PMSGA: A FAST DNA FRAGMENT ASSEMBLER

Juho Makinen, Jorma Tarhio
Department of Computer Science and Engineering, Helsinki University of Technology, P.O. Box 5400, FI-02015 TKK, Finland
jvmakine@gmail.com, tarhio@iki.fi

Sami Khuri
Department of Computer Science, SaneJ8sate University, One Washington Square, Sa@,Jo8 95192-0249, U.S.A.
khuri@cs.sjsu.edu

Keywords:  DNA Sequencing, Fragment Assembly, Pattern Matching, Sequence Reconstruction, String Graph

Abstract: The DNA fragment assembly is an essential step in DNA sequencing projects. Since DNA sequencers output
fragments, the original genome must be reconstructed from these small reads. In this paper, a new fragment
assembly algorithm, Pattern Matching based String Graph Assembler (PMSGA), is presented. The algorithm
uses multipattern matching to detect overlaps and a minimum cost flow algorithm to detect repeats. Special
care was taken to reduce the algorithm’s run time without compromising the quality of the assembly. PMSGA
was compared with well-known fragment assemblers. The algorithm is faster than other assemblers. PMSGA
produced high quality assemblies with prokaryotic data sets. The results for eukaryotic data are comparable
with other assemblers.

1 Introduction on the overlap-layout-consensus paradigm. Pairwise
overlaps are detected by finding common probes

DNA fragment assembly is a technique that at- @mong fragments. Next, the layout is built using a
tempts to reconstruct the original DNA sequence from Minimum cost network flow algorithm. Finally, the
a large number of fragments, each several hundredCONSensus sequence is constructed uginters and
base-pairs long. The DNA fragment assembly is Position based hashing. _
needed because current technology, such as gel elec- The paper is organized as follows. The details of
trophoresis, cannot directly and accurately sequencethe different phases of PMSGA are described in Sec-
DNA molecules longer than 1000 bases. However, tion 2. In Section 3, the experimental results and com-
most genomes are much longer. For example, a hu-Parisons with other algorithms are presented. Finally,
man DNA is about 2-10° nucleotides in length Section_4 cqncludes .the article with suggestions for
and cannot be read at once. The shotgun sequencinguture directions and improvements.
technique was developed to deal with this limitation.
First, the DNA molecule is amplified, that is, many
copies of the molecule are created. The moleculesare2  The Algorithm
then cut at random sites to obtain fragments that are
short enough to be sequenced directly. The overlap- PMSGA is an assembler based on the overlap-
ping fragments are then assembled into a target DNA |ayout-consensus paradigm. In the overlap phase, the
sequence. Several algorithms have emerged to tackletask is to find all possible pairwise overlaps between
the fragment assembly problem. Some of the most fragments and their reverse complements. In the lay-
well-known assemblers are PHRAP (Green, 1999), out phase, the order in which the fragments should
CAP3 (Huang & Madan, 1999) and EULER (Pevzner be placed in the final assembly is determined. Fi-
& al., 2001). nally, in the consensus phase, the aim is to construct
In this paper, a new fragment assembly algo- the contigs by finding a consensus of the overlapping
rithm, Pattern Matching based String Graph Assem- fragments. Next, the three phases of PMSGA are
bler (PMSGA), is presented. The algorithm is based desribed.



2.1 The Overlap Phase

The overlap phase is based on t&ASS algorithm
(Kim, 1997). Kim used a multipattern matching al-
gorithm to efficiently find possible pairwise overlaps
between fragments.

PMSGA begins by randomly selecting probes of

the number of disjoint probe sets within the consistent
set,W is the distance from the first probe in the set to
the last one andlly, is the total number of probes in
the set. The consistent set with the largest score is
chosen to represent the overlap, and the length of the
overlap is calculated by using the selected set.

The quality of the detected overlaps is checked as

constant lengths from fragments and their reverse follows. Let ak-mer represent a sequencekoon-
complements. Then, a faster multipattern matching tigous base pairs. Given a fragmexntoccurrences

algorithm, called theBG algorithm(Salmela & al.,

of all possiblek-mers in overlapping areas are deter-

2006), is used to find the occurrences of these probesmined. A vectoiv? of length & is constructed, where

in the fragments.
The BG algorithm is based on the BNDM algo-
rithm (Navarro & Raffinot, 2000) for a single pattern.

The idea is to construct a generalized pattern that rep-

its elements represent the number of occurrences of a
k-mer. Similarly, a vectol® for fragmentb is con-
structed.

The average error probabilities for the overlapping

resents a group of patterns. For example, the grouparea of fragmenta andb, denoted byp, and py, are

of patterns,acgt, aacg andgttt can be represented
by the generalized pattern: [a,g][a,c,t][c,0.t][c,t]. In

also calculated. To compute these probabilities, the
PHRED quality scores (Ewing & Green, 1998) for

the overlap phase, PMSGA uses the BG algorithm to each fragment are used.

find the generalized pattern representing overlapping

The number ok-mers that occur only in one frag-

k-mers instead of single characters of the patterns. If ment is calculated as follows

k = 2 in the example above, the corresponding gener-

alized pattern is given by [ac,aa,gt][cg,ac,tt][gt,cc,tt].

Each occurrence of the generalized pattern is a candi-

date for a real match. BNDM works as a filter and the

4K
-S| o

The total number ok-mers, N, is given byNio: =

candidate matches are checked by an exact method. Ir2(L — k), whereL is the length of the overlap being

practice, the BG algorithm is very efficient (Salmela
& al., 2006).

To deal with small repeats, the probes with too
many occurrences are filtered out. However, if there

considered. The number of commkimers is given
by Nhit = Ntot — Nmiss

The probability of a sequencing error ifkamer is
given bypm=1— ((1— pa)(1— pp))¥. The probabil-

are enough probes with about equal number of occur-ity of observingNmiss with given error probability, is
rences, they are left in. This is done to preserve large given by

repeats, but to filter out small repeats that might cause

false overlaps between fragments.

The probe lengthnf) is obtained by solvingn =
InF/In(1—¢), whereF is the predefined average
probability of probe occurrence areds the average
error rate. In this work, the probe length varies be-
tween 10 and 30 base pairs, dnd- 0.4 is used.

The overlap between a pair of fragmemtand
j is computed as follows. The common probes of
these fragments are found using the BG algorithm.
Let probesa and b occur ini and j at positions
(PO, PO, j) and(pos,j, Pos, ;). Now, a andb are
said to be aonsistent pairif

(PO, — POsi) — (PO%,j — POSj)| <O
for a small threshold value. This threshold is needed
to deal with insertion and deletion errors in the frag-
ments. A set of common probe occurrences é®a-
sistent setif each consecutive pair of probe occur-
rences in the set is a consistent pair.
For each consistent s&tthat can be constructed

Neot ) )
P(X > Nmisg) = .7g. (NtOt> p'm(l— pm)N‘OH (2)

i
A thresholdg is set to discard all overlaps, where
P(X > Nmiss) <& 3
Note thatP(X > Nmiss) is the incomplete beta func-
tion, I p,,(Nmiss Nhit + 1), which can be efficiently ap-
proximated.

To validate overlaps, PMSGA counts the distinct
k-mers, instead of counting errors, as was done by Ke-
cecioglu and Myers (1995). Note that by increasing
the value ok, a greater emphasis is placed on the cor-
rect order of the matching substrings within the over-
lap at the expense of a smaller number of common
k-mers. Fragments that are entirely contained in other
fragments are removed and are used in the final con-
sensus phase.

2.2 The Layout Phase

from the probe hits in the overlapping area, a score The layout phase of PMSGA is based on string graphs

is calculated ascordS) = NgW + N, whereNy is

(Myers, 2005). The idea is to construct a bidirected



overlap graph describing the overlaps and orientationsAlgorithm 1  Algorithm for consensus graph con-
between fragments. Then, the fast transitive reduction struction. C is a list of fragments in a given contig,
algorithm (Myers, 2005) is used to perform the tran- ordered by their approximate left positions. The out-
sitive reduction of the graph. put of the algorithm is the consensus graphT is

As the overlap detection based on probe matching the maximum distance for node combination thresh-
produces somewhat imperfect results, it is important old andq is the length of thej-mer.
to deal with possible false overlaps in the graph. Upon  1: G — {}
performing the transitive reduction, the count of edges 2: ¢« 0
that could be reduced using the given edge is stored 3: for each Fe C do
for each remaining edge. A vertex in the graphis de- 4.  cpos« leftPosition[F]
fined to be inconsistent if it has more than one in-edge 5. |ast— NULL
or out-edge. Every inconsistent vertex is checkedto g c«—c+1
see if some edges causing the inconsistency can be 7:  while cpos< length[F] + leftPosition[F]— q

removed. The edge is removed if it was not used to do
reduce any other edge in the transitive reduction. 8: g — Flcpos:cpos+q-1]
Missing overlaps usually cause the transitive re- go: find nwhere |n.pos-cpos< T, n.mark# ¢
duction to produce two separate chains of vertices andn.mer=g
with the same direction between the two vertices. A 10: if Nn=NULL then
chain represents a path of vertices where each vertex; 1 n < new node(g,cpos)
has exactly one in-edge and one out-edge. If the sec-12: G.addVertex(n)
ond chain contains either no vertices or only one inter- 13: end if
mediate vertex, it is likely to be caused by a missing 14 if last# NULL then
overlap. In such cases, the shorter chain is removedjs: e «— G.getEdge(last,n)
from the graph. 16: if @ = NULL then e +— G.addEdge(last,n)
The probability that a consistent chain of frag- endif
ments in the graph is traversed once in the reconstruc-17: e.score— e.score + quality[F][cpos+q-1]
tion is given by 18: end if
19: n.mark— c

_ k
N\ /A\ /G—A\N k% (&) e g N last— n
k) \G G k! 21: Cpos<— cpos + 1

22:  end while

wherek is the number of fragments in the chajs 23 end for

the size of the genome in base paitsis the length
of the fragment chain in base pairs, ddds the total
number of fragments (Myers, 2005). The probability
that the chain is traversed twice can be constructed
in a similar fashion. An A-statistic for the chain is
computed by taking the logarithm of the ratio of these The order of the fragments was determined in the
probabilities (Myers, 2005)A(A, k) = AN/G —KkIn2. layout phase and the relative overlap length between
Upper and lower bounds for the number of traver- fragments was computed in the overlap phase. The
sals for each edge in the graph can be determined byapproximate position for each fragment within its
setting a threshold on the A-statistic. In this work, the contig can now be determined.
best results were obtained by using a threshold value A structure called aonsensus grapis used to
of 5. efficiently produce the final consensus. The construc-
The actual number of traversals is obtained by tion of the consensus graph for a given contig begins
solving this problem as a minimum cost flow problem by dividing each fragment into a sequencaefq+ 1
(Myers, 2005). In this work, the cycle canceling al- g-mers, wheren is the length of the fragment. An
gorithm was used (Bang-Jensen & Gutin, 2001). The edge fromg-merAto B is added only ifA andB come
cost for each edge was calculated from the amountfrom the same fragment, ari8lis right next toA in
of probe hit coverage detected in the overlap phase.the fragment. The-mers are placed into a hash table
Higher probe hit coverage results in lower cost, and and are merged into the same node in the graph only
lower hit coverage increases the cost. if their approximate positions are close enough in the
In this work, repeats were not assembled. Conse- contig.
qguently, all vertices with traversal count higher than The pseudocode of the consensus graph construc-
one were removed. tion algorithm is given in Algorithm 1. The algorithm

2.3 The Consensus Phase



efficiently calculates consecutiwpmers (line 8) us-  Table 2: Prokaryotic data sets retrieved from NCBI assem-
ing bit shifts. The bf find operation on line 9 can be bly archive (NCBI, 2008).
efficiently implemented by placing all nodes in a hash

table, where the correspondiggner is used as a key. ID | Name Length | Seq. | Avg.

If no node with required characteristics is found, a g&‘g IrEorr

NULL is retur.ned. In compgtlng the score (line 17), T Antelope corona- 3TKbp | 15.8 | 3.1%

PHRE.D quahty. scores (Ewing & Green, 1998), are virus US/OH1/2003

taken into consideration. 2 | Bacteriophage 240kbp | 10.7 | 4.1%

Next, the path with the largest sum of scores yields KVP40

a contig. These contigs are used as new fragments,| 3 | Chlorella virus 310kbp | 11.1 | 1.4%

and the algorithm is executed once more. The pro- MT325 ,

gram terminates when two consecutive runs produce | 4 | ampylobacterfetus 1.8 Mbp | 10.3 | 1.2%
o subsp. fetus 82-40

similar output results. 5 | Streptococcus 2.1Mbp | 9.0 2.6%

agalactiae A909

3 Experimental Results other assemblers. In 3 out of the 5 cases, PMSGA

) ) ) ) yielded one contig. In test cases with ID 4 and 5, the
PMSGA described in the previous section was ot coverage of PMSGA was slightly lower when
tested under several settings. The data sets used t%ompared to the results of CAP3 and PHRAP. This is

test the algorithm were obtained from the NCBI as- 5 ohapiy due to the fact that some fragments that con-
sembly archive (NCBI, 2008). Additionally, artificial  ¢4in repeats were not considered in the final layout.
data sets were created using the ReadSim simulator oyt the assemblers were tested with the eukary-

(Schmid & al., 2008). All results were compared 10 ytic genomes described in Table 5. To create data sets
PHRAP (Green, 1999) and CAP3 (Huang & Madan, \ith'|p 6, 7, and 8, the DNA sequences were first

1999) assemblies. Only data sets with ID 1, 2, and 3 44ynj0aded from the NCBI genome database. Then,
were tested with EULER (Pevzner & al., 2001). The e fragments were created from the sequences, by
EULER assembler could not be tested with the larger using the ReadSim simulator. In these data sets, the

data sets, with ID 4 to 8, due to high memory require- ¢agment length was uniformly distributed between

ments (see Tables2and 3). 600 and 1000 base pairs. Note that PHRED quality
The measuring criteria given in Table 1 were used gcores are not available for data sets generated with
to evaluate the performance of the algorithms. ReadSim.
Table 1: The measuring criteria. Table 5: Eukaryotic data sets generated using ReadSim sim-
ulator (Schmid & al., 2008).
Runtime | The time to perform a full assembly.
Contigs | Number of noncontiguous sequences at ID | Name Length | Seq. | Avg.
the end of the assembly. Cov- | Er-
Errors Number of misassembled fragments. ered | ror
Identity Percentage of identical nucleotides |in 6 | Theileria parva 25Mbp | 8.0 3.0%
the pairwise alignment of the output and strain muguga
the original sequence. Chromosome 1
Sequence] Percentage of the original sequence 7 | Pichia stipitis 3.5Mbp | 8.0 | 2.0%
covered | covered by the contigs in the output. Chromosome 1
N50 The N50 length is the lengti such 8 | Schizosaccharomycess.6 Mbp | 7.0 | 2.09
that 50% of the sequence is containgd pombe
in contigs of lengthx or greater (Water- Chromosome 1
ston & al., 2003).

The results are reported in Table 4. Once again,
The first five data sets obtained from the NCBI PMSGA outperformed the other assemblers in terms
assembly archive are described in Table 2. This setof speed. PMSGA produced fewer contigs than
contains three viruses and two bacteria. CAP3. The number of contigs obtained by PMSGA
The various assemblers were tested with the datais comparable to those obtained by PHRAP. As for
sets of Table 2. The results are reported in Table 3. coverage, PMSGA' results vary between 97.5% and
As can be seen in Table 3, PMSGA was considerably 99.2%.
faster. PMSGA also produced fewer contigs than the  Next, the percentage of time PMSGA spent on the



Table 3: Results for assemblies of data sets described in Table 2.

ID | Algorithm | Runtime Coverage Identity Contigs N50 Errors
1 | EULER 5m 97.8% 98.9% 5 7,676 0
CAP3 1m20s 100% 99.9% 2 19,489 0
PHRAP 11s 100% 99.8% 5 30,994 0
PMSGA 4s 100% 100% 1 30,994 0
2 | EULER 38m 61.6% 99.4% 87 6,517 0
CAP3 8m20s 100% 99.4% 118 3,679 0
PHRAP 1m10s 100% 99.8% 16 94,898 0
PMSGA 27s 100% 100% 1 244,834 0
3 | EULER 39m 99.7% 99.6% 4 256,318 1
CAP3 11m 100% 99.9% 24 22,941 1
PHRAP 1m30s 100% 100% 1 314,327 0
PMSGA 20s 99.5% 100% 1 312,631 0
4 | CAP3 1h40m 99.2% 99.9% 156 18,101 5
PHRAP 13m 99.5% 100% 19 218,453 8
PMSGA 2m30s 96.3% 100% 12 619,222 4
5 | CAP3 2h2m 99.1% 99.0% 1879 1,868 6
PHRAP 20m 98.9% 99.9% 399 39,775 7
PMSGA 8m30s 91.1% 99.9% a7 87,267 3

Table 4: Results for assemblies of data sets described in Table 5.

ID | Algorithm | Runtime Coverage Identity Contigs N50 Errors
6 | CAP3 40m 100% 100% 57 77,313 6
PHRAP 7m 100% 100% 14 281,034 2
PMSGA 2m50s 99.2% 100% 15 187,017 2
7 | CAP3 57m 99.9% 100% 56 103,076 5
PHRAP 11m 99.8% 100% 27 178,492 3
PMSGA 4m20s 97.9% 100% 34 147,755 3
8 | CAP3 1h20m 99.7% 100% 190 54,555 5
PHRAP 15m 100% 100% 79 117,652 7
PMSGA 8m 97.5% 100% 95 97,404 7
Table 6: Distribution of time spent on the 4 tasks. algorithm was implemented in C++. All tests were
run under Linux on AMD Opteron 246/2 GHz dual-
ID | Pattern | Overlap [ Graph Consen- processor CPU with 6 gigabytes of memory. Only one
match- | construc- | construc- | sus processor was used in testing.
ing tion tion
1 | 20% 46% 4% 23%
2 | 15% 51% 8% 23%
3 | 19% 44% 6% 26% i
4 | 18% 39% 15% 33% 4 Conclusion
5 | 6% 44% 16% 33%

This article introduced a fast and efficient DNA

fragment assembler, PMSGA. PMSGA is faster than
four different tasks was measured. The data sets fromother commonly used assemblers such as PHRAP,
Table 2 were used, and the runtimes spent on patternCAP3, and EULER. PMSGAs speed is due to the
matching, overlap list construction, string graph con- BG algorithm for pattern matching used in the over-
struction and consensus building were recorded. Thelap phase and the algorithm for the consensus graph
results of this experiment are presented in Table 6. construction. In terms of assembly quality, the num-
Note that the sum of the percentages reported in Ta-ber of contigs and the coverage produced by PMSGA
ble 6 does not add to 100%. The time spent on tasksare either better or comparable to the results obtained
such as file I/O and probe selection is not reported. As by PHRAP.
can be seenin Table 6, the graph construction phaseis The experimental results of this work demon-
generally the fastest one, followed by pattern match- strated that PMSGA is successful in assembling
ing. Overlap construction is the slowest phase. The prokaryotic genomes as well as eukaryotic genomes.



We are aware that next-generation sequencingEwing, B. & Green, P. (1998). “Base-calling of automated
methods are lurking on the horizon. We are aware that sequencer traces using Phred. II. Error probabilities,”
non-Sanger-based sequencing technologies, such as ~ Genome Researchol. 8, no. 3, pp. 186.
the ones being developed by Solexa/lllumina, Agen- Huang, X. & Madan, A. (1999). “CAP3: A DNA sequence
court/ABI, and Helicos Biosciences, are delivering on assembly program’Genome researchvol. 9, no. 9,
their promise of sequencing DNA at unprecedented pp. 868.
speed and that one day they will enable impressive Kececioglu, J. & Myers, E. (1995).“Combinatorial algo-
scientific achievements and novel biological applica- rithms for DNA sequence assemblyRlgorithmica
tions. But as long as Sanger-based sequencing meth- vol. 13, no. 1, pp. 7-51. _
ods are being used, the DNA fragment assembly prob- Kim, S. (1997). “A structured pattern matching approach
lem addressed in this work, remains a current and ~ [© Shotgun sequence assemblph.D Dissertation

. . L . Computer Science Department, The University of
challenging problem that requires efficient algorithms Iowa!olowa City. P y

SucgﬁzgiMGA% her be | 4 by tak Salmela, L., Tarhio, J., & Kytjoki, J. (2006). “Multi-
can further be improved by taking steps pattern string matching with q-gramsXCM Journal

to handle long repeats. Another option would be to of Experimental Algorithmicsol. 11, no. 1.

let the researcher manually perform additional tests to Myers, E. W. (2005). “The fragment assembly string
decide the final path in the graph, as suggested by My- graph,”Bioinformatics vol. 21, no. 2.

ers (2005). A further improvement could be achieved Navarro, G. & Raffinot, M. (2000). “Fast and flexible string

by parallelizing the overlap phase. matching by combining bit-parallelism and suffix au-
tomata,ACM Journal of Experimental Algorithmics
vol. 5, no. 4.

ACKNOWLEDGEMENTS http://www.ncbi.nlm.nih.gov/Traces/assemblgeferenced
June 2009.

The work was financially supported by the Academy Pevzner, P. A., Tang, H., & Waterman, M. S. (2001). "An
Eulerian path approach to DNA fragment assembly,”

of Finland. Proc. Natl. Acad. Sci. USAol. 98, no. 17, pp. 9748—
9753.
Schmid, R., Schuster, S. C., Steel, M. A, & Hu-
REFERENCES son, D. H. (2008). “ReadSim — A simulator for
Sanger and 454 sequencing,” in preparation, soft-
Green, P. (1999). “Phrap Documentation”. ware freely available from www-ab.informatik.uni-
Available: http://www.phrap.org/phredphrap/phrap.html  tuebingen.de/software/readsiteferenced June 2009.
Referenced June 2009. Waterston, R., Lander, E., & Sulston, J. (2003). “More on
Bang-Jensen, J. & Gutin, G. (200Djigraphs: Theory, Al- the sequencing of the human genomBRAS vol.

gorithms and ApplicationsSpringer Verlag, 2001. 100, no. 6, pp. 3022-3024.



