
1

A GREEDY APPROXIMATION ALGORITHM FOR CONSTRUCTING
SHORTEST COMMON SUPERSTRINGS*

Jorma Tarhio and Esko Ukkonen
Department of Computer Science, University of Helsinki

Tukholmankatu 2, SF-00250 Helsinki, Finland

Abstract. An approximation algorithm for the shortest common superstring
problem is developed, based on the Knuth-Morris-Pratt string matching procedure
and on the greedy heuristics for finding longest Hamiltonian paths in weighted
graphs. Given a set R of strings, the algorithm constructs a common superstring for
R in O(mn) steps where m is the number of strings in R and n is the total length of
these strings. The performance of the algorithm is analyzed in terms of the
compression in the common superstrings constructed, that is, in terms of n – k
where k is the length of the obtained superstring. We show that (n – k) ≥ (n – kmin)
/ 2 where kmin is the length of a shortest common superstring. Hence the
compression achieved by the algorithm is at least half of the maximum
compression. It also seems that the lengths always satisfy k ≤ 2 . kmin but proving
this remains open.

1. Introduction

The shortest common superstring problem is, given a finite set R of strings
over some (finite or infinite) alphabet ∑, to find a shortest string w such that each
string x in R is a substring of w, that is, w can be written as uxv for some u and v.
Since the decision version of this problem is NP-complete [3, 6, 2], we are
interested in polynomial time approximation algorithms. Such algorithms construct
a superstring w which is not necessarily a shortest one.

An obvious approach is to develop a "greedy" approximation algorithm based
on the following idea [2]: Find and remove two strings in R which have the longest
mutual overlap amongst all possible pairs in R. Then form the overlapped string
from the removed two strings and replace it back in R. Repeat this until there is
only one string in R or no two strings have a nonempty overlap.

In this paper we develop an algorithm that implements this idea. The algorithm
uses, besides the greedy heuristics, also a modification of the Knuth-Morris-Pratt
string matching procedure to find the pairwise overlaps between the strings in R. It
runs in O(mn) steps where m is the number of strings in R and n is the total length
of these strings.

Our main result deals with the performance of the algorithm, i.e., the quality
of approximation. We show that the "compression" in the superstring constructed
by the algorithm is at least half of the compression in a shortest superstring. That is,
if n is the total length of the original strings in R and kmin is the length of a shortest
superstring and k is the length of the superstring computed by the approximation
algorithm, then (n – k) ≥ (n – kmin) / 2. Another natural way to measure the quality
is to directly compare lengths k and kmin. In all examples we have been able to
construct we have k ≤ 2 . kmin. Proving that this is always true remains open.

* The work was supported by the Academy of Finland.

2

It turns out that the shortest common superstring problem can be understood as
a special case of the longest Hamiltonian path problem for weighted directed
graphs. The results of Jenkyns [4] imply that for arbitrary weighted graphs the
greedy heuristics finds a Hamiltonian path whose length is at least one third of the
length of a longest path. Here we have special graphs encoding the possible pairwise
maximal overlaps of the strings in R. For such graphs, the greedy heuristics finds a
Hamiltonian path whose length is at least half of the length of a longest path.

Superstring algorithms can be used in compressing data. Molecular biology is
another application area. The primary structure of a biopolymer such as a DNA-
molecule can be represented as a character string which typically is a few thousands
of symbols long. To determine this string for different molecules, or to sequence
the molecules, is a crucial step towards understanding the biological functions of the
molecule. Unfortunately, with the current laboratory methods it is impossible to
sequence a long molecule as a whole. Rather, the sequencing proceeds piecewise by
determining relatively short fragments (typically less than 500 characters long) of
the long string. From the fragments whose location in the long string is more or
less arbitrary and unknown, one has to assemble the long string representing the
whole molecule. Without computer assistance the assembly task becomes intolerably
tedious since there may be hundreds of fragments that altogether contain thousands
of symbols.

The assembly problem can be modeled as a shortest common superstring
problem: The fragments are the strings in set R and the superstring constructed
represents an approximation to the original long string. Although there is no a
priori reason to aim at a shortest superstring this seems the most natural restriction
that makes the problem nontrivial. Moreover, our experience shows that programs
based on shortest common superstring algorithms work very satisfactorily for real
biological data [7].

2. The approximation algorithm

The following simple property of shortest common superstrings is useful in
deriving the approximation method.

Lemma 1. If a string x is a substring of another string y in R (i.e. y = uxv
for some strings u and v) then sets R and R – {x} have the same shortest common
superstrings.

A set of strings R is called reduced if no string in R is a substring of another
string in R. Assume in what follows that R is reduced. Later on it will be shown
that it is easy to form a reduced R from an arbitrary R. By Lemma 1, this reduction
preserves the shortest common superstrings.

There is an overlap v between strings x and x', x ≠ x', if v is both a suffix of x
and a prefix of x', that is, x = uv and x' = vu'. Note that v can be the empty string
and that if x and x' are from a reduced set, neither of strings u and u' can be empty.
Also note the antisymmetry of our definition: An overlap v between x and x' is not
necessarily an overlap between x' and x. An overlap v will be called maximal if it is
longest possible.

Let R = {x1, ..., xm} be reduced. Define the overlap graph for R as follows.
The graph is a directed graph with node set R ∪ {x0, xm+1}, and with directed arcs
(x i , xj), i ≠ j. Here the augmenting node x0 is called the start node and the
augmenting node xm+1 the end node. Each arc (xi, xj) has a weight wij where wij is

3

the length of the maximal overlap between strings xi and xj. In particular, w0j = 0
for j > 0 and wj m+1= 0 for j < m+1

 Consider any directed Hamiltonian path H from x0 to xm+1 in the overlap
graph for R. From H we may construct a common superstring for R: Just place
strings in R above each other in the order of appearance on path H. The successive
xi 's must be maximally overlapped, that is, the length of the overlap equals the
weight of corresponding arc on the path. If y1, ..., ym are the elements of R written
in the order they appear on path H from x0 to xm+1, we get an arrangement as
shown in Figure 1. Clearly, the "projection" p(H) of strings yi gives a common
superstring for R.

More carefully, let vi be the maximal overlap between yi and yi+1. Then yi can
be written as yi = zivi and p(H), the common superstring for R constructed from H,
is z1z2...zm–1ym.

The length of p(H) is (|x1| + ...+ |xm|) – |H| where |H| describes the sum of the
weights on path H. Thus the the larger is |H|, the shorter is the corresponding
common superstring. This suggests that a shortest common superstring for R would
be a shortest p(H), that is, p(H) where H is longest possible.

To prove that a shortest common superstring q cannot be shorter than a
shortest p(H), it suffices to show that q has a decomposition similar to that of p(H)
shown in Figure 1 and that the pairwise overlaps in that decomposition are
maximal. Therefore, let x1, x2, ..., xm be the strings in R indexed in the left-to-
right order in which their occurrence in q starts. Let ui be the unique substring of q
that is covered both by xi and xi+1. Hence there is an overlap ui between xi and xi+1.
Moreover, let ti be the substring of q that is covered by xi but not by xi+1. So the
situation is like in Figure 1, but with p(H) replaced by q and with yi 's, vi 's and zi 's
replaced by xi's, ui's and ti's, respectively. Now we have:

Lemma 2. The maximal overlap between each xi and xi+1 is ui.
Proof. Assume that for some i, the maximal overlap between xi and xi+1 is u

and |u| > |ui|. Let xi = ti u. Then t1...ti–1t'iti+1...tm–1xm is a common superstring of R
which is shorter than q = t1...ti–1titi+1...tm–1xm, a contradiction.

We have shown the following connection between shortest common
superstrings and longest Hamiltonian paths:

4

Theorem 3. A shortest common superstring for R is string p(H) where H is a
longest Hamiltonian path from the start node to the end node in the overlap graph
for R.

The NP-hardness of finding a shortest common superstring implies that also
finding the Hamiltonian path in Theorem 3 is NP-hard. (The NP-hardness of
finding maximal Hamiltonian paths in arbitrary weighted graphs is well-known, of
course [3]; here we only have the additional remark that the NP-hardness is
preserved if the problem is restricted to the class of overlap graphs.) Hence we have
to look at approximation algorithms. We will use the following well-known
"greedy" heuristics for longest Hamiltonian paths:

To construct a Hamiltonian path, select an arc e from the remaining arcs of the
overlap graph such that
(i) e has the largest weight; and
(ii) e together with the arcs selected earlier forms a subgraph which can be

expanded to a Hamiltonian path from the start node to the end node;
and repeat this until a Hamiltonian path from the start node to the end node has been
constructed.

The above discussion suggests an algorithm for computing an approximate
shortest common superstring whose main steps can be summarized as follows:

A1. Compute the maximal pairwise overlaps between all strings in R;

A2. Form reduced R by removing all strings x which are substrings of some other
string. It turns out that this can be accomplished together with step A1. By
Lemma 1, reducing R does not change the set of the shortest common
superstrings of R;

A3. Using the greedy heuristics, find an approximation to the longest Hamiltonian
path from the start node to the end node in the overlap graph for reduced R.
From the path H found in this way, construct a common superstring p(H) for
R.

In the subsequent three subsections we refine the details of the steps A1 – A3 as
well as analyze their time requirements. The quality of the approximation is
analyzed in Section 3.

2.1. Step A1: Finding maximal pairwise overlaps

The problem to be solved here is, given two strings x and x', to determine the
length k of the maximal overlap between x and x'. If x' is a substring of x then k =
|x'|. Else k = |v| where v is the longest string such that x = uv and x' = vu' for some
u and u'.

This problem can be understood as a generalization of the classical pattern
matching problem where x is the text and x' is the pattern and we ask whether the
pattern occurs in the text. If the pattern does not occur in the text we now also ask
what is the longest suffix of the text which is also a prefix of the pattern.

The classical problem can be solved with Knuth-Morris-Pratt algorithm
(KMP-algorithm) in time O (|x'| + |x|), i.e., linear in the length of the strings

5

involved [5]. Not surprisingly, the KMP-algorithm is immediately seen to solve,
still in linear time, also our generalized problem:

Recall that the KMP-algorithm works in two phases. In the preprocessing
phase the algorithm constructs from the pattern x' a so-called pattern matching
machine. Preprocessing takes time O(|x'|). The pattern matching machine is, in fact,
a finite-state automaton. The automaton has |x'| + 1 states, numbered 0, 1, ..., |x'|.
In the second phase, the automaton scans the text x, spending time O(|x|). The state
transitions proceed during scanning such that the automaton is in state i whenever i
is the largest index such that a1...ai is both a suffix of the scanned portion of x and a
prefix of x' = a1a2...a|x'|. Therefore the automaton enters state |x'| if and only if x
contains an occurrence of x'. It also follows that after scanning the whole x the
automaton is in state i if and only if a1...ai is the longest suffix of x which is also a
prefix of x'. Hence i is the length of the maximal overlap between x and x', which
means that the KMP-algorithm can be used in implementing step A1.

This way the maximal overlaps between any two strings xi and xj in R can be
found in time O(|xi| + |xj|). By constructing the pattern matching machine for each
xi and by scanning with the machine all the remainig strings, all pairwise overlaps
can be found in total time O(mn).

2.2. Step A2: Forming reduced R

This step is naturally implemented by embedding into step A1: Whenever step
A1 finds out that xi is a substring of xj, remove xi from R, and proceed to the next
xi. This does not increase the asymptotic time requirement of step A1.

2.3. Step A3: Finding an approximation to the longest Hamiltonian path

The greedy heuristics for finding an approximate longest Hamiltonian path
runs by repeatedly finding an arc with maximal weight which together with the arcs
selected earlier can be expanded to a Hamiltonian path from the start node to the
end node. Hence it is forbidden to select an arc that is not any more free. An arc (x,
y) is called free if x is not the start node of some arc selected earlier and y is not the
end node of some arc selected earlier and (x, y) together with the arcs selected
earlier does not create an oriented cycle.

In more detail, let H be the set of arcs selected to the Hamiltonian path.
Initially H is empty. We proceed as follows:

1. Sort the arcs according to the weight.
2. Scan the arcs in decreasing order. For each arc (x, y) encountered, if (x,

y) is free then
2.1. add (x, y) to H, and
2.2. mark x to an start node and y to an end node (this makes all

remaining arcs starting from x or ending at y nonfree), and
2.3. in order to find the ends of the path in H that contains the new arc (x,

y), traverse in H the path from y until the end node y' is encountered
and traverse the path from x against the direction of the arcs until the
start node x' is encountered and then mark the arc (y', x') to an cycle-
creating arc.

Step 1 can be efficiently implemented by bucket sort in time O(m2). Using
bucket sort is reasonable since the weights to be sorted are in the limited range 0...
n. Space requirement is O(n +m2).

6

Step 2 requires time O (m2) for scanning the arcs and for testing their
freeness. The markings made in steps 2.2 and 2.3 ensure that the freeness of each
arc can be tested in constant time. Hence the total time for steps 2.1 and 2.2 is
O(m). Each application of step 2.3 takes time O(|H|), hence total time O(m2).

The total time for step A3 is therefore O(m2) = O(mn).
Noting finally that p(H) is easily constructed from H in time O(n), we can

summarize our analysis:

Theorem 4. The algorithm in steps A1 – A3 can be implemented such that its
time requirement is O(mn) where m is the number of strings in R and n is the total
length of the strings.

3. A performance guarantee

Approximation algorithms for NP-complete optimization problems find
solutions which are feasible but not necessarily optimal. The approximation
algorithm of Section 2 constructs a string p(H) which is a superstring for R but not
always shortest possible. The length of p(H) equals n – |H| where n is the total
length of strings in R and |H| is the length of the underlying Hamiltonian path
constructed by our algorithm. Hence |H| is the "compression" in p(H) as compared
to the trivial approximate solution obtained by catenating the original strings.

Path H was constructed by the greedy heuristics for finding maximal
Hamiltonian paths. Finding such paths is closely related to finding maximal
travelling salesman tours. From a result in [4] it follows that the greedy method
satisfies |H| ≥ |Hmax| / 3 where Hmax is the longest possible path. For overlap graphs
we get the stronger result in Theorem 6. First we obtain an important technical
property of overlap graphs.

If two arcs r and s of the overlap graph have a common start node (i.e. a start
string), then we write r←→s. In the same way, r→←s denotes that r and s have a
common end node.

The weight of an arc r is denoted by w(r).
A string x is said to have self-overlap v, if x = vu = u'v for some nonempty

strings v, u, u'.

Lemma 5. (a) If t←→r, t→←s such that w(r) ≤ w(t) and w(s) ≤ w(t) and the
end node of r is not the start node of s, then there is an arc q such that q←→s,
q→←r and w(q) ≥ w(r) + w(s) – w(t).

(b) Let t, r, s be as in (a), but assume that the end node z of r is the start node
of s. Then string z has a self-overlap of length ≥ w(r) + w(s) – w(t).

Proof. (a) The lemma is trivially true when w(r) + w(s) ≤ w(t). Hence assume
w(r) + w(s) > w(t). Let string a1...aw(t) correspond to the arc t. Then aw(t)–
w(r)+1...aw(t) corresponds to r and a1...aw(s) corresponds to s. But then there is an
overlap aw(t)–w(r)+1...aw(s) between the start string of s and the end string of r, that
is, the corresponding arc q has weight ≥ w(r) + w(s) – w(t). The situation is
illustrated in Figure 2, where t = (x, y), r = (x, z), s = (z', y).

7

(b) The situation is as in (a) but now z = z'. Hence z has a self-overlap aw(t)–
w(r)+1...aw(s).

Theorem 6. Let H be the approximate longest Hamiltonian path constructed
by the greedy heuristics for the overlap graph of R, and let Hmax be the longest
Hamiltonian path. Then |H| ≥ |Hmax| / 2.

Proof. Let H consist of arcs t1, t2, ..., tm+1, listed in the order in which the
greedy algorithm selects them. Consider the algorithm at the moment it has selected
ith arc, ti, to H and made the appropriate arcs nonfree. Let Hi = {t1, ..., ti}. Initially
H0 is empty. Moreover, let Ki denote a set of arcs containing all arcs in Hmax that
are still free and some other free arcs whose freeness we will be able to infer using
Lemma 5, as follows:

Initially K 0 = Hmax.
In general,

K i = (Ki–1 \ {r, s, p, ti}) ∪ {q}. (1)
Here r is the arc in Ki–1 such that ti←→r. If K i–1 does not contain such an arc, then
r is missing. Similarily, s is the arc in Ki–1 such that ti→←s. If Ki–1 does not contain
such an arc, then s is missing. Arc p is the arc in Ki–1 which together with the arcs
in Hi forms an oriented cycle. Again, if Ki–1 does not contain such an arc, then p is
missing. Arcs r, s, p are all arcs in Ki–1 which are made nonfree by the selection of
ti. Hence they are removed from Ki–1 to get Ki. Of course, ti has to be removed
since it is added to Hi–1 to get Hi. Arc q is inferred by Lemma 5, as will be
explained in a moment.

At this stage it is easy to understand the lower bound of Jenkyns [4]. Each
greedy selection eliminates at most three correct arcs and the selected arc has at
least as large weight as the eliminated ones. For example, if Hmax contains arcs (x1,
x2), (x2, x3) and (x3, x4) and the algorithm selects arc (x3, x2), then all three
correct arcs are lost. This means, a path with at least one third of the maximal total
weight can be found.

To obtain a better lower bound for the overlap graphs we apply Lemma 5.
Whenever r and s exist in (1) and the end node z of r differs from the start node z'
of s then by Lemma 5 (a), there must be an arc q = (z', z) such that

w(ti) + w(q) ≥ w(r) + w(s) (2)
Moreover, if q is still free (it is not free only if it forms a cycle with the arcs in Hi),
it is added to Ki in (1). Otherwise q is missing in (1).

It turns out, that arcs q compensate one of the eliminated arcs r, s, p such that
on the average, the weight of only two arcs is lost. Unfortunately, the proof will be

8

rather complicated. The difficulty is that whenever q is nonfree a greedy step really
can eliminate three arcs. However, this is possible only if the loss in some earlier
step was essentially smaller.

By induction it is easy to show that no two arcs in Hi ∪ Ki start at the same
node or end at the same node. Let Gi denote the subgraph with arcs Hi ∪ Ki. Then
the following is true for i = 0, ..., m + 1:

G1. Subgraph Gi consists of disjoint directed paths and cycles.

A cycle cannot contain arcs only from Hi since Hi must be extendible to a
Hamiltonian path. Also a cycle with only one arc p from Ki is impossible since such
a p cannot be free. Therefore:

G2. Each cycle in Gi contains at least two arcs from Ki.

Let denote by ci the number of cycles in Gi . Now we claim that
2 . |Hi| + |Ki| – ci . w(ti) ≥ |Hmax|. (3)

The proof is by induction on i.
Let first i = 0. Since K0 = Hmax, H0 is empty and c0 = 0, claim (3) is true.
Assume then that (3) holds for i – 1 and consider i, i > 0. Depending on how

t = ti = (x, y) is selected we have the following cases.
Case 1. Nodes x and y belong to the same directed path of Gi–1, x is before y,

arc q exists in (1).
The situation is depicted in the following figure, where the diagram before the

arrow represents graph Gi–1 ∪ {t} and after the arrow graph Gi. Bold edges denote
directed (possible empty) paths, thin edges single arcs.

Obviously, ci = ci–1 + 1 and Ki = (Ki–1 \ {r, s}) ∪ {q}. Recalling (2) and noting that
w(t) ≤ w(ti–1), we can estimate the left hand side of (3):

2 . |Hi| + |Ki| – ci . w(t)
= 2 . |Hi–1| + 2 . w(t) + |Ki–1| + w(q) – w(r) – w(s) – ci–1 . w(t) – w(t)
≥ 2 . |Hi–1| + |Ki–1| – ci–1 . w(t)
≥ 2 . |Hi–1| + |Ki–1| – ci–1 . w(ti–1)

which is ≥ |Hmax| by induction hypotesis.
Case 2. Same as Case 1 but q missing in (1).
Arc q can be missing for two different reasons. First, there is no r or s

different from t. Then actually t = r = s, and t must be in Ki–1. Since now ci = ci–1,
we obtain:

2 . |Hi| + |Ki| – ci . w(t)
= 2 . |Hi–1| + 2 . w(t) + |Ki–1| – w(t) – ci–1 . w(t)
≥ 2 . |Hi–1| + |Ki–1| – ci–1 . w(ti–1)
≥ |Hmax|,

as required.
The second possibility is that although r and s exist and are different, arc q is

not free any more. Again ci = ci–1. Since w(t) ≥ w(r) and w(t) ≥ w(s), we get:

9

2 . |Hi| + |Ki| – ci . w(t)
= 2 . |Hi–1| + 2 . w(t) + |Ki–1| – w(r) – w(s) – ci–1 . w(t)
≥ 2 . |Hi–1| + |Ki–1| – ci–1 . w(ti–1)
≥ |Hmax|.

Case 3. Nodes x and y belong to the same directed path of Gi–1, y is before x,
t creates a cycle.

The situation is as follows:

Now ci = ci–1 + 1. It can be shown, exactly as in Case 1, that (3) is true.
It is also possible that s and the path leading to s or r and the path after r is

missing, in which case q is missing, too. For example, if s is missing, we get
2 . |Hi| + |Ki| – ci . w(t)

= 2 . |Hi–1| + 2 . w(t) + |Ki–1| – w(r) – ci–1 . w(t) – w(t)
≥ 2 . |Hi–1| + |Ki–1| – ci–1 . w(ti–1)
≥ |Hmax|.

The other cases are similar.
Case 4. Same as Case 3 but t does not create a cycle.
The situation is as follows:

Then ci = ci–1 and Ki= (Ki–1 \ {r, s, p}) ∪ {q}. Using (2) we obtain
2 . |Hi| + |Ki| – ci . w(t)

= 2 . |Hi–1| + 2 . w(t) + |Ki–1| + w(q) – w(r) – w(s) – w(p) – ci–1 . w(t)
≥ 2 . |Hi–1| + |Ki–1| – ci–1 . w(t)
≥ |Hmax|.

Again s or r can be missing in which case also q is missing. The above estimates are
easily adapted to these cases.

Case 5. Nodes x and y are on the same cycle of Gi–1. Arc t belongs to a cycle
in Gi.

If q exists in (1), the situation is as follows:

10

Then ci = ci–1 + 1 and Ki= (Ki–1 \ {r, s}) ∪ {q} and (3) is shown exactly as in Case
1.

If q does not exist, the proof proceeds as in Case 2.
Case 6. Same as Case 5, but t does not belong to a cycle in Gi.
Then the original cycle in Gi–1 disappears since arc p becomes non-free.

Pictorially, when q exists:

Obviously ci = ci–1 and Ki = (Ki–1 \ {r, s, p}) ∪ {q}, and (3) is shown exactly as in
Case 4.

When q is missing, a new type of situation arises since then ci = ci–1 –1. If q is
missing because t = r = s (and hence t is in Ki–1), we get:

2 . |Hi| + |Ki| – ci . w(t)
= 2 . |Hi–1| + 2 . w(t) + |Ki–1| – w(t) – w(p) – ci–1 . w(t) + w(t)
≥ 2 . |Hi–1| + |Ki–1| – ci–1 . w(ti–1)
≥ |Hmax|.

If q is missing because it is not free although r and s exist and are different,
then we obtain:

2 . |Hi| + |Ki| – ci . w(t)
= 2 . |Hi–1| + 2 . w(t) + |Ki–1| – w(r) – w(s) – w(p) – ci–1 . w(t) + w(t)
≥ 2 . |Hi–1| + |Ki–1| – ci–1 . w(ti–1)
≥ |Hmax|.

Case 7. Nodes x and y are in different components of Gi–1.
Assume first that x and y belong to different paths. Then the situation is as

follows:

Obviously, ci = ci–1 and Ki = (Ki–1 \ {r, s}) ∪ {q}. The proof of (3) is as in Case 4
but now p is missing. The proof is easily further adapted to the cases where r or s
and hence q are missing.

If x and y belong to different cycles, the situation is as follows:

11

Since both original cycles contain at least two arcs from Ki–1 (property G2), q is
always free and therefore Ki = (Ki–1 \ {r, s}) ∪ {q}. Now ci = ci–1 – 1. The proof
of (3) is as in the last part of Case 6 but without arc p. The proof is easily adapted
to the cases where either of the original cycles is a path.

Since Cases 1 – 7 cover all possible situations, we have proven the inductive
step.

To complete the proof of the theorem, consider the final stage where the
algorithm has built a Hamiltonian path Hm+1 = H from x0 to xm+1. Properties G1
and G2 imply that Km+1 must be empty and cm+1 = 0. Then (3) gives 2 . |H| ≥
|Hmax|, as required.

The next example shows that the result of Theorem 6 is best possible.

Example 7. Let R = {abh, bhb, bha}. Then the shortest common superstring
is abhba while the greedy heuristics may produce superstring abhabhb. Maximal
compression |Hmax| is 2h while the greedy method may give |H| = h. Note that also
the greedy method can yield the shortest common superstring depending on which
one of the arcs with equal weights is selected first.

Another natural question on the performance is how much longer can the
approximate superstring be than the shortest one? The worst example we have
found is as in Example 7 where the shortest string is of length h + 3 and the
approximate string is of length 2h + 3, which is less than twice the shortest length.
This also shows that the claim in [2] that the length k of the approximate string is
always at most 3/2 times the shortest length kmin cannot be true.

Suggested by our example we conjecture that always k ≤ 2 . kmin. Theorem 6
implies that the conjecture is true for all sets R for which |Hmax| ≤ 2n / 3. For
other sets the conjecture remains open.

On the other hand, let us make the relatively strong restsriction on R that the
overlap graph contains no cycles consisting only of arcs with weights > 0 and that
no string in R has a non-empty self-overlap. For such R the greedy algorithm
works accurately and produces a shortest common superstring. The proof is similar
to the proof of Theorem 6. Instead of (3), one should prove inequality

|Hi| + |Ki| ≥ |Hmax|.

4. Experiments and modifications

We have carried out some experiments with the greedy algorithm. On the
average, the superstring obtained was only one percent longer than a shortest
superstring. In the worst observed case, the length increase was about 15 percent.
The length of our random test strings, which were mainly in the binary alphabet,

12

varied from 4 to 100. The algorithm worked, of course, better with longer strings,
because the maximal overlaps among them are relatively shorter.

A problem with the greedy algorithm is that it may do selections that forbid
later use of good overlaps. Therefore we have experimented with some additional
heuristics, which try to eliminate such selections. The following one seems the most
promising. The basis is the same as in the greedy algorithm, but the weights of arcs
are computed differently. The weights are updated after every selection, and if
there are several arcs having the same maximal new weight, the selection among
them is based on the original weights. After each selection the new weight W(t) for
each arc t = (x, y) is computed as

W(t) = k . w(x, y)
– max {w(x, y') | (x, y') is free, y ≠ y'}
– max {w(x', y) | (x', y) is free, x' ≠ x}

Here w(u,v) denotes, as before, the length of the overlap between u and v.
The idea is to take in the consideration also the arcs which would become

non-free if t is selected next. Parameter k can be used to tune the method. In our
experiments the best results were obtained with parameter values from 2 to 2.5.
Then the error of the modified algorithm was on the average about 1/5 of that of the
original algorithm.

Building shortest common superstrings can be understood as a data
compression problem. This suggests that our algorithm can also be modified to
compress sparse matrices [1, 8], such as parser tables. In such matrices only a few
entries store significant values. Assume that R consists of the rows (or the columns)
of such a matrix. Then the rows can be overlapped such that identical significant
entries overlap or a significant and an insignificant entry overlap. Unfortunately,
the Knuth-Morris-Pratt algorithm cannot be used to compute such overlaps. A
slower method has to be used. Moreover, the overlap structure is not static: using
an overlap may make adjacent maximal overlaps shorter. The necessary
modifications to our algorithm should be quite obvious after which the method
produces a superstring for R, that is, a compressed matrix.

5. Concluding remarks

We have shown that the greedy algorithm for shortest common superstrings
has a performance ratio ≥ 1/2 when the amount of compression is the performance
measure.

There is a dual view on the problem. Instead of maximal Hamiltonian paths in
the overlap graph, one could base the algorithm on finding minimal Hamiltonian
paths in "non-overlap" graphs. In such a graph, arc (x, y) has weight

|x| – w(x, y).
The dual heuristics is to successively select the smallest of the remaining free

arcs until a Hamiltonian path is constructed. The following example (due to P.
Orponen) shows, however, that this method can behave essentially worse that the
original algorithm. Let R contain strings

a0a1 a1tn
a1a2 a2a1tn–1
 . .
 . .
 . .
an–1an anan–1...a1t

Then the shortest common superstring is

13

a0a1...an–1anan–1...a1tn
The length is 3n. This string is also formed by the original approximation method.
The dual method can produce string

a0a1tna1a2a1tn–1...an–1anan–1a1t
with length n (n + 2) and compression n. The perfomance ratio is (n + 2) / 3 for the
length and 1 / n for the compression .

Acknowledgement. The authors are indebted to one of the referees for the
suggestion to use bucket sort.

References

1. P. Dencker, K. Dürre and J. Heuft: Optimization of parser tables for portable
compilers. ACM TOPLAS 6 (Oct. 1984), 546–572.

2. J. K. Gallant: String compression algorithms. Ph.D. Thesis, Princeton
University, 1982.

3. M. R. Garey and D. S. Johnson: Computers and Intractability. W. H. Freeman,
1979.

4. T. A. Jenkyns: The greedy travelling salesman's problem. Networks 9 (1979),
363–373.

5. D. Knuth, J. Morris and V. Pratt: Fast pattern matching in strings. SIAM J.
Comput. 6 (1977), 323–350.

6. D. Maier and J. A. Storer: A note on complexity of the superstring problem.
TR–233, Princeton University, Dept. EECS, 1977.

7. H. Peltola, H. Söderlund, J. Tarhio and E. Ukkonen: Algorithms for some string
matching problems arising in molecular genetics. Information Processing 83
(Proceedings of the IFIP Congress 83), pp. 53–64. North-Holland, 1983.

8. R. E. Tarjan and A. C. Yao: Storing a sparse table. Comm. ACM 22 (Nov.
1979), 606–611.

