
Searching Long Patterns with BNDM

Jorma Tarhio

Department of Computer Science
Aalto University, Finland

firstname.lastname@aalto.fi

Abstract. We present new algorithms for exact string matching of long patterns.
Our algorithms read q-grams at constant distances and are variations of the simpli-
fied BNDM algorithm. We demonstrate the competitiveness of our solutions through
practical experiments. Many of our algorithms were faster than previous methods for
English and DNA patterns between 400 and 50,000 in length. Our algorithms were still
better when the preprocessing time was taken into account or when the patterns were
taken from a different text of the same type.

Keywords: exact string matching, q-gram, fingerprint, experimental comparison of
algorithms

1 Introduction

String matching is a widely studied problem in Computer Science. Dozens of algo-
rithms [5] have been developed for searching text patterns. Recently, attention has
been paid to searching for long patterns [1, 3, 6–8, 12], and we will introduce new
algorithms for this purpose.

One of the fundamental string matching algorithms is the Backward Nondetermin-
istic DAWG Matching algorithm (BNDM) by Navarro and Raffinot [13, 14]. BNDM is
a so-called bit-parallel algorithm, and it works for patterns with up to w characters,
where w is the size of a computer word, typically 64. BNDM simulates a nondeter-
ministic automaton without explicitly constructing it. A trivial extension of BNDM
searches for the w characters long prefix of a pattern. Each extended occurrence of
the prefix is checked for a potential match of the original pattern This BNDM version
is quite efficient for patterns with up to 2w characters but its speed does not increase
as patterns become longer than that. The same is true with the multi-word variation
of BNDM [14].

Long BNDM (LBNDM) by Peltola and Tarhio [16] is another attempt to find long
patterns with BNDM. A pattern is partitioned into approximately m/w consecutive
segments, and each segment corresponds to a position in the transformed pattern that
accepts any character of the segment at its position. LBNDM is only good for large
alphabets. In this paper, we will introduce new variations of BNDM for long patterns.
We extend the idea of LBNDM to handle q-grams instead of single characters. In fact,
this variation was already proposed in [16], but nobody has so far developed it further.

The previous papers [1, 3, 6–8, 12] dealing with string matching algorithms for long
patterns do not mention any specific application. However, such algorithms could be
used to search long DNA sequences and recognize large target code pieces in software
packages.

Our main focus is on demonstrating the practical efficiency of the new algorithms.
Many of our algorithms were faster than previous methods for a wide range of pattern



lengths from 400 to 50,000. Our algorithms were still better when the preprocessing
time was included or when the patterns were taken from another text.

The rest of the paper is organized as follows: Section 2 presents background in-
formation. Section 3 introduces our new algorithms, and Section 4 discusses imple-
mentation details. Section 5 describes the results of our practical experiments, and
Section 6 concludes the article.

2 Background

Suppose we are given a finite alphabet Σ, a text T = t0 · · · tn−1 of length n, and a
pattern P = p0 · · · pm−1 of length m. In the string matching problem, the task is to
find all the occurrences of P in T , that is, all possible i such that ti+j = pj holds for
all 0 ≤ j < m.

This problem can be extended considering indeterminate strings, which means
that each ti and pj is a non-empty set of characters belonging to Σ. In the matching
problem of indeterminate strings, the task is to find all the occurrences of P in T ,
that is, all possible i such that ti+j ∩ pj ̸= Ø holds for all 0 ≤ j < m. As a special
case, P or T is required to contain only singletons.

A q-gram is a continuous string of q characters. Most string matching algorithms
move a window of m positions along the text from left to right and try to match
the pattern with the m-gram in that window. This window is called an alignment
window.

The new variations of BNDM, which we will present in Section 3, are based
on Simplified BNDM (SBNDM) [16], which is a variation of BNDM without prefix
recognition. SBNDM is able to solve the matching problem of normal strings as well
as indeterminate strings. Algorithm 1 is a slightly modified version of SBNDM. The
operators &, |, and << denote bit-parallel and, or, and left shift, respectively. Our
bit-level considerations follow big-endianness.

Algorithm 1: SBNDM
1. for c ∈ Σ do B[c]← 0
2. for i← 0 to m− 1 do B[pi]← B[pi] | (1 << (m− i− 1))
3. i← m− 1
4. while i < n do
5. d← B[ti]
6. if d = 0 then i← i+m
7. else
8. j ← i
9. do i← i− 1
10. d← (d << 1) & B[ti]
11. until d = 0
12. i← i+m
13. if i = j then
14. report occurrence at i−m+ 1
15. i← i+ 1

An array B holds the bit vectors of characters in Σ. The width of the bit vectors
is w, the size of a computer word. The last character ti of the alignment window
ti−m+1 . . . ti is read in line 5. If ti does not appear in P , then B[ti] is zero and the

2



Searching Long Patterns with BNDM

window is moved m positions forward. Other characters of the alignment window are
read in line 10. The location i of the last character of the window is saved to the
variable j in line 8. An occurrence is found when i +m = j holds after the loop of
line 9, and the pointer i is advanced by one in line 15. Alternatively, an increment
of m − x could be used, where x is the overlap of the pattern with itself, but the
practical gain of the latter approach is marginal for long patterns.

With a change in preprocessing, Algorithm 1 works also for indeterminate strings.
Line 2 should be replaced by two lines

2a. for i← 0 to m− 1 do for c ∈ pi do B[c]← B[c] | (1 << (m− i− 1))
2b. for each character C do for i← 1 to kC do B[C]← B[C] | B[ci]

where the character C is a set containing characters c1, . . . ckC where kC > 1. See [14]
for more details.

The QF algorithm by Ďurian et al. [3] for long patterns is based on filtering
q-grams. QF is related to the approximate string matching algorithm by Fredriksson
and Navarro [9]. During preprocessing, the q-grams of the pattern are divided into q
subsets according to the starting position. So the q-grams starting at pi+j·q for any j,
0 ≤ i < q, belong to the same subset. These subsets correspond to phases or offsets
of the pattern—only q-grams of the same phase can occur together. To store this
information, a bit vector B is initialized for each q-gram such that the i:th bit is set
if the q-gram occurs in phase i in the pattern. During searching, consecutive q-grams
in the alignment window are read backward and active phases are observed.

3 New Algorithms

We will introduce the Sparse SBNDM algorithm, which is a generalization of the
LBNDM algorithm, and its relaxed variation.

3.1 Sparse SBNDM

LBNDM [16] considers single characters while Sparse SBNDM, SSB for short, works
on fingerprints of q-grams. A fingerprint or a hash value of a q-gram is a bit vector
formed from the q-gram. Like LBNDM, SSB is essentially a filtering algorithm: it
produces potential matches which are then checked.

The pattern P is partitioned in r consecutive segments starting from the right
end, each consisting of a positions. If r · a = b < m holds, then the prefix of m − b
positions is left over. The integers r and a are selected so that a is small and r ≤ w
andm−(q−1)−r ·a < a are valid. A superimposed pattern P ′ of length r is formed so
that each position of P ′ corresponds to a segment and a set of the fingerprints of the
q-grams ending within that segment. The idea is to read q-grams backward at fixed
distances in an alignment window, i.e. q-grams ending at m−1,m−1−a,m−1−2a,
etc. until a mismatch is found or all the q-grams match. So, this is a kind of sampling
scheme. The fingerprints of these q-grams are further interpreted as characters and
segments as character positions in P ′, and the algorithm works like the standard
SBNDM in matching indeterminate strings. So the first part of the algorithm is a
filter, which produces potential matches of the suffix pm−b · · · pm−1. Extensions of
these potential matches must then be checked. In this model, b = r ·a is the maximal
shift of the alignment window.

3



Figure 1. The division of a pattern into segments, an example, m = 36, q = 6, a = 7.

Figure 1 illustrates the model of segment partition. Since we have q = 6 and
a = 7 in this example, each segment holds seven 6-grams1. For example, the leftmost
segment p8 · · · p14 = TCATAAT holds the 6-grams CCAATT, CAATTC, AATTCA, ATTCAT,
TTCATA, TCATAA, and CATAAT having their last character in that segment.

Algorithm 2: SSB, preprocessing

1. for i← 0 to 2q
′ − 1 do B[i]← 0

2. if m ≤ w2 then x← 1 else x← 0
3. a← ⌊(m− q + 1− x)/w⌋+ x; r ← ⌊(m− q + 1)/a⌋
4. if r > w then r ← w
5. y ← w − r; b← r · a; i← m− 1
6. while i > m− b− q do
7. for j ← 1 to a do
8. d← F (P, i, q)
9. B[d]← B[d] | 1 << y
10. i← i− 1
11. y ← y + 1

Algorithm 2 shows the preprocessing of the pattern in SSB. B is an array of bit
vectors. The width of a bit vector in B is w. The number of entries 2q

′
depends on q

and implementation details (see Section 4). F (P, i, q) computes the fingerprint of the
q-gram pi−q+1 · · · pi.

Algorithm 3 is the search phase of SSB. It follows the structure of Algorithm 1. In
the same way as in preprocessing, F (T, i, q) computes the fingerprint of the q-gram
ti−q+1 · · · ti.

In Algorithm 3, the last q-gram of the window is read in line 4 and other q-
grams in line 9 because of loop optimization. Typically, the first read does not match
in the case of long q-grams. When a potential match is found, m-grams ending at
ti, . . . , ti+a−1 are checked.

The pseudocode of SSB does not fix, how the fingerprint of a q-gram is formed or
computed. In principle, any method used in the literature or any new one can be used.
In Section 4 we specify those fingerprint methods used in our practical experiments.

SSB is related to the QF algorithm [3]. In QF, the q-grams starting at pi+j·q for
any j belong to the same subset, while in SSB, q-grams ending at a segment belong to
the same subset. When scanning backward an alignment window, QF accepts q-grams
occurring together in the same phase at any order, while SSB respects their order

1 The values q = 6 and a = 7 have been chosen for demonstration purposes and they do not reflect
actual values used in the algorithm.

4



Searching Long Patterns with BNDM

Algorithm 3: SSB, search
1. preprocess P with Algorithm 2
2. i← m− 1
3. while i < n do
4. d← B[F (T, i, q)]
5. if d = 0 then i← i+ b
6. else
7. j ← i
8. do i← i− a
9. d← (d << 1) & B[F (T, i, q)]
10. until d = 0
11. i← i+ b
12. if i = j then
13. for k = 0 to a− 1 do
14. if i+ k < n then check match at i−m+ k
15. i← i+ a

and keeps track of segments in turn. SSB has approximately w subsets of q-grams,
but QF has only q subsets and q is typically at most 20. Thus SSB will on average
observe earlier than QF, whether an alignment window does not contain a match.

3.2 Relaxed Search

Because the proportion of preprocessing time increases when patterns get longer, we
examined ways to make preprocessing lighter. In SSB, each segment has q-grams of
its own. We developed a relaxed variation, Relaxed SSB, RSSB for short, where any
q-gram of all segments is accepted at any phase of the search. So the array B can
now be a Boolean array. Line 9 of preprocessing (Algorithm 2) is changed to

9. B[d]← 1

and lines 7 and 11 can be removed. The loop in line 8 of searching (Algorithm 3) is
changed to

8. do i← i− a
9. d← B[F (T, i, q)]
10. until d = 0 or i > j − b

In SSB, fingerprints are associated with segments, and they can be called local.
Fingerprints in RSSB can be called global. Global fingerprints have been used in
many earlier algorithms, like in Horspool’s algorithm [10] and its q-gram variations.
In a manner, LEQ [17] and Takaoka’s algorithm [18] use local and global q-grams in
a similar way in approximate string matching as SSB and RSSB utilize fingerprints.

4 Implementation Details

When a potential match is found in SSB or RSSB, it should be checked. Actually,
not only one candidate is verified but all the m-grams ending at ti, . . . , ti+a−1, where
ti is the last character of the alignment window. At the implementation level, we use

5



two techniques. At first the eight-character prefix is compared to the corresponding
prefix of the pattern. When the prefixes match, the rest of the candidate is checked
with the C library function memcmp.

The test i + k < n in line 14 of Algorithm 3 is only intended for processing the
end of the text, so it can slow down the search a bit. One option would be handling
the end of the text with another algorithm. Alternatively, this test can be removed,
if the algorithm is allowed to access characters ti for i = n, . . . , n + a − 2. In our
implementation, the character code 0 is assigned to tn. If the pattern can contain
character code 0, then x ̸= pm−1 can be assigned to each ti for i = n, . . . , n+ a− 2.

While scanning backward the alignment window, the original BNDM keeps track
of the last detected prefix of the pattern. LBNDM has also this feature. We decided
to omit that in SSB and RSSB, because its advantage is marginal in the case of long
patterns, and extra bookkeeping slows down the algorithm. We tested LBNDM with
and without prefix bookkeeping. The latter approach was faster for patterns longer
than 500 characters.

In SSB, b = r · a is the maximal shift of the alignment window. However, the
heuristic choice in the preprocessing of SSB does not necessarily produce the largest
possible b, although the residual m− b− q+1 is always smaller than a. For example,
Algorithm 2 sets r = 59 and a = 15 for m = 900 in the case q = 2 producing b = 885
although the choice r = 56 and a = 16 yields a longer shift of b = 896. However,
a longer shift does not necessarily mean that the algorithm becomes faster, because
a smaller r can reduce the detection ability of the algorithm. We did not include
adjusting b to our final codes, because its gain was marginal on average and even
negative in some cases in our preliminary experiments.

In RSSB, r, the number of segments, does not depend on w, and so also larger
(or smaller) values of r could be used. However, we decided to keep the same r as in
SSB, because it seemed to work well in practice.

For our experiments on SSB, we selected three fingerprint methods associated
with the values 2, 13, and 16 of q. The latter two methods were applied to RSSB as
well. Because we tested only a few other fingerprint methods, the selected ones are
not necessarily the best possible for SSB and RSSB. In the case of SSB2, we used
a 2-gram directly as a bit vector of 16 bits. In the case of SSB13, we applied the
fingerprint used in QF131 [3]:

((· · · ((pi<<1) + pi−1<<1) + · · ·+ pi−11<<1) + pi−12) & (213 − 1)

which is computed incrementally2 in preprocessing. In the case of SSB16, we used
the SIMD intrinsic function mm movemask epi8 to transform a 16-gram to a bit
vector of 16 bits. The SSEF algorithm [12] applies the same technique. The function
mm movemask epi8 returns a bit vector consisting of the topmost bit of each character
of the argument. By shifting the argument bitwise by six to the left, the resulting
bit vector contains the second bit from the right for each character, which is a good
choice for DNA, because that bit is 1 for C and G, and 0 for A and T resulting an even
distribution. For English text, the first bit from the right would be a slightly better
choice. Because the observed difference in search times was less than one percent in
our preliminary tests, we used the second bit also for English.

2 Details of an incremental version of the function F for Algorithm 2 are not shown.

6



Searching Long Patterns with BNDM

5 Experimental Results

We present experimental results in order to compare the behavior of our algorithms
against the best known solutions in the literature for searching long patterns.

5.1 Setting

The experiments were run on Intel Core i7-4578U with 16 GB RAM. Our algorithms
were implemented3 in the C programming language and compiled with gcc 5.4.0
using the O3 optimization level. Testing was done in the framework of Hume and
Sunday [11]. We used two texts: English (the KJV Bible, 4.0 MB) and DNA (the
genome of E. Coli, 4.6 MB). Because the cache size of the processor is 4 MB, we
extended both texts to 12 MB by concatenating multiple copies to avoid cache in-
terference with running times [15]. Also, we avoided interference caused by shared
memory [15]. Sets of patterns of lengths m = 16 · 5i for i = 0, . . . , 5 were randomly
taken from both texts. Each set contains 100 patterns. The times shown in the tables
are averages of at least 100 repeated runs. The times under 100 ms are averages of
1000 repeated runs. The accuracy of the results is about two digits, although more
digits are shown in the tables.

5.2 Algorithms

Besides SSB2, SSB13, SSB16, RSSB13, and RSSB16, we show running times for the
following four algorithms:

– SSEF [12]
– QF131 [3]
– BRAM7 [7]
– UFM10 [8]

In addition, we tested PBNDM [6], BQL [3], BXS [3], and multi-word BNDM [14],
but they were not competitive, and we did not include their results. We were unable
to get SSEF2 [1] to work properly. QF131, BRAM7, and UFM10 have variations
working better in the lower end of the range of m in our experiments, but we wanted
to concentrate on the best variation for m = 50,000.

5.3 English

Table 1 shows the search times in milliseconds for 100 English patterns. In Table 1 as
well as in the subsequent tables, the best time for each m has been underlined as well
as the times at most 20 % more than the best time. The algorithms with underlined
times can be considered good methods.

In addition to the algorithms mentioned above, we show running times for the
following three string matching algorithms in this experiment:

– EPSM [4]
– SBNDM6b [2]
– LBNDM [16]

The first two are examples of general purpose algorithms. EPSM is one of the fastest
algorithms for short or medium-size patterns. SBNDM6b is a tuned variation of
SBNDM showing almost constant speed for m > 2w.

3 The codes are available at https://users.aalto.fi/tarhio/codes/.

7



Table 1. Search times in milliseconds for 100 English patterns in 12 MB English text.

Algorithm \ m 16 80 400 2,000 10,000 50,000
EPSM 1,233 765 214 100 173 250
SBNDM6b 1,519 864 874 877 907 1,025
LBNDM 6,284 1,896 1,122 770 1,954 7,392
SSEF — 1,030 276 81 64 100
QF131 8,447 1,043 441 67 41 148
BRAM7 3,798 1,032 457 104 126 650
UFM10 6,254 1,405 394 62 46 121
SSB2 2,131 1,195 306 84 44 90
SSB13 8,301 1,053 447 65 33 69
SSB16 16,744 1,050 166 33 23 66
RSSB13 8,896 1,284 450 65 48 4,875
RSSB16 14,084 767 166 32 25 76

EPSM was the best for m = 16 and RSSB16 as well as EPSM for m = 80. SSB2
was the best for m = 16 among the algorithms for long patterns. SSB16 and RSSB16
were the best for 400 ≤ m ≤ 10,000. SSB13 and SSB16 were the best for m = 50,000.
Note that the speed of RSSB13 collapses at m = 50,000 because global fingerprints
match too often. SSB13 worked faster than QF131 for m ≥ 10,000, although the
fingerprints are computed in the same way. LBNDM was not competitive at all in
this experiment. The size of the effective alphabet in English is too small for LBNDM.
Figure 2 illustrates the search times of five selected algorithms given in Table 1.

400 2,000 10,000 50,000
0

200

400

600

m

S
ea
rc
h
ti
m
e
(m

s)

SSEF
QF131
BRAM7
UFM10
SSB16

Figure 2. Search times of five algorithms for 100 English patterns in 12 MB English text.

5.4 DNA with Preprocessing

Table 2 shows the search, preprocessing, and total times in milliseconds for 100 DNA
patterns. Let us first consider the plain search times. BRAM7 was the best form = 16.

8



Searching Long Patterns with BNDM

SSB16 and RSSB16 were good for m ≥ 80. In addition, SSEF was good for m ≥ 2,000
and SSB13 for m = 50,000. The times of SSB2 and RSSB13 are not shown, because
they were not competitive.

In the case of long patterns, the preprocessing time cannot be completely ignored.
If the length of the text is at most a few megabytes, the preprocessing time may
dominate the total search time. Therefore we measured both preprocessing and search
times for DNA. In total times BRAM7 was the best for m = 16. RSSB16 was the
best for 80 ≤ m ≤ 2,000 and SSB13 for m = 10,000 and 50,000. Moreover, SSB16
was good for m = 400. Overall, algorithms SSEF, UFM10, and SSB16 suffered the
most, when preprocessing was included in the search time. However, it should be kept
in mind that the preprocessing of patterns has not necessarily been optimized in the
reference methods. Figure 3 illustrates the total search times of five algorithms given
in Table 2.

Table 2. Search, preprocessing, and total times in milliseconds for 100 DNA patterns in 12 MB
DNA text.

Algorithm \ m 16 80 400 2,000 10,000 50,000
Search SSEF — 1,005 226 33 24 65

QF131 8,553 1,056 455 70 39 130
BRAM7 3,656 1,073 531 163 177 550
UFM10 5,426 1,100 404 80 56 107
SSB13 8,218 1,056 453 70 32 62
SSB16 18,708 961 176 28 20 57
RSSB16 14,361 804 165 28 20 65

Prepro- SSEF — 9 10 19 74 456
cessing QF131 2 2 2 6 26 124

BRAM7 16 17 18 21 42 128
UFM10 33 33 34 49 178 702
SSB13 2 3 3 4 13 57
SSB16 16 16 17 21 42 149
RSSB16 2 2 3 7 28 134

Total SSEF — 1,014 236 52 99 521
QF131 8,555 1,058 457 76 65 254
BRAM7 3,672 1,090 549 184 219 678
UFM10 5,459 1,133 438 129 234 809
SSB13 8,220 1,059 456 74 45 119
SSB16 18,724 977 193 49 62 206
RSSB16 14,363 806 168 35 48 199

5.5 Maximal Speed

In the case of long patterns, the handling of occurrences of a pattern may interfere
with search times. Therefore we made an experiment with fewer occurrences. We
divided the DNA text (the genome of E. Coli, 4.6 MB) into two parts with portions
1/3 and 2/3. We picked the patterns from the first part and used the second part as the
search text extended to 12 MB. The results are shown in Table 3. BRAM7 was again
the best for m = 16. SSB16 and RSSB16 were the best for m ≥ 80. When adding the
preprocessing times, which were almost identical to those shown in Table 2, RSSB16
was still better than the others for m ≥ 80. The speed-up of SSB16 and RSSB16 is

9



400 2,000 10,000 50,000
0

200

400

600

m

T
ot
al

se
a
rc
h
ti
m
e
(m

s)

SSEF
QF131
UFM10
SSB13
RSSB16

Figure 3. Total search times of five algorithms for 100 DNA patterns in 12 MB DNA text.

astonishing for m = 50,000 when comparing the search times of Table 2 and 3. On
the other hand, this reveals that checking is a bottleneck in running times of our new
algorithms.

Table 3. Search times in milliseconds for 100 patterns in 12 MB DNA text. Patterns were taken
from another DNA text. The speed-up value is the search time for m = 50,000 in Table 2 divided
by the corresponding time.

Algorithm \ m 16 80 400 2,000 10,000 50,000 speed-up
SSEF — 1,006 219 30 13 6 11
QF131 8,546 1,088 456 64 16 5 26
BRAM7 3,615 1,049 523 151 61 114 5
UFM10 5,411 1,079 396 82 45 30 4
SSB13 8,211 1,073 449 66 19 3 21
SSB16 18,620 969 177 25 8 1 57
RSSB16 14.220 728 163 25 8 1 65

5.6 Observations

We tested SSB and RSSB variations, which limit the range of checking based on
the q-grams of the last segment. This modification gave 5–15 % faster search times
but only in the case of m = 50,0000. For other tested lengths of patterns, these new
variants were slower or equal.

BNDM and SBNDM can solve the matching problem of indeterminate strings. A
nice feature is that SSB2 used in the experiments inherits this characteristic when
preprocessing is slightly modified.

10



Searching Long Patterns with BNDM

In addition, we tested SSB variations, which apply the C data type uint128 t

simulating the case w = 128. However, these variations were slower than standard
variations in our experiments.

6 Concluding Remarks

We introduced a new algorithm SSB and its relaxed variation RSSB for exact string
matching of long patterns. In SSB, fingerprints of q-grams are used as characters. SSB
is fairly compact and it is a natural extension of BNDM for processing long patterns.

We demonstrated the competitiveness of our solutions through practical exper-
iments. Many of our variations were faster than previous methods for English and
DNA patterns between 400 and 50,000 in length. The best ones of our algorithms
were still better when the preprocessing time was taken into account or when the
patterns were taken from another text of the same type.

Our experiments showed the sublinear behavior of SSB and RSSB. Although in-
creasing q enables efficient search for still longer patterns, processing longer finger-
prints requires more time and reduces the gain.

The model of SSB can serve as a platform for new algorithms. For example, we are
considering combining the algorithms SSB and QF to make the checking of potential
matches lighter.

References

1. M. A. Aydogmus and M. O. Külekci: Optimizing packed string matching on AVX2 plat-
form, in High Performance Computing for Computational Science — VECPAR 2018 — 13th
International Conference, São Pedro, Brazil, September 17-19, 2018, Revised Selected Papers,
H. Senger, O. Marques, R. E. Garcia, T. P. de Brito, R. Iope, S. L. Stanzani, and V. Gil-Costa,
eds., vol. 11333 of Lecture Notes in Computer Science, Springer, 2018, pp. 45–61.

2. B. Durian, J. Holub, H. Peltola, and J. Tarhio: Improving practical exact string match-
ing. Inf. Process. Lett., 110(4) 2010, pp. 148–152.

3. B. Durian, H. Peltola, L. Salmela, and J. Tarhio: Bit-parallel search algorithms for
long patterns, in Experimental Algorithms, 9th International Symposium, SEA 2010, Ischia
Island, Naples, Italy, May 20-22, 2010. Proceedings, P. Festa, ed., vol. 6049 of Lecture Notes in
Computer Science, Springer, 2010, pp. 129–140.

4. S. Faro and M. O. Külekci: Fast packed string matching for short patterns, in Proceedings
of the 15th Meeting on Algorithm Engineering and Experiments, ALENEX 2013, New Orleans,
Louisiana, USA, January 7, 2013, 2013, pp. 113–121.

5. S. Faro and T. Lecroq: The exact online string matching problem: A review of the most
recent results. ACM Comput. Surv., 45(2) 2013, pp. 13:1–13:42.

6. S. Faro and S. Scafiti: Pruned BNDM: extending the bit-parallel suffix automata to
large strings, in Proceedings of the 22nd Italian Conference on Theoretical Computer Science,
Bologna, Italy, September 13-15, 2021, C. S. Coen and I. Salvo, eds., vol. 3072 of CEUR Work-
shop Proceedings, CEUR-WS.org, 2021, pp. 328–340.

7. S. Faro and S. Scafiti: The range automaton: An efficient approach to text-searching, in Com-
binatorics on Words - 13th International Conference, WORDS 2021, Rouen, France, September
13-17, 2021, Proceedings, T. Lecroq and S. Puzynina, eds., vol. 12847 of Lecture Notes in Com-
puter Science, Springer, 2021, pp. 91–103.

8. S. Faro and S. Scafiti: Compact suffix automata representations for searching long patterns.
Theor. Comput. Sci., 940(Part) 2023, pp. 254–268.

11



9. K. Fredriksson and G. Navarro: Average-optimal single and multiple approximate string
matching. ACM J. Exp. Algorithmics, 9 2004.

10. R. N. Horspool: Practical fast searching in strings. Software: Practice and Experience, 10(6)
1980, pp. 501–506.

11. A. Hume and D. Sunday: Fast string searching. Software: Practice and Experience, 21(11)
1991, pp. 1221–1248.

12. M. O. Külekci: Filter based fast matching of long patterns by using SIMD instructions, in
Proceedings of the Prague Stringology Conference 2009, Prague, Czech Republic, August 31 -
September 2, 2009, J. Holub and J. Zdárek, eds., Prague Stringology Club, Department of Com-
puter Science and Engineering, Faculty of Electrical Engineering, Czech Technical University in
Prague, 2009, pp. 118–128.

13. G. Navarro and M. Raffinot: A bit-parallel approach to suffix automata: Fast extended
string matching, in Proceedings of the 9th Annual Symposium on Combinatorial Pattern Match-
ing, M. Farach-Colton, ed., Berlin, Heidelberg, 1998, Springer-Verlag, pp. 14–33.

14. G. Navarro and M. Raffinot: Fast and flexible string matching by combining bit-parallelism
and suffix automata. ACM J. Exp. Algorithmics, 5 2000, p. 4.

15. W. Pakalén, H. Peltola, J. Tarhio, and B. W. Watson: Pitfalls of algorithm comparison,
in Prague Stringology Conference 2021, Prague, Czech Republic, August 30-31, 2021, J. Holub
and J. Zdárek, eds., Czech Technical University in Prague, Faculty of Information Technology,
Department of Theoretical Computer Science, 2021, pp. 16–29.

16. H. Peltola and J. Tarhio: Alternative algorithms for bit-parallel string matching, in String
Processing and Information Retrieval. SPIRE 2003, M. A. Nascimento, E. S. de Moura, and
A. L. Oliveira, eds., vol. 2857 of Lecture Notes in Computer Science, Manaus, Brazil, 2003,
Springer, Berlin, Heidelberg, pp. 80–94.

17. E. Sutinen and J. Tarhio: Approximate string matching with ordered q-grams. Nord. J.
Comput., 11(4) 2004, pp. 321–343.

18. T. Takaoka: Approximate pattern matching with samples, in Algorithms and Computation, 5th
International Symposium, ISAAC ’94, Beijing, P. R. China, August 25-27, 1994, Proceedings,
D. Du and X. Zhang, eds., vol. 834 of Lecture Notes in Computer Science, Springer, 1994,
pp. 234–242.

12


