, the model of order 0 con-
tains counts of symbols without any context and the lowest
order�1 is used to encode a new symbol. So the actual code
of a symbol is typically a sequence of escape codes followed
by a symbol code. In each context all the symbols appeared
in longer contexts are excluded from the applied distribu-
tion according to the exclusion principle of PPM. Let us
assume that the symbol was found in the model of orderj.
According to the update exclusion principle of PPM, the oc-
currence of symbol is recorded only at levelsn; n�1; : : : ; j
but not at lower levels.

Let us consider an example. Let 2 be the maximum con-
text length. Letc be the next character to be coded and
ab the two preceding characters. In this situation the empty
context,ab, andb are possible contexts. Ifc has earlier fol-
lowedab, c is encoded according this context. Otherwise
if ab has not earlier appeared orc has not yet followedab,
an escape code is emitted and the algorithm is resumed with
the next shorter contextb. If c has earlier followedb, c is
encoded according this context. Otherwise an escape code
is emitted and the algorithm is resumed with the empty con-
text. If c has appeared earlier,c is encoded according this
context. Otherwise an escape code is emitted andc is en-
coded according to the context of order�1 which contains
all the characters.

The low level coding is normally implemented with
arithmetic coding. The scheme works in the same way in
decoding.

In the following, we consider three variations of PPM:
PPMA, PPMC, and PPMD [3, 10]. The variations differ

Table 1. Symbol and escape probabilities.

Type pi e
PPMA
i=(t+ 1) 1=(t+ 1)
PPMC
i=(t+ q) q=(t+ q)
PPMD (2
i � 1)=(2t) q=(2t)
PPMA0
i=(t+ h) h=(t+ h)

slightly how the symbol and escape probabilities are com-
puted. Lett be the total number of symbols that has been
seen in a context. That means that the context has been seent times. Letq be the number of different symbols seen in the
context and let
i be the count of symboli. Table 1 shows
how the escape probabilitye and the symbol probabilitypi
for symboli are computed. A new variation PPMA0 (see
Table 1) is a modification of PPMA with an additional pa-
rameterh > 0. PPMA0 for h = 1 is the same as PPMA.
Variation PPMD is defined in Table 1 in an alternative way
which is equivalent to the original definition [10].

Next we will consider how the PPM technique can ap-
plied to compression of parse trees. We regard the nodes
on the path from the root of a tree to nodex as the con-
text of nodex. More formally, contextC(x) of nodex
consists a sequence of pairs (production, branch) denotedC(x) = ((p1; b1); : : : ; (pn; bn)). Productions (global pro-
duction numbers)p1; : : : ; pn correspond to then lowest
nodes of the path abovex. Branchesb1; : : : ; bn tell the ordi-
nal number of the subtree the path takes at each node. The
sequence for the context of ordern containsn pairs. Letm be the length of the path. Ifm < n, then a prefix con-
sisting ofn � m pairs of the form(0; 0) is inserted to the
sequence. In Fig. 3, there are three nodes labeled with 2
or 3 corresponding to productions of nonterminalE. Their
contexts of order 2 are((0; 0); (1; 3)), ((4; 3); (6; 2)), and((6; 2); (2; 1)).

The lowest order is zero. The symbol code of order 0
resembles LPN coding, but all the productions appeared
in longer contexts are excluded according to the exclusion
principle. Counts of the production alternatives are main-
tained separately for each nonterminal. If the maximum
context length is zero, then the encoding is the same as LPN
coding.

Let n be the length of the maximum context and let
the occurrence of productionp: A ! � be found at
level k. In a normal case this is encoded as a sequence
<esc n>� � �<esc k+1><symb k>, where<esc m> is
an escape code and<symb m> a symbol code at levelm according to Table 1. Let us assume that all other
production alternatives ofA than p are present at levelsn; n� 1; : : : ; j, wherej � k. If j > k holds, it is sufficient
to emit only<esc n>� � �<esc j>, because we know for

sure that the next production will bep. If j = k holds,
then <symb k> is encoded simply with the probability
i=t without no reserve for an escape in all variations of
PPM. According to the update exclusion principle, the oc-
currence is recorded at levelsn; n�1; : : : ; j but not at lower
levels.

In the following, our method is calledPPM coding.

4 Grammar Transformations

Cameron [7] describes a transformation which has an
aim similar to our PPM approach. If a nonterminal is
present on right-hand sides of several productions and the
typical derivations involved with these occurrences are dif-
ferent, one can split this nonterminal to several nontermi-
nals with similar productions. This static approach will
slightly improve the coding efficiency without utilizing the
dynamic context information.

Stone [18] splits productions of a list structure in order
to improve compression. He modifies e.g. productionsP ! �P ! aPP ! bP
to the form P ! �P ! aP ! bP ! aaPP ! abPP ! baPP ! bbP
When choosing advantageous codes for productions in
Huffman coding, Stone achieves better compression with
the transformed grammar. However, it is easy to see that
the transformed grammar yields worse compression than
the original when arithmetic coding is used [17, 19]. So the
effect reported by Stone is due to the inaccuracy of Huffman
coding.

Katajainen et al. [13] suggest to leave out precedence and
associative rules of expressions from grammars, because the
compressed representation needs not to be semantically cor-
rect. This idea can be developed further allowing ambigu-
ous grammars for coding.

The advantage of ambiguous grammars is that we can
reduce the number of internal nodes in a parse tree. This
is partly due to the fact that the distributions of production
alternatives of most nonterminals are very skew in practice.
The drawback is that number of production alternatives per
nonterminal increases.

Let us consider the grammarG2 in Fig. 4. Let the gram-
marG3 be the same asG2 augmented with the production

Z ! LL! L ;A jAA! i := EE ! E + T j TT ! T � F j FF ! (E) j i
Figure 4. Productions of G2.A! i := i. NowG3 is clearly ambiguous. While encoding

the input ‘i:=n; i:=n; i:=n; i:=n; i:=n’ with
LPN coding,G3 clearly leads to better compression thanG2.

All these transformations are static and so they cannot
adapt to changes in input. As an obvious drawback, the size
of the grammar may grow, although some of the ambiguous
structures are even smaller. Peltola and Tarhio [17] consider
a framework of adaptive grammars which are transformed
online during encoding a source string.

General parsing based on an ambiguous grammar is
slow, though some ambiguous structures may be handled
by an LR parser [11]. Therefore it is advisable to perform
parsing using an unambiguous grammar and map the result
to the ambiguous one. Decoding can be done directly using
the ambiguous grammar.

5 Compression Results

We implemented the PPM method described in Section
3. The syntax analysis part was constructed using the lan-
guage processor generator HLP84 [14]. In order to be
able to handle left-recursive grammars, the system applies
LALR(1) parsing which produces the right parse of an in-
put. To be able to process the nodes of a parse tree in pre-
order, we reversed the right parse. The reversal of a right
parse corresponds to a left parse in the reversed grammar,
for which the right-hand sides of productions have been re-
versed. In addition to reversals of right parses, we made
experiments on left parses and and the results were almost
identical in the both ways. Left parses were transformed di-
rectly from right parses. The use of a language processor
generator makes it is rather easy to modify our compression
system for other languages. Instead of HLP84, one could
use other parser generators, e.g. Yacc [11].

We ran experiments on parse trees of four Pascal pro-
grams described in Table 2. The programs represent differ-
ent programming styles. Program P1 is a string matching
package, P2 is the standard parser used by HLP84, P3 is
progp of [3], and P4 is MLTeX 3.1. Our Pascal grammar
contains 277 productions of which 226 are significant.

Table 3 summarizes the results of our experiments. We
report the compression ratio of each measurement as bits

Table 2. Test programs.

Significant
Program Productions productions
P1 (string matching) 7008 5412
P2 (parser) 17150 13337
P3 (progp) 26016 19312
P4 (TeX) 269802 198949

Table 3. Compression results (bits/prod).

P1 P2 P3 P4
(a) LPN coding 0.992 1.104 1.122 1.000
(b) GPN/gzip 2.613 2.377 2.060 1.754
(c) gzip 1.412 1.323 1.140 1.001
(d) bzip2 1.373 1.339 1.183 0.865
(e) huff+gzip 1.200 1.140 0.995 0.884
(f) huff+bzip2 1.184 1.180 1.039 0.818
(g) PPM 0.855 0.871 0.868 0.756

per a significant production. It would have been unfair to
include insignificant productions, because they do not actu-
ally contain information. If insignificant productions were
included, one could reduce the compression ratio just by
adding new insignificant productions.

In Table 3, the method (a) is LPN coding described in
Section 2. In the method (b) a GPN sequence is compressed
with Gzip. In the methods (c) and (d) a LPN sequence is
compressed with Gzip and Bzip2, respectively. Bzip2 is an
implementation of the Burrows-Wheeler compression algo-
rithm [6]. In the methods (e) and (f) a LPN sequence is first
encoded into a bit string with Huffman so that the produc-
tion alternatives of each nonterminal has a static model of
its own. The result is then compressed with Gzip and Bzip2.
The last method (g) is PPM coding.

The results of Table 3 show that PPM is clearly the best
method for compressing parse trees. For large programs,
static Huffman with Bzip2 is also good—only 8% worse
than PPM.

In PPM coding we used the PPMA0 model of order 5 forh = 0:35. For P4 order 6 gave a slightly better result. The
best value of h depends slightly on the input, but good re-
sults can be achieved using a fixed value. Experiments with
other grammars suggest that the best value ofh depends on
the grammar.

We also tried variations PPMA, PPMC, PPMD, but
PPMA0 was clearly the best forh = 0:35. Table 4 shows
the relative compression results in order 5, where the results
of PPMA0 are 1 and the smaller values are better. The gain
of PPMA0 decreases, when the size of the input grows.

Table 4. Relative compression results (PPMA0
= 1.00).

P1 P2 P3 P4
PPMA0 1.00 1.00 1.00 1.00
PPMA 1.08 1.05 1.04 1.01
PPMC 1.11 1.08 1.07 1.03
PPMD 1.10 1.06 1.04 1.01

In our model, a context is a sequence of items (produc-
tion, branch). We tested also three other variations for an
item: (1) production, (2) (nonterminal, branch), and (3)
nonterminal, but all these three approaches gave clearly
worse results. The alternative (2) was the second best.

6 Concluding Remarks

It is interesting that PPMA0, our variation of PPMA,
showed to be better than PPMC and PPMD, though they
are better than PPMA for ordinary texts. The obvious rea-
son is that the number of different symbols in each context
is small and distributions are skew when coding a parse tree.
When the input becomes longer, the relative gain of PPMA0
gets smaller.

For ordinary texts, PPMA0 is clearly worse than PPMC
or PPMD. However, a hybrid scheme applying a local selec-
tion of the encoding based on the length and the distribution
of a context seems to lead to a minor improvement.

We did not try PPM� [9], which applies unbounded con-
texts, although many researchers regard it as efficient. How-
ever, Bunton [5] reports that PPMC of order 5 is better than
PPM� in text compression.

Bloom [4] and Bunton [5] present several techniques to
improve the compression result of PPM. Their approaches
deal with fine-tuning the escape probabilities. As far we
know, Bloom’s PPMZ is the most efficient variation of
PPM. We have not yet tried PPMZ for parse trees, but we
predict a small improvement.

Though our context model is rather natural, it deals only
with ancestors of a nodes. A more refined model could
record more nodes. One possible addition to the context
is the left uncle of a node. The left uncle of nodex is the
last predecessor ofx in postorder which is not a descendant
of x. This refinement could work e.g. with the following
structure

IO STMT ! IO PROC (EXPR LIST)
IO PROC ! read | write

because expressions associated with read and write state-
ments are different. Such a structure is an example of trans-
fering a part of syntax analysis to semantic analysis.

One alternative for coding parse trees would to apply
general tree compression methods [12]. However, they
could hardly lead to better compression, because dedicated
methods for parse trees can better utilize the special infor-
mation of parse trees.

Traditionally syntactical modeling has been used for
storing source programs in a compressed form. Mobile
computing [19] has created new needs to transfer com-
pressed programs. Hierarchical PPM coding suits well
compressing XML documents [8]. Nevill-Manning et al.
[16] show how syntactical modeling can be applied to com-
pression of texts in natural language. This opens new pos-
sibilities to apply our context model.

Acknowledgments. This work was supported by the
Academy of Finland under grant 44449, the National Tech-
nology Agency under grant 70003, and the Finnish Cultural
Foundation. Veli Mäkinen (University of Helsinki) com-
pleted the implementation of PPM coding. Hannu Peltola
helped in doing the experiments. A part of the work was
done in University of California at Berkeley, University of
Helsinki, and University of Joensuu.

References

[1] A. Aho and J. Ullman.The Theory of Parsing, Trans-
lation and Compiling, Vol. I: Parsing.Prentice-Hall,
Englewood Cliffs, N.J., 1972.

[2] R. op den Akker and H. ter Doest. Weakly restricted
stochastic grammars. InProceedings of COLING ’94,
15th International Conference on Computational Lin-
guistics (ed. M. Nagao), Kyoto, Japan, pages 929–
934, 1994.

[3] T. Bell, J. Cleary, and I. Witten.Text Compression.
Prentice Hall, Englewood Cliffs, N.J., 1990.

[4] C. Bloom. Solving the problems of context modeling.
http://www.cco.caltech.edu/�bloom/papers/ppmz.zip.

[5] S. Bunton. Semantically motivated improvements
for PPM variants.Computer Journal, 40(2/3):76–93,
1997.

[6] M. Burrows and D. Wheeler. A block sorting lossless
data compression algorithm. Technical Report 124,
Digital Equipment Corporation, 1994.

[7] R. Cameron. Source encoding using syntactic infor-
mation source models.IEEE Transactions on Infor-
mation Theory, 34(4):843–850, 1988.

[8] J. Cheney. Compressing XML with multiplexed hi-
erarchical PPM models. InProceedings of DCC ’01,

Data Compression Conference, IEEE Computer So-
ciety Press, pages 163–172, 2001.

[9] J. Cleary and W. Teahan. Unbounded length contexts
for PPM.Computer Journal, 40(2/3):67–75, 1997

[10] P. Howard and J. Vitter. Practical implementations of
arithmetic coding. InImage and text compression(ed.
J. Storer), Kluwer, pages 85–112, 1992.

[11] S. Johnson. Yacc – yet another compiler compiler.
Computing Science Technical Report 32, AT&T Bell
Laboratories, 1975.

[12] J. Katajainen and E. Mäkinen. Tree compression and
optimization with applications. of program files.In-
ternational Journal of Foundations of Computer Sci-
ence, 4(1):425–447, 1990.

[13] J. Katajainen, M. Penttonen, and J. Teuhola. Syntax-
directed compression of program files.Software–
Practice & Experience, 16(3):269–276, 1986.

[14] K. Koskimies, O. Nurmi, J. Paakki, and S. Sippu. The
design of a language processor generator.Software–
Practice & Experience, 18(2):107–135, 1988.

[15] J. M. Lake. Prediction by grammatical match. InPro-
ceedings of DCC ’00, Data Compression Conference,
IEEE Computer Society Press, pages 153–162, 2000.

[16] C. Nevill-Manning, I. Witten, and D. Maulsby. Com-
pression by induction on hierarchical grammars. In
Proceedings of DCC ’94, Data Compression Confer-
ence(ed. J. Storer and M. Cohn), IEEE Computer So-
ciety Press, pages 244–253, 1994.

[17] H. Peltola and J. Tarhio. On syntactical data com-
pression. InProceedings of the Second Symposium
on Programming Languages and Software Tools(ed.
K. Koskimies and K.-J. Räihä), Report A-1991-5, De-
partment of Computer Science, University of Tam-
pere, pages 205–214, 1991.

[18] R. Stone. On the choice of grammar and parser for the
compact analytical encoding of programs.Computer
Journal, 29(4):307–314, 1986.

[19] H. Stork, V. Haldar, and M. Franz. Generic adaptive
syntax-directed compression for mobile code. Techni-
cal Report 00-42 (Revised version), Department of In-
formation and Computer Science, University of Cali-
fornia, Irvine, 2001.

[20] J. Tarhio. Context coding of parse trees. InPro-
ceedings of DCC ’95, Data Compression Conference
(ed. J. Storer and M. Cohn), IEEE Computer Society
Press, page 442, 1995.

[21] I. Witten, R. Neal, and J. Cleary. Arithmetic cod-
ing for data compression.Commun. ACM, 30(6):520–
540, 1987.

