
Filtration with g-Samples
in Approximate String Matching*

Erkki Sutinen and Jorma Tarhio

Department of Computer Science
P.O. Box 26 (Teollisuuskatu 23)

FIN-00014 University of Helsinki, Finland

E-mail: {sutinen, tarhio}@cs.Helsinki. FI

Abstract. Two filtration schemes are presented for approximate string

matching with ,k diflerences. In our approach g-samples, which are non-
overlapping g-grams, are drawn from the text, and a text area is checked
with dynamic programming, if there are enough exact or slightly distor-

ted q-grams of the pattern in the right order in a short sequence of the

q-samples. The filtration schemes are applied to searching both in the

text itseH and in a q-gram index of the text. The results of preliminary

experiments support the applicability of the new methods.

Introduction

Efficient solutions for approximate string matching are necessary in many applic-

ation areas, such as molecular biology, text databases, and data communications.

The current CD-ROM and World-Wide Web technologies need also smart al-

gorithms with applicable indexes.
The searched pattern often occurs in the data in a slightly transformed or

even corrupted form. Therefore, the search task should be defined in terms
of approrimate string matching. Suppose that tett T - TLl...n] and pattern

P = PlI...m] are in alphabet X of size c. Given integer &, the maximum toler-

ated number of errors, the task ofthe & differences problem is to find (the end

points of) the approximate occurrences of pattern P in text ?' We call P/ an

approrimate occurrence of P, if edit distance d(P, Pt) is at most k, that is, P

can be transformed to P/ with at most & edit operations which are insertions,
deletions, and changes. The reduced form, where only changes are allowed as

edit operations, is called the k mismatches problem.

A natural solution for the approximate string matching problem is a modi-

fication of dynamic programming. However, since the time complexity of this

solution is O(en) [11, 19] and n is typically very large, more efficient approaches
are desirable. There are two directions to proceed. One can construct an index

of the text [6, 10, 12, 17].In this form of the problem, called lhe static one, it is

assumed that the text does not change between consecutive searches. The index

is used to locate the text areas containing potential approximate matches, and

* The work was supported by the Academy of Finland.

thus it is not necessary to process the whole text with time consuming dynamic
programming.

The technique of locating potential occurrences is called fiItration. Besides

the static problem, one can apply filtration also to the dynamic problem, where

the text is not preprocessed. Most filtration methods [4, 5, 13, 16, 18] presented

in the literature are designed for the dynamic case. Every filtration method (dy-

namic or static) is based on finding a necessary condition [8, 15, 18,22] for an

approximate occurrence of the pattern in the text. A crucial property, determ-

ining the applicability of a given filtration method A, is its filtration efficiency

fd = T, where no denotes the total width of the text area processed by

dynamic programming.

By strengthening filtration conditions, it is possible to increase the filtration

efficiency. The point lies, however, elsewhere. One must find an efficient filtration
method with as little overhead as possible. An essential question with the static

methods is the size of the index. It can be validated only experimentally whether

a filtration approach is a practically useful compromise between the opposite

requirements. Furthermore, a certain filtration method is usually applicable only

for limited ranges of values of problem parameters lc, rn, c, and n [9].
Takaoka [15] introduces a sublinearl filtration technique, based on sampling,

for the dynamic problem. In his method every hth g-gram of the text is drawn as

a sample (a q-gram is a continuous substring of length q). If a sample appears in

the pattern, a neighborhood of the sample is verified with dynamic programming.

We present in [14] a more advanced technique, where it is demanded that at least

s of the q-grams of the pattern must appear as samples in a potential occurrence

and these q-grams preserve their mutual order in the text. In a way, this is a

reduction to the & mismatches problem.

Chang and Marr [5] present an optimal sublinear expected time algorithm for

the dynamic problem. They divide the text into regions of size (m- k)12 and

consider non-overlapping subsequent g-grams of each region. When the cumulat-

ive sum of the errors between each g-gram and its best approximate match in P

exceeds &, one can skip to the next region.

We will present two new algorithms: a static and a dynamic one. Our mo-

tivation is to develop practical methods with a competitive filtration efficiency.

The static algorithm given in Section 2 is a modification of our earlier dynamic

algorithm [1a]. The dynamic algorithm introduced in section 3 is a cross of the

Chang-Marr algorithm [5] and our algorithm [1a].
Since general indexing methods [20] are based on words, they can hardly

handle even simple errors. Therefore, a q-gram based index is a natural choice

for approximate string matching. Jokinen and Ukkonen [10] were the first to

present an indexing scheme based on g-grams for approximate searches. Holsti

t e ,tri"g r"-"tching algorithm is commonly called sublinear when it does not inspect all
characters of the text on the average, even if its average time complexity were linear.
There are two types of sublinearity of this kind: the constant of the time complexity
depends either only on the problem parameters (e'g' the Boyer-Moore approach in
exact string matching [3]) or also on some parameters of the algorithm.

and Sutinen [7] make use of the locations of the g-grams in a different way from
our approach and slightly improve the searching time of the Jokinen-Ukkonen
algorithm. Both of these approaches [7, 10] use the same indexing scheme. The
problem of this scheme is the large size of the index. Our method produces con-
siderably smaller indexes than the two preceding approaches without sacrificing
the speed of search.

The results of preliminary experiments in Section 4 support the applicability
of the new methods. For example, our static approach consumes only 4-l7$To
of the space used by the earlier g-gram based methods, when c = 40,7n - 40,
/ c = 0 , . . . , 4 , a n d n = 5 0 0 , 0 0 0 .

We also performed experiments on dynamic algorithms. An essential factor

for the applicability of a filtration method is the largest relative error level for
which the method still filtrates effrciently. Preliminary experiments reviewed show

that for an alphabet of size 20, the introduced dynamic algorithm is efficient for
error levels up to over 30%, which is better than with related methods.

Indexing with Exact g-Grams

We present a new static algorithm based on the locations of the q-grams of the
pattern. The algorithm has been developed from our earlier dynamic algorithm

[14] which is called the LEQ algorithm in the following. The abbreviation LEQ
stands for the locations of exact g-grams. We start with an overview of the LEQ
algorithm.

2.I The LEQ Algorithm

In the LEQ algorithm the fr differences problem is reduced to the & mismatches
problem, which can be solved efficiently applying the shift-add technique [2].

In the text, every hth g-gram is examined as a sample, h 2 q. These samples
are called q-samples. Distance

(1)

between the endpoints of two subsequent g-samples is the sarnpling step. Let

dt,...,dyn1n1 be the q-samples of the text. It is required that at least s of /c + s
consecutive q-samples occur in the original pattern; furthermore, they must occur

approximately at correct locations in an approximate occurrence of the pattern.

A sequence of &+s consecutive g-samples is called a test sequence and r = k * s

is called the sample size.
An approximate location of a g-gram in the pattern is determined by selecting

r fixed blocks Qr,...,Q, from the pattern using sampling step h, yielding Q;
-

Pl(i - 1)h + 1 . .. ih + k + c - rl.
The fi l tration condition is formulated as follows.Let Pt = TLi... j] be an

approximate occurrence of P, i.e. d(P, P') (&, and let da+r be the leftmost
g-sample of P'. Then there is integer l, 0 (t < k f 1, and test sequence

, , f f i - k - q * 1 ,
n = l--__:- l' & + s

do+t+r , . . . ,du+*+r+6 inc luded by P'such that da+;+t € 8 i holds for at least

s of the samples.
The shift-add technique [2] is applied in the searching phase to maintain

the number of matching q-samples. The pattern is preprocessed to construct the

block profile of each q-gram needed by lhe shift-add routine. The average time

complexity of the LEQ algorithm is O(ffi), where tu is the word size.

2.2 Static Variation

The preprocessing phase creates an index (either using hashing or as a trie)

containing all the q-samples of text ?. For each g-gram u of the index, ordered

list I(u) contains all the end points of the occurrences of u as g-samples in text

T.
The filtration phase searches for the potential approximate matches of pattern

p. First, a block profile for each q-gram of P is computed in a similar way

as in the LEQ algorithm. To find out the potential approximate matches, the

algorithm searches for the occurrences of each g-gram of the pattern among the

g-samples. Using the location information, the potential occurrences in text T

can be identified as follows:

Counter M is maintained for each q-sample. Let g-gram up of P be among

the q-samples of ? and Iet up end at position j = ihfor some i' Counter Mli -

b + 1] is incremented for each block Q6 of P such that Q6 contains up. After

the filtration phase, the algorithm checks with dynamic programming all the text

areas satisfying M[i]) s, where s has the maximal value, allowed by formula

(1). See an example in Fig. 1.
There are two major distinctions between the LEQ algorithm and its static

counterpart. First, while the dynamic method can freely choose the value of s

and evaluate h according to it, the static algorithm must adapt itself to an index,

based on a fixed value of h. Second, only the dynamic method utilizes the shift-

add technique.
In the case of very few potential occurrences, the basic approach wastes time

while checking all the counters (because most of them are zero). To speed up

the scanning of the counters, one could follow list .L(up) of each g-gram up in a
"parallel" way, i.e. one would always get the relevant g-gram occurrences among

the q-samples. This leads to a variation which stores only the non-zero counters.

The decision, whether to apply the described heuristic (with the overhead of

the bookkeeping of q-gram lists) or not, can be based on the number of occur-

rences of the g-grams of P among the q-samples.

2.3 Filtration Conditions

The filtration scheme of our method is based on Theorem 2 in [14], stating a

necessary condition for an approximate occurrence of pattern P in text ?.

Let us assume that text ? has been indexed according to sampling step h. It

turns out that the filtration phase can utilize this index by adjusting s as long as

s) 1 :

t
(i+c-b)h

Fig. 1. Applying the LEQ approach to static tests. Let us assume that q-grarn up occurs
in two blocks Qa and Q". The occurrences of up at tert positions ih and (i + c - b)h
result in M[i - b * l] - 2, indicating a potential occurrence for s = 2.

TheoremL. Let P' be a substring of T such that d(P,P') < k. Let h be the

sampling step. Then at least s of the q-samples in P' occur in P, where

, m - k - g + 1 , ,
r = L -

h
l - d .

The formula for s means that it is not necessary to create a different index

for each (ra, fr) pair. That is, the algorithm adjusts s according to the values of

h, ffi, g, and ,t to make filtration as efficient as possible.

Since the static algorithm is based on the same filtration scheme as its dy-

namic counterpart, also the filtration efficiency remains the same. Therefore, the

following holds for filtration efficiency / of static algorithm for s) 2 (Theorem

a in [1a]):
m * 2 k 2 4 3 f t . , r 1 2

J z \L
- ----------;----

l
kcq

2.4 Algorithm

In the preprocessing phase a hash table is created for the g-samples of text 7.

Optionally, one could also use a trie, but this approach is slower than hashing in
practice.

The search algorithm, like many algorithms for the dynamic problem, consists

of two phases: filtration and checking. The filtration phase filters potential oc-

currences, which are verified using dynamic programming in the checking phase.

The filtration phase goes through all the g-grams of the pattern and counts the
block matches at each g-sample.

The filtration phase is presented below as Algorithm SLEQ (static LEQ).
The algorithm scans the occurrences of q-grams of the pattern among the q-

samples. For each found q-gram occurrence, the algorithm updates the respective
counters, by utilizing the q-gram location information, produced in the pattern
preprocessing phase.

Algorithm SLEQ.

1. s := [$1111 - /c;
2. preprocess pattern P;
3. for each different pattern g-gram up
4. QTIST := L(up);
5. while QLIST I NUtt
6. i : - QLIST.pos;
7 . f o r b : = 1 t o l c + s
8 . i f u p € Q 6 t h e n M l i - D + 1 l : - M l i - 6 + 1 l + 1 ;
9. QLIST:- QLIST.next
10. end
11. end

The dynamic programming phase checks each potential occurrence of the
pattern, indicated by Mlil) s (see Theorem 3 in [1a]):

1. for i := | to lnlh)
2. if Mlil) s then
3. j := ih ;
4 . D P (P , T U - n - 2 k - q + 2 . . . j * m + k - q l) ;
5. end

Procedure DP searches for approximate matches in text region Tlfu . . .iz).
This procedure evaluates edit distance matr ix d[0. , .m,0.. . (iz - h * 1)] using
dynamic programming, with initial values d[i, j] = 0 for i = 0 and dli, jl= i fot

.? = 0 and with the recurrence

1l then 0 else 1)

There is a match ending at position j if and only if d(m, j) < k.

A drawback of the approach described above is that it scans through all the

elements of array M. Especially for small error levels, only few of the elements

are non-zero. A more efficient solution is to use a heap for merging the lists of

all the q-grams of the pattern. With this combined list, it is easy to evaluate the

counters only in the text regions containing g-grams of the pattern.

(av. - l,i - 11 + (if P[4 = Tur r i -
d[i , j) = min { d[i - 1, i] + 1

I d l i , j - 1] + 1 .

2.5 Analys is

Let us consider the time complexities of both the preprocessing and filtration
phase in the i.i.d. model, in which the characters in both the text and the patterns
are independently and identically distributed. The proofs are skipped.

Theorem2. Algorithm SLEQ has the following characteristics:
a) The preprocessing phase works in time O(ff) on the auerage.
b) The size of the index is O(ft log 3).
c) The erpected length of a q-gram list L(u) is O(fu).

d) The auerage time complerity of the fi l tration phase is O(ry).

The time complexity of the dynamic programming phase follows from the
same formula evaluated for the LEQ algorithm in [14], with one exception: it has
to scan all the entries of array M, i.e., fn/hj entries.

Finally, we give the time complexity of merging the g-gram lists. The result
suggests that the method is useful especially for finding a pattern with few com-
mon q-grams with the text. To test this condition, the index must contain the
number of occurrences for each g-qram in the text.

Theorem 3. The auerage time complecity of merging the q-gram lists using heap
is O(ffi logra).

3 Dynamic Filtration with Approximate g-Grams

In this section, we combine the LEQ algorithm with the filtration scheme presen-

ted by Chang and Marr [5]. We start with introducing the Chang-Marr algorithm
(CM for short).

3.1 The CM Algorithm

The asm distance asm(u,B), introduced by Chang and Marr, denotes the edit
distance between g-gram u and its best match in string B. Chang and Marr use
the asm distance in their optimal sublinear expected time algorithm to find the
approximate matches of pattern P in text ?. Text ? is divided into consecutive
regions of size (m- k)12 in the CM algorithm just like in the earlier sublinear
algorithm by Chang and Lawler [4]. Since any approximate occurrence of P cov-
ers completely at least one region, Chang and Marr scan the non-overlapping,
consecutive g-grams from the beginning of each region until the cumulative asm

distance exceeds fr or the region ends. If the text area covered by the correspond-
ing g-grams reaches the following region, the algorithm checks the corresponding
area by dynamic programming, and otherwise the algorithm skips over to the
beginning of the next region.

More formally, let us assume that Tlj . . .l'] it the text region to be inspected
and d;, dt+t,... are the consecutive non-overlapping g-grams starting from 7[3].

Let p be the smallest index such that ! ' , l f- l asm(di,P) > k. The algorithm

checks the corresponding text area by
d;+p- t ends at tex l posi t ion l , l > i ' .

The average time complexity of the
O((n lm)(k * log" rn)) .

dynamic programming only if q-gram

filtration phase of the CM algorithm is

3.2 Applying the asm Distance with Locations of g-Grams

Intuitively, the filtration condition of the CM algorithm means that any approx-

imate occurrence of P must contain subsequent q-grams with the total error of &

or less. This is the point where it is possible to enhance the method by introducing

an additional condition: the subsequent g-grams of an approximate occurrence

must be in the same order as their error-free counterparts in the pattern. Instead

of computing the asm distance between a given q-gram and the pattern, we com-
pute the asm distance between the q-gram and each block of the pattern (see

Fig.2). We call this approach LAQ for the locations of approximateg-grams.

di*.-t

-
q

h

Fig.2. Idea of the LAQ Algorithm. In order to decide whether test se-

quence d ; ,d ;+r , . . . ,d i+" - r i s a par t o f a po ten t ia l approdmate occunence, su f i t

l l -rasm(d;axa,Qj) is eaaluated. I f the surn is at rnost k, the potential match is

ueiifed by dynamic programming.

In the LAQ approach it is not required that the q-samples are consecutive, but

the algorithm inspects every hth g-gram, where h) q. Moreover, since LAQ is

more sampling-oriented than region-oriented, the sum of errors of a fixed number

of q-samples is considered instead of cumulative error in a text region.

Let Pt be an approximate occurrence of P. Since we base our filtration on

the q-grams of P occurring in the approximate match, it is required that there

is a test sequence of r g-samples within P' such that the sum of errors of that

test sequence is at most k. Since an approximate occurrence can be as narrow

as m -k including m - k- q + 1 g-grams, we will get the following lower and

upper bound for the sampling step h (see also Theorem 1of [1a]):

q 1 h 1 h ^ o , = L * - k : o + t t .

By choosing the minimum value for h, i.e., h - q, we get the following bound

for sample size r:

, m - k - q + I ,, = L----n-)'
because ofthe condition rh I m-k-C* l. Therefore, our method does not

reduce to the CM algorithm with h = g, since Chang and Marr do not]use a fited
value for r. However, the following bound holds for the number of q-grams r in

the CM algorithm:

- (m - k) r / 2 -" s l q I .

Note that an efficient application of the presented filtration scheme requires

choosing appropriate values for the parameters. The shift-add technique [2] is

applied to maintain the cumulative sums of errors. The maximal value of each

cumulative sum is k + q.As a result, a word of size to bits contains at most

wl(log(fr + q) f 1) sums.

There are two possibilities to compute asm distances. One way is to prepro-

cess the distances for every g-gram and for every block of the pattern. Another

way is to compute the distances on demand and to store the computed values.

Algorithm LAQ.
1. preprocess P;
2. for f := 1 to r do Ml i] := 0;

3 . f o r j : = h t o n s t e p h d o
4. begin
5 . d : = T l j - q * 1 . . . r 1 ;
6. Shift-add(M , asmld, *));
7. it M[rl (& then
8 . D P (P , r l j - r h - 2 k - q + 2 . . . i * m - (r - l) h + e - q l) ;
9. end

For the range of the dynamic programming area' see Theorem 3 in [14].
It is straight-forward to estimate the average behavior of the algorithm:

Theorem 4 . The auerage time complerity of the fiItration phase of Algorithm LAQ

is O@ryfl4), where w denotes the word size.

Prool. Since h < (* - k - q +I)lr, we can bound sample size r:

m - k - q] - l m n ' t '
' S - n S n S o '

because h >_ q.

The time used for the filtration (lines 3-6 of Algorithm tAQ) is propor-

tional to the product of the number of g-samples and the time for one shift-add

operationz. We get the following bound for the average time complexity of the

filtration phase:
n

E
log q)r - _log (f + e)rn

_ , " - _ - _ - l -

w q2w
tr

Remark. The algorithm runs in sublinear time if g(q) - q2w-mlog (fr + q) > 0.

To get a rough impression of the algorithm's behavior, let us consider two cases:

Let us assume that g (&. Now log(&*q) < Iog2k holds and the condition

is reduced to J*(Tl"gilir S c S &. Otherwise, q > k holds. Because 1 *

log g (q is satisfied for q 2 1, the value of g should be at least max (& I I, m I w).

Because of the requirement Q I h, the value of g cannot be arbitrarily large.

Note that function g is only an estimate, and thus our sublinearity condition is

pessimistic for a large range of problem parameters.

Variation. Instead of the sampling scheme adopted by the LAQ algorithm, we

could apply the region approach of the CM algorithm and compute asm distances

based on the blocks of the pattern. See Fig. 3.

I
2
J

2 > k
3 4 > k
4 > k

(m-k\12

Fig.3. Idea of an alternatiae approach. The q-grams of a teil region are first cornpared

to pattern blocks 1 and 2, resulting in cumulatiae sum of errors which is greater than k.

Sirnilarly, the other comparisons produce cumulatiue sums exceeding k before reaching

the nest tert region. The rest of the region is skipped.

3.3 Related Methods

Besides the CM algorithm, the LAQ approach is related with the Four Russi-

ans' technique (4R for short) which is a divide-and-conquer method originally

designed for bit matrix multiplication [1]. In approximate string matching, the

2 For simplicity, we omit term 1 from the sum log (,b * q) + I'

4R technique has been successfully applied by Wu [21], speeding up the O(3)
pattern preprocessing phase of Ukkonen's dynamic algorithm [19] (with an even-

tual slow-down in the scanning phase) and giving a somewhat more balanced

compromise between the time consumption of the pattern preprocessing phase

and the scanning phase. As 4R, the LAQ approach tabulates the subsolutions as

the asm-distances and use these values by table lookup, applying the encoded g-

samples. Unlike in 4R, we do not use all the substrings but have holes in between.

In fact, our approach (as well as the CM method) can be seen as an approximation

of dynamic programming, or a relaxed counterpart of the 4R technique.

The LAQ appraoch is also related to the static method of Myers [12].In a way'

Myers' approach resembles that of 4R, by reducing the computation into smaller

subcases. Therefore, Myers can solve the problem by generating g-neighborhoods

and the preprocessed index contains the occurrences of these g-grams. Since the

complexity of generating the q-neighborhoods increases exponentially with g, the

reduction of finding k-approximate matches into finding q-approximate matches,

where g (k, is substantial for his method.

4 Experimental Results

Algorithm SLEQ. Our experiments show that the filtration efficiency of Al-

gorithm SLEQ (Section 2) is similar to that of earlier g-gram based solutions

[7, 10]. Let us consider an example of searching for a pattern of size m -- 40'"Ihe

text and the patterns were generated according to the i.i.d. model in an alphabet

of 40 characters. If the relative enor kf m remains less than 20Vo, ptactically no

extra columns are evaluated, i.e., the dynamic programming checks only the text

area with a real match.
Measured by the space consumption, our method shows clear benefit when

compared with the earlier methods. Considering the same example as above, with

text ? of size 500,000, the difference is clear for small relative errors' which give

relatively large values for h and g.

Let us consider the space consumption, when & = 0. This gives h - 19, if

9 = 3. Out of the possible 403 = 64, 000 3-grams, the 4tf,g = 26, 315 3-samples

contain 21,572 different ones.
The main benefit is. however. the reduced number of location nodes: When

ordinary g-gram methods store the locations of all the 500,000 3-grams, requiring

a space of 500,0001og500,000 = 9,500,000 bits, our approach is satisfied with

26,3151o926, 315 = 390,000 bits. Table 1 l ists the space saving factor o" for

different /c, where o" is defined as the space requirement ratio between our method

and the standard approach, i.e.

frloefru, = i6'
The results show that our method saves space for relative error 0-30%.

In the formula for u" it is assumed that no index compression technique is

applied and the space consumption of an index of d entries within n' possible

locations is hence dlognt. Using advanced compression schemes [20] one can

decrease the factor logn/ substantially with a small time overhead. The formula

for u" gives thus a somewhat optimistic prediction for the space saving of the

SLEQ method.

Table 1. Space saaing factor u, lor c = 40, m : 40, and n : 500,000.

U r

0
I
2
3
4

.041

.068

.093
0.L22
0.175
0.224

305
474

1.000

Algorithms LEQ and LAQ. We compared the filtration efficiency of the LAQ

algorithm with that of earlier algorithms. The text and the patterns were gener-

ated according to the i.i.d. model. Table 2 shows the results for an alphabet of

size c = 20. Algorithm ABM is approximate Boyer-Moore [16], T is Takaoka's

algorithm [15]. The text is 100,000 characters long, pattern length m is 40, and

error level & var iesf rom0 to 14, i .e . , f rom0% to35% (where the re lat iveerror is

defined as klm). We have counted the number of columns (i.e. the total width of

the area) processed in the dynamic programming phase to evaluate the filtration

efficiency of the algorithms.
The parameters of the LEQ algorithm are determined in a slightly different

way from [14] : we first compute the maximal h and then adjust s according

to the value of h like in our static method. The experiments show that this

choice improves the efficiency. Takaoka's algorithm loses its filtration power at

relative error level 22.5To. Algorithm ABM is placed in the middle of LEQ and

T, measured by the maximum tolerated error level. LEQ is efficient tp to 27.5V0

relative error level.
While the LAQ algorithm marks 3To of the columns for relative error level

27.5To, three times more than LEQ, it does not, however, lose its filtration powel

as sharply as LEQ does. This is its major advantage over LEQ, making LAQ

efficient for relative error levels up to over 30%. The benefit of using the location

information, provided by the pattern blocks, is reflected by the gain of LAQ over

CM.

Table 2. Percentage o! processed columns lor c - 20, n : 100,000, and m : 4O' In

the CM algorithm, e: 5 giaes the best fltration, while LAQ gets the optirnal filtration

f o r r
- 3 , w h i c h g i a e s q : 7 f o r k : 0 ' . . 1 3 a n d q : 6 f o r f t = 1 4 .

0-5
lf

7
8
q

10
1 1
t2
13
t4

0
0
0
0
0
0
I

91
100
100

0 0 0 0
0 0 1 0
0 7 1 2 0
0 9 5 6 0
2 8 3 9 9 0
5 9 4 1 0 0 0

79 95 100 3
97 96 100 18

100 100 100 69
100 100 100 100

Concluding Remarks

We have presented two new solutions for approximate string matching. The SLEQ

approach for static texts improves the space efficiency of the earlier q-gram based

methods. The dynamic LAQ approach offers improved filtration efficiency at high

error levels. Because of the cost of the preprocessing phase, the LAQ method is

competitive only for long texts.

The LAQ approach could also be applied to the static case. Let us call u

an e-approximate q-gram of string B,if. asm(u,B) < e. An index can in prin-

ciple be used in two ways: either inclusively to mark the essential text areas or

exclusively to mark the text areas guaranteed with no matches. To make this

possible one has to generate all the e-approximate q-grams of each block Q; of

the pattern. Value e depends on the number of allowable errors & and sample

size r. The implementations of the inclusive and exclusive approaches are only

slightly different.

References

l . V. Arlazarov, E. Dinic, M. Kronrod, and I. Faradzev: On economical construction

of the transitive closure of a directed graph. Dokl. Akad. Nauk SSSrq 194 (1970)'

487-488 (in Russian). English translation in Souiet Math. Dokl. 11 5, 1209-1210'

R. Baeza-Yates and G. Gonnet: A new approach to text searching. Cornmunications

of ACM 35, 10 (1992) ,74-82 .

R. Baeza-Yates, G. Gonnet, and M. Rdgnier: Analysis of Boyer-Moore-type string

searching algorithms. ln: Proc. First ACM-SIAM Sgmposiurn on Discrete Al'

gori thms, 1990, 328-343.
W. Chang and E. Lawler: Sublinear approximate string matching and biological

applications. Alg orithmica L2, 4-s (1994), 327 -344.

2 .

3 .

5 .

6 .

W. Chang and T. Marr: Approximate string matching and local similarity. In:

Combinatorial Pattern Matching, Proceedings of Sth Annual Symposium (ed. M'

Crochemore and D. Gusfield), Lecture Notes in Computer Science 807, Springer-

Verlag, Berlin, 1994, 259-273.
A. Cobbs: Fast approximate matching using suffix trees' In: Combinatorial Pattern

Matching, Proceedings of Sth Annual Symposium (ed'. Z. Galil and E. Ukkonen),

Lecture Notes in Computer Science 937, Springer, Berlin, 1995, 41-54'

N. Holsti and E. Sutinen: Approximate string matching using q-gram places. Proc-

Seaenth Pinnish Syrnposium on Computer Science (ed. M. Penttonen), University

of Joensuu. 1994. 23-32.
R. Grossi and F. Luccio: Simple and eficient string matching with k mismatches.

Inforrnation Processing Letters 33 (1989), 113-120.

P. Jokinen, J. Tarhio, and E. Ukkonen: A comparison of approximate string match-

ing algoriihms. To appear in Software - Practice and Experience.

P. Jokinen and E. Ukkonen: Two algorithms for approximate string matching in

static texts. ln: Proceedings of Mathematical Foundations of Computer Science

1991 (ed. A. Tarlecki), Lecture Notes in Computer Science 520, Springer-Verlag,

Berlin. 1991.240-248.

G. Landau and U. Vishkin: Fast string matching with k differences. Journal ol

Cornputer and Systern Sciences 37 (1988), 63-78.

E. Myers: A sublinear algorithm for approximate keyword searching. Algorithmica

12, 4-5 (1994), 345-374.
P. Pevzner and M. Waterman: Multiple filtration and approximate pattern match-

ir lg. Algori thmdca 13 (1995), 135-154.

E. Sutinen and J. Tarhio: On using q-gram locations in approximate string match-

ing. In: Proc. 7rd Annual European Sgmposium on Algotithms ESA '95 (ed. P.

Spirakis), Lecture Notes in Computer Science 979, Springer, Berlin, 1995' 327-

340.
T. Takaoka: Approximate pattern matching with samples. Proceedings oJ ISAAC
'9f

, Lecture Notes in Computer Science 834, Springer-Verlag, Berlin, 1994' 234-

242.
J. Tarhio and E. Ukkonen: Approximate Boyer-Moore string matching. SIAM

Journol on Computing22,2 (1993), 243-260.

E. Ukkonen: Approximate string-matching over sufrx trees. In: Cornbinatorial Pat-

tern Matching, Proceedings of lth Annual Symposium (ed. A. Apostolico et al.),

Lecture Notes in Computer Science 684, Springer-Verlag, Berlin, 1993,228-243.

E. Ukkonen: Approximate string matching with q-grams and maximal matches.

Theoretical Computer Science92, | (1992), L9L-2LI.

E. Ukkonen: Finding approximate patterns in strings' Journal ol Algorithms 6

(1985), t32-t37.
I. Witten, A. Moffat, and T. Bell: Managing Gigabytes, Van Nostrand Reinhold,

New York, 1994.
S. Wu: Approximate pattern matching and its applications. Ph.D. Thesis, Report

TR 92-21, Department of Computer Science, University of Arizona, 1992.

S. Wu and U. Manber: Fast text searching allowing ertots. Communications ol

ACM 35,10 (1992) , 83-91 .

This article was processed using the ffif macro package with LLNCS style

t7 .

8 .

q

10.

1 1 .

12 .

13.

14.

15 .

16.

18.

19.

20.

21.

22 .

