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Abstract. New bit-parallel algorithms for exact and approximate string matching are
introduced. TSO is a two-way Shift-Or algorithm, TSA is a two-way Shift-And algo-
rithm, and TSAdd is a two-way Shift-Add algorithm. Tuned Shift-Add is a minimalist
improvement to the original Shift-Add algorithm. TSO and TSA are for exact string
matching, while TSAdd and tuned Shift-Add are for approximate string matching with
k mismatches. TSO and TSA are shown to be linear in the worst case and sublinear in
the average case. Practical experiments show that the new algorithms are competitive
with earlier algorithms.

1 Introduction

String matching can be classified broadly as exact string matching and approximate
string matching. In this paper, we consider both types. Let T = t1t2 · · · tn and P =
p1p2 · · · pm be text and pattern respectively, over a finite alphabetΣ of size σ. The task
of exact string matching is to find all occurrences of the pattern P in the text T , i.e. all
positions i such that titi+1 · · · ti+m−1 = p1p2 · · · pm. Approximate string matching [13]
has several variations. In this paper, we consider only the k mismatches variation,
where the task is to find all the occurrences of P with at most k mismatches, where
0 ≤ k < m holds.

We will present new sublinear variations of the widely known Shift-Or, Shift-And,
and Shift-Add algorithms [3, 19] which apply bit-parallelism. The key idea of the
algorithms is a two-way loop of j where text characters ti−j and ti+j are handled
together. Our algorithms are linear in the worst case. Practical experiments show
that the new algorithms with q-grams, loop unrolling, or with a greedy skip loop are
competitive with earlier algorithms of same type.

All our algorithms utilize bit manipulation heavily. We use the following notations
of the C programming language: ‘&’, ‘|’, ‘<<’, and ‘>>’. These represent bitwise
operations AND, OR, left shift, and right shift, respectively. Parenthesis and extra
space has been used to clarify the correct evaluation order in pseudocodes. Let w be
the register width (or word size informally speaking) of a processor, typically 32 or
64.

2 Previous algorithms

This section fosters the previous solutions for exact and approximate string match-
ing. First, we illustrate previous algorithms for exact matching which includes Shift-
Or and its variants like BNDM (Backward Nondeterministic DAWG Matching),
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TNDM (Two-way Nondeterministic DAWG Matching), LNDM (Linear Nondeter-
ministic DAWG Matching), FSO (Fast Shift-Or) and FAOSO (Fast Average Optimal
Shift-Or. Then the algorithms for approximate string matching are presented that
covers Shift-Add and AOSA (Average Optimal Shift-Add).

2.1 Shift-Or and its variations

The Shift-Or algorithm [3] was the first string matching algorithm applying bit-
parallelism. Processing of the algorithm can be interpreted as simulation of an au-
tomaton. The update operations to all states are identical. Operands in the algorithm
are bit-vectors and the essential bit-vector containing the state of the automaton is
called the state vector. The state vector is updated with the bit-shift and OR op-
erations. FSO (Fast Shift-Or) [7] is a fast variation of the Shift-Or algorithm, and
FAOSO (Fast Average Optimal Shift-Or) [7] is a sublinear variation of that algorithm.

BNDM [14] (Backward Nondeterministic DAWG Matching) is the bit-parallel sim-
ulation of an earlier algorithm called BDM (Backward DAWG Matching). BDM scans
the alignment window from right to left and skips characters using a suffix automa-
ton, which is made deterministic during preprocessing. BNDM, instead, simulates
the nondeterministic automaton using bit-parallelism. BNDM applies the Shift-And
method [19], which utilizes the bit-shift and AND operations.

TNDM (Two-way Nondeterministic DAWG Matching) [16] is a variation of BNDM
applying two-way scanning. Our new algorithms are related to the Wide-Window al-
gorithm [11] and its bit-parallel variations [5, 11, 10]. LNDM (Linear Nondeterministic
DAWG Matching) algorithm [10] is a two-way Shift-And algorithm with sequential
symmetric scanning. The pseudocode of LNDM is given as Alg. 1. In LNDM, the
alignment window is shifted with fixed steps of m. The window is first scanned left-
wards and then rightwards. In our algorithms, these two scans are combined (into
one scan).

Algorithm 1 LNDM (P = p1p2 · · · pm, T = t1t2 · · · tn)
/* Preprocessing */

1: for c ∈ Σ do B[c]← 0
2: for j ← 1 to m do B[pj ]← B[pj ] | 0m−j10j−1

/* Searching */
3: for i← m step m to n do
4: l← 0; r ← 0; L← 1m; R← 0m

5: while L 6= 0m do L← L&B[ti−l]; l← l + 1; (LR)← (LR) >> 1
6: R← R >> (m− l)
7: while R 6= 0m do
8: r ← r + 1
9: if R& 10m−1 6= 0m then output occurrence
10: R← (R << 1) &B[ti+r]

2.2 Algorithms for the k-mismatches problem

Shift-Add [3, Fig. 8] is a bit-parallel algorithm for the k-mismatches problem. A vector
of m states is used to represent the state of the search. A field of L bits is used for
presenting each of the m states. The minimum value of L is dlog2(k + 1)e + 1. The
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state i denotes the state of the search between the positions 1, · · · , i of the pattern
and positions j − i+ 1, · · · , j of the text, where j is the current position in the text.

A slightly more efficient variation of Shift-Add is (in the average case only) AOSA
(Average Optimal Shift-Add) [7].

Galil and Giancarlo [9] presented a method for solving the k mismatches string
matching problem inO(nk) time with constant time longest common extension (LCE)

queries between P and T . Abrahamson [1] improved this for the case
√

(m logm) < k

by giving an O(n
√
m logm) time algorithm based on convolutions. The asymptoti-

cally fastest algorithm known to date is given by Amir et al. [2], which achieves the
worst-case time complexity of O(n

√
k log k). These algorithms are interesting in a

theoretical sense, but in practice perform worse than the trivial algorithm for rea-
sonable values of m and k due to the heavy LCE and convolution operations. Hence
we have the need for developing fast practical algorithms for string matching with k
mismatches.

3 TSO and TSA

3.1 TSO

At first we introduce a new Two-way Shift-Or algorithm, TSO for short. The pseu-
docode of TSO is given as Alg. 2. TSO uses the same occurrence vectors B for charac-
ters as the original Shift-Or. The outer loop traverses the text with a fixed step of m
characters. At each step i, an alignment window ti−m+1, . . . , ti+m−1 is inspected. The
positions ti, . . . , ti+m−1 correspond to the end positions of possible matches and at the
same time, to the positions of the state vector D. Inspection starts at the character
ti, and it proceeds with a pair of characters ti−j and ti+j until corresponding bits in
D become 1m or j = m holds. Note that the two consecutive loops of LNDM are
combined in TSO into one loop (lines 8–10 of Alg. 2). In TSO, the testing of the state
vector D is slightly faster, when the bit-vectors are seated to the highest order bits.

Algorithm 2 TSO = Two-way Shift-Or(P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: m ≤ w

/* Preprocessing */
1: mask ← ∼0 << (w −m) /* = 1m 0w−m */
2: for all c ∈ Σ do B[c]← mask
3: for i← 1 to m do /* Lowest bits remain 0 */
4: B[pi]← B[pi] & ∼

(
1 << (w −m+ i− 1)

)
/* & 1m−i 0 1w−m+i−2 */

/* Searching */
5: matches ← 0
6: for i← m step m while i ≤ n do
7: D ← B[ti]; j ← 1
8: while D < mask and j < m do
9: D ← D | (B[ti−j ] << j) | (B[ti+j ] >> j) /* no need for additional masking */

10: j ← j + 1
11: if D < mask then /* Garbage is in the lowest bits */
12: E ← (∼D) & mask
13: matches ← matches + popcount(E)

Moreover one bit in D stays zero for each occurrence of the pattern in the inner
loop on lines 8–10. The zero bits are switched to set bits on line 12. The count of set
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bits is then calculated with the popcount1 function [18] on line 13. An easy realization
of popcount is the following:

while E > 0 do matches← matches+ 1; E ← (E − 1)&E

This requires O(s) time in total where s is the number of occurrences. If the locations
of occurrences need to be printed out, O(m) time is needed for every alignment
window holding at least one match.

Alg. 2 works correctly when n mod m = m−1 holds. If access to tn+1, . . . is allowed
and the character 255 does appear in P , a guard tn+1 ← 255 makes the algorithm
work also for other values of n. Otherwise the end of the text must be handled in a
different way.

P = abcab B[a] = 10110

B[b] = 01101

B[c] = 11011

B[x] = 11111

T = ...xabcabcabx...

a D = 10110

j = 1 c 11011

b 01101

D = 10110

j = 2 b 01101

c 11011

D = 10110

j = 3 a 10110

a 10110

D = 10110

j = 4 x 11111

b 01101

D = 10110

E = 01001

^ ^

2 matches

Figure 1. Example of TSO.

In Figure 1, there is an example of the execution of TSO for P = abcab and
T = ...xabcabcabx....

3.2 TSA

Because Shift-And is a dual method of Shift-Or, it is fairly straight-forward to modify
TSO to a Two-way Shift-And algorithm, TSA for short. The pseudocode of TSA is
given as Alg. 3.

In TSA, B[ti−j] and B[ti+j] are padded on line 7. For example, let B[ti−2] and
B[ti+2] be 10102 and 10112, respectively. Then the corresponding padded bit strings
are ((1010 + 1) << 2)− 1 = 101011 and (1011 >> 2) | 1111 << 2 = 111110.

1 Population count, popcount, counts the number of 1-bits in a register or word. On many computers
it is a machine instruction; e.g. in Sparc, and in x86 64 processors in AMDs SSE4a extensions
and in Intel’s SSE4.2 instruction set extension.
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Algorithm 3 TSA = Two-way Shift-And(P = p1p2 · · · pm, T = t1t2 · · · tn)
/* Preprocessing */

1: for c ∈ Σ do B[c]← 0
2: for j ← 1 to m do B[pj ]← B[pj ] | 0j−110m−j

/* Searching */
3: matches← 0
4: for i← m step m to n do
5: D ← B[ti]; j ← 1
6: while (D > 0) and (j < m)do /* alternatively D ! = 0 */
7: D = D & (((B[ti−j ] + 1) << j)− 1) & ((B[ti+j ] >> j) | (1m << (m− j)))
8: j ← j + 1
9: if D > 0 then matches← matches+ popcount(D) /* alternatively D ! = 0 */

Original Shift-Or/Shift-And examines every text character once. Therefore its
practical performance is extremely insensitive to the input data. Two-way algorithms
check text in alignment windows of m consecutive text positions. A mismatch can
be detected immediately based on the first examined text character. In the best case
the performance can be Θ(n/m). On the other hand, if a match is in any position in
the window, or if the mismatch is detected based on two last examined characters,
then 2m− 1 characters need to be examined. So in the worst case all text characters
except the last characters in each alignment window are examined twice.

The characteristic feature in two-way algorithms is that the first characters bring
plenty information to the state vector, but the last ones quite little.

3.3 Practical optimizations

In modern processors, loop unrolling often improves the speed of bit-parallel searching
algorithms [6]. In the case of TSO and TSA, it means that 3, 5, 7, or 9 characters
are read in the beginning of the inner loop instead of a single character. We denote
these versions by TSOx and TSAx, where x is the number of characters read in the
beginning; x is odd. Line 7 of TSO3 is the following:

7: D ← (B[ti−1] << 1) | B[ti] | (B[ti+1] >> 1); j ← 2

Moreover, the shifted values B[a] << 1 and B[a] >> 1 can be stored to pre-
computed arrays in order to speed up access.

Many string searching algorithms apply so called skip loop, which is used for fast
scanning before entering the matching phase. The skip loop can be called greedy, if
it handles two alignment windows at the same time [17]. Let us denote

(B[ti−1] << 1) |B[ti] | (B[ti+1] >> 1)

in TSO3 by f(3, i). If the programming language has the short-circuit AND command,
then we can use the following greedy skip loop enabling steps of 2m in TSO3:

while f(3, i) = mask && f(3, i+m) = mask do i← i+ 2 ·m

Because && is the short-circuit AND, the second condition is evaluated only if the
first condition holds. The resulting version of TSO3 is denoted by GTSO3. (Initial G
comes from greedy. GTSA3 is formed in a corresponding way.)
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3.4 Analysis

We will show that TSO is linear in the worst case and sublinear in the average case.
For simplicity we assume in the analysis that m ≤ w holds and w is divisible by m.

The outer loop of TSO is executed n/m times. In each round, the inner loop is
executed at most m− 1 times. The most trivial implementation of popcount requires
O(m) time. So the total time in the worst case is O(nm/m) = O(n).

When analyzing the average case complexity of TSO, we assume that the char-
acters in P and T are statistically independent of each other and the distribution
of characters is discrete uniform. We consider the time complexity as the number of
read characters.

In each window, TSO reads 1 + 2k characters, 0 ≤ k ≤ m − 1, where k depends
on the window. Let us consider algorithms TSOr, r = 1, 2, 3, ..., such that TSOr
reads an r-gram in the window before entering the inner loop. For odd r, TSOr was
described in the previous section. For even r, TSOr is modified from TSO(r−1) by
reading ti−r/2 before entering the inner loop. It is clear that TSOr2 reads at least
as many characters as TSOr1, if r2 > r1 holds. Let us consider TSOr as a filtering
algorithm. The reading of an r-gram and computing D for it belong to filtration
and rest of computation is considered as verification. The verification probability is
(m − r + 1)/σr. The verification cost is in the worst case O(m), but only O(1) on
average. The total number of read characters is rn/m in filtration. When we select
r to be logσm, TSOr is sublinear. Because TSOr never reads less characters than
TSO1 = TSO, we conclude that also TSO is sublinear.

In other words, the time complexity of TSO is optimal O(n logσm/m) with a
proper choice of r for m = O(w) and O(n logσ /w) for larger m.

The time complexity of preprocessing of TSO isO(m+σ). Because of the similarity
of TSO and TSA, TSA has the same time complexities as TSO. The space requirement
of both algorithms is O(σ).

4 k-mismatches problem

4.1 Two-way Shift-Add

The basic idea in Shift-Add algorithm is to simultaneously evaluate the number of
mismatches in each inside field using L bits. The highest bit in each field is an overflow
bit, which is used in preventing the error count rolling to next field. The original Shift-
Add algorithm actually used two state vectors, State and Overflow which were shifted
L bits forward. Opposite this, two-way approach in exact matching is successful due
to simple (one statement) corresponding one-way algorithm (Shift-Or, Shift-And).
Such an improved (one statement) Shift-Add is introduced in the next section.

The core problem is addition; there can be up to m mismatches. When in some
position k errors is reached, we should stop addition into it. In the occurrence vector
array, B[ ], only the lowest bit in each field may be set. The key trick is to use the
overflow bits in the state vector D. We take the logical AND operation between
applied occurrence vector and the L− 1 right shifted complemented state vector D.
Then the complemented overflow bits and the possibly set bits in the occurrence
vector are aligned, and addition happens only when there is no overflow.
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This idea is applied in Two-way Shift-Addq2 algorithm shown as Algorithm 4.
The limitation of Two-way Shift-Add on error level k = 0 is that each field needs 2
bits.

Algorithm 4 Two-way Shift-Addq(P = p1p2 · · · pm, T = t1t2 · · · tn, k)

Require: m · L ≤ w and L ≥ max
{

2, dlog2(max{k, q}+ 1)e+ 1
}

and m > (q + 1) div 2
/* Preprocessing */

1: mask ← 0
2: for i← 1 to m do
3: mask ← (mask << L) |

(
(1 << (L− 1))− k

)
4: for all c ∈ Σ do BW [c]← mask
5: mask ← 0
6: for i← 1 to m do
7: mask ← (mask << L) | 1
8: for all c ∈ Σ do B[c]← mask /* mask = (0L−1 12)m−1 */
9: mask ← mask << (L− 1) /* mask = (1 0L−1

2 )m−1 */
10: for i← 1 to m do
11: BW [pi]← BW [pi]−

(
1 << L · (i− 1)

)
12: B[pi]← B[pi] & ∼

(
1 << L · (i− 1)

)
/* −

(
1 << L · (i− 1)

)
also works normally */

/* Searching */
13: for i← m step m while i ≤ n do
14: D ← BW [ti] + (B[ti−1] << L) + (B[ti+1] >> L) /* this one is for q = 3 */
15: j ← (q + 1) div 2 /* integer division – values of q are odd */
16: while j < m and (∼D) & mask do
17: D ← D +

(
∼D >> (L− 1)

)
& B[ti−j ] << (L · j)

+
(
∼D >> (L− 1)

)
& B[ti+j ] >> (L · j)

18: j ← j + 1
19: E ← (∼D) & mask
20: while E do
21: report an occurrence
22: E ← E & (E − 1) /* turning off rightmost 1-bit */

When bit-vectors are aligned to the lowest order bits, the unessential bits in right
shifted occurrence vector fall off immediately, and in the right shifted ones they do
not disturb because bit-vectors are unsigned.

The form of line 14 depends on q as before. Notice that there can happen larger
overflows, but as long as k ≤ q it does not matter; otherwise we need a larger value
for L.

Figure 2 shows an example how Two-way Shift-Add finds a match. Unrelevant
bits are not shown; they are all zeros. On each field (of L bits) in D the highest bit is
overflow bit, which indicates that there is no match on corresponding text position.
Vertical lines limit the computing area having interesting bit fields.

4.2 Tuned Shift-Add

Algorithm 5 is Tuned Shift-Add. It is a minimalist version of Shift-Add algorithm, and
so it is linear. The original Shift-Add algorithm is using an overflow vector in addi-
tion to the state vector (here D). The essential difference between original Shift-Add
algorithm and the Tuned Shift-Add is the state update. Using this variable naming

2 It is obvious that Two-way Shift-Add is sublinear. We will include the exact analysis to the final
version.
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T = a b a d a c a d c · · ·
P = b a c a c
k = 1
L = 3 One bit unnecessarily large

B[a] = 001 000 001 000 001 Corresponds P backwards
B[b] = 001 001 001 001 000 Occurrences = 0
B[c] = 000 001 000 001 001
B[d] = 001 001 001 001 001 As all other characters that do not appear in

P

BW [a] = 011 010 011 010 011 Again P backwards
BW [b] = 011 011 011 011 010 011 minus number of errors still allowed
BW [c] = 010 011 010 011 011
BW [d] = 011 011 011 011 011

BW [t5] = BW [a] = 011 010 011 010 011 Starting to check next m positions
+B[t4] = B[d] << 3 = 001 001 001 001 001
+B[t6] = B[c] >> 3 = 000 001 000 001 001 Starting with q = 3 characters
= D = 100 011 101 011 100 Note that overflow depends on q
+B[t3] = B[a] << 6 = 000 001 000 001 Only lowest bits in fields may be set
& ∼D >> (L− 1) = 0 1 0 1 0 So only the overflow bit is relevant on each field
+B[t7] = B[a] >> 6 = 001 000 001 000· · ·
& ∼D >> (L− 1) = 0 1 0 1 0
= D = 100 011 101 011 100 Second and fourth position look promising
+B[t2] = B[b] << 9 = 001 001 000
& ∼D >> (L− 1) = 0 1 0 1 0
+B[t8] = B[d] >> 9 = 001 001 001· · ·
& ∼D >> (L− 1) = 0 1 0 1 0
= D = 100 011 101 100 100 Overflow also in fourth position
+B[t1] = B[b] << 12 = 001 000
& ∼D >> (L− 1) = 0 1 0 0 0
+B[t9] = B[c] >> 12 = 000 001· · · Last characters give only little information
& ∼D >> (L− 1) = 0 1 0 0 0
= D = 100 011 101 100 100

E = 0 1 0 0 0 Match in second position

Figure 2. Example of checking m positions in Two-way Shift-Add.

the line 11 in Tuned Shift-Add was in Shift-Add
D ← ((D<< L) + BW [ti]) & mask2
overflow ← ((overflow<< L) | (D & ovmask))& mask2
D ← D & ∼ovmask

5 Experiments

The tests were run on Intel Core i7-860 2.8GHz, 4 cores, with 16GiB memory; L2 cache
is 256KiB / core and L3 cache: 8MiB. The computer is running Ubuntu 12.04 LTS,
and has gcc 4.6.3 C compiler. Programs were written in the C programming language
and compiled with gcc compiler using -O3 optimization level. All the algorithms were
implemented and tested in the testing framework of Hume and Sunday [12]. New
algorithms were compared with the following earlier algorithms: Shift-Or (SO) [3],
FSO [7], FAOSO [7], BNDM [14], and LNDM [10]. The given run times of FAOSO
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Algorithm 5 Tuned Shift-Add(P = p1p2 · · · pm, T = t1t2 · · · tn, k)
Require: m · L ≤ w and L ≥ max{2, dlog2(k + 1)e+ 1}

/* Preprocessing */
1: mask ← 0
2: for i← 1 to m do
3: mask ← (mask << L) | 1
4: for all c ∈ Σ do B[c]← mask
5: for i← 1 to m do
6: B[pi]← B[pi] & ∼

(
1 << L · (i− 1)

)
/* −

(
1 << L · (i− 1)

)
also works normally */

7: mask ← ∼0 >> (w + 1− L ·m) /* mask = 1L·m−1
2 */

8: Xmask ← (1 << (L− 1)− (k + 1)
/* Searching */

9: D ← ∼0 /* = 1w2 */
10: for i← 1 to n do
11: D ←

(
(D<< L) | Xmask

)
+
(
B[ti] & (∼(D<< 1))

)
12: if (D&mask) = 0 then
13: report an occurrence ending at at i
14: i← i+ 1

are based on the best possible parameter combination for each text and pattern
length. All tested algorithms were using 64-bit bit-vectors. The results for patterns
longer than 32 are not yet available for all algorithms. We will include them in final
paper.

We did not test the variations [5] of the Wide-Window algorithm [11], because
according to the original experiments [5], these algorithms are only slightly better
than BNDM. In addition, they require m ≤ w/2.

In the test runs we used three texts: binary, DNA, and English, the size of each is
2 MB. The English text is the prefix of the KJV Bible. The binary text is a random
text in the alphabet of two characters. The DNA text is from the genome of fruitfly
(Drosophila Melanogaster). Sets of patterns of various lengths were randomly taken
from each text. Each set contains 200 patterns.

Table 1. Search time of algorithms (in milliseconds) for binary data

Data Algorithm 2 4 8 12 16 20 30
Binary SO 465 463 463 467 466 462 462

FSO 1421 742 276 245 246 247 243
FAOSO 3515 1743 853 747 689 469 374
BNDM 1998 1678 1106 772 579 472 332
LNDM 2942 2404 1668 1233 984 822 564
TSA 1761 1422 884 612 476 395 274
TSO 1583 1154 676 461 351 283 192
TSO3 1421 1204 757 528 403 331 231
TSO5 1661 926 656 483 378 316 229
TSO9 2161 912 421 294 229 189 137
GTSO3 1338 1126 722 503 389 234 225
GTSA3 1272 1218 796 563 437 360 247

Tables 1–3 show the search times in milliseconds for these data sets. Before mea-
suring time, the text and the pattern set were loaded to the main memory, and so
the execution times do not contain I/O time. The results were obtained as an average
of 200 runs. During repeated tests, the variation in timings was about 1 percent.
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Table 2. Search time of algorithms (in milliseconds) for DNA data

Data Algorithm 2 4 8 12 16 20 30
Dna SO 468 465 463 478 479 468 462

FSO 733 285 245 251 242 244 254
FAOSO 2523 699 424 331 310 211 185
BNDM 1563 1031 565 402 314 261 177
LNDM 2212 1543 888 638 503 418 292
TSA 1212 734 422 308 246 213 161
TSO 1123 659 346 235 185 153 111
TSO3 758 512 302 231 194 167 132
TSO5 992 415 219 156 124 103 80.5
TSO9 1452 585 301 204 158 131 90.4
GTSO3 754 492 299 222 192 168 132
GTSA3 673 473 284 226 184 162 124

Table 3. Search time of algorithms (in milliseconds) for English data

Data Algorithm 2 4 8 12 16 20 30
English SO 475 475 474 476 474 469 475

FSO 334 252 240 239 239 239 239
FAOSO 1213 306 174 158 149 142 198
BNDM 649 504 342 252 197 164 116
LNDM 1344 887 561 421 322 273 193
TSA 887 462 265 189 156 132 99.7
TSO 713 522 348 234 178 146 90.3
TSO3 482 273 161 119 101 89.1 73.2
TSO5 692 342 186 132 109 89.2 67.3
TSO9 1143 559 289 200 156 128 92.2
GTSO3 448 256 152 118 97.6 87.2 73.3
GTSA3 425 243 147 111 95.1 85.3 70.6

The best execution times have been put in boxes. Overall, TSO9, TSO5 and GTSO3
appears to be the fastest for binary, DNA and English data respectively.

Table 1 presents run times for binary data. SO is the winner for m ≤ 4, FSO for
8 ≤ m ≤ 12, and TSO9 for m ≥ 16. Table 2 presents run times for DNA data. SO
is the winner for m = 2, FSO for m = 4, and TSO5 for m ≥ 8. Table 3 presents run
times for English data. SO is the winner for m = 2 and GTSO3 for m ≥ 4.

5.1 Experiments for k-mismatches problem

For the k-mismatch problem we tested the following algorithms: Shift-Add (SAdd),
Two-way Shift-Add with q-values 1, 3, and 5 (TSAdd-1, TSAdd-3, TSAdd-5), Tuned
Shift-Add (TuSAdd), Average Optimal Shift-Add (AOSA), and CMFN. It is a sublin-
ear multi-pattern algorithm by Fredriksson and Navarro [8]. (CMFN is also suitable
for approximate circular pattern matching problem.)

The text file are same for DNA and English. For binary alphabet it was (by
mistake) 131072 characters long.

On two letter alphabet there are only 32 different 5 character strings. Thus the
binary pattern set for m = 5 contains only 32 patterns. To make the results compara-
ble with other pattern sets containing 200 patterns, the timings have been multiplied
with 200/32.

Test results for the k-mismatches problem are in tables 4–6.
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Table 4. Search times of algorithms (in milliseconds) for k = 1.

m SAdd TSAdd-1 TSAdd-3 TuSAdd AOSA

English 5 259 189 143 156 491
10 240 103 83 152 245
20 243 57 46 152 102
30 239 39 32 152 74

DNA 5 270 282 238 174 523
10 250 143 121 154 290
20 233 75 62 155 177
30 226 50 42 151 127

Bin 5 113 91 78 88 236
10 67 62 56 43 136
20 63 33 29 40 73
30 60 22 20 40 52

Table 5. Search times of algorithms (in milliseconds) for k = 2.

m SAdd TSAdd-1 TSAdd-3 TSAdd-5 TuSAdd AOSA

English 5 251 244 211 202 166 499
10 236 128 111 106 152 258
20 222 67 58 58 152 132

DNA 5 346 332 293 296 261 700
10 245 185 164 167 149 478
20 220 93 83 84 149 240

Bin 5 142 100 88 81 138 331
10 77 73 65 65 55 166
20 64 41 38 34 39 125

Table 6. Search times of algorithms (in milliseconds) for k = 3.

m SAdd TSAdd-1 TSAdd-3 TSAdd-5 TuSAdd AOSA

English 5 291 300 260 267 209 587
10 237 155 137 139 146 388
20 215 78 70 72 145 180

DNA 5 537 357 317 304 449 1105
10 242 216 197 194 150 476
20 215 108 99 96 145 247

Bin 5 119 94 81 75 84 325
10 104 79 69 68 81 242
20 62 46 43 40 38 123

In our tests the Tuned Shift-Add was faster than the original Shift-Add. Both
seem to suffer from relatively large number of occurrences.

During tests we noticed performance decrease in AOSA, which seems to be related
to the optimization level. We plan to to make some additional tests on different
versions of gcc compiler.

CMFN was not competitive in these tests, and therefore the results are not shown
here.
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6 Concluding remarks

We have presented two new bit-parallel algorithms based on Shift-Or/Shift-And and
Shift-Add techniques for exact string matching. The compact form of these algo-
rithms is an outcome of a long series of experimentation on bit-parallelism. The new
algorithms and their tuned versions are efficient both in theory and practice. They
run in linear time in the worst case and in sublinear time in the average case. Our
experiments show that the best ones of the new algorithms are in most cases faster
than the previous algorithms of the same type.
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