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Abstract. Two strings parameterize match if there is a bijection that trans-
forms the first string character by character into the second string. This prob-
lem has been studied in both one and two dimensions but the research has
been centered on developing algorithms with good worst-case performance.
We present algorithms that solve this problem in sublinear time on average
for moderately repetitive patterns.

1 Introduction

In the parameterized matching problem we are given a text and a pattern. The
task is to find all substrings of the text that can be transformed into the pattern
by using some bijection. This problem was first considered by Baker [2] with
an application to software maintenance. Later the parameterized matching
problem has been investigated in two dimensions by Amir et al. [1] and Hazay
et al. [10]. This problem has a fairly obvious application in image searching.
Parameterized matching can find an image even if its color map has been
changed.

Other related work includes parameterized matching of multiple patterns
[12], parameterized matching with mismatches [9] and approximate parame-
terized search [4].

Previous research of parameterized matching has been centered in devel-
oping algorithms with good worst-case performance. Some effort to develop
an algorithm fast on average was made by Baker [3] who developed an algo-
rithm based on the famous Boyer-Moore algorithm [5] but the average case
complexity was not analyzed. In fact the algorithm uses a linear preprocess-
ing with respect to the length of the text and thus loses the good average
case complexity of the Boyer-Moore algorithm. In this paper we introduce new
algorithms that are sublinear on average. We present practical solutions for
both the one-dimensional and two-dimensional parameterized matching prob-
lems. We analyze the time complexities of the algorithms for random texts and
moderately repetitive patterns, and present experimental results for certain in-
teresting classes of patterns.

2 Definitions

Let S and S’ be equal size strings of characters drawn from the alphabet Y.
S and S’ parameterize match (or p-match for short) if there exists a bijection
7 such that for each i S[i] = 7(S’[{]). So strings ’abac’ and ’'bcba’ p-match



because the bijection 7(a) = ¢,m(b) = a,m(c) = b transforms ’bcba’ into
"abac’. On the other hand strings ’aabb’ and ’acbb’ do not p-match because a
bijection cannot map both ’a’ and ’c’ to ’a’ and thus there is no bijection that
can transform ’aabb’ to ’acbb’.

Let us now define the parameterized matching problem. In the one dimen-
sional case, we are given a text T'[1..n] and a pattern P[l..m] in alphabet X
and the task is to find all substrings of the text that p-match with the pattern.
In the two-dimensional case the input is a text T of size n X n and a pattern
P of size m x m. The task then is to find all those m x m substrings of the
text that p-match to P.

Many of the algorithms make use of so called predecessor strings. A string
S is transformed into a predecessor string as follows. If a character in position ¢
has occurred earlier in the string in position j the position ¢ in the predecessor
string contains 7 — j. Otherwise the predecessor string contains 0. For example
the string ’aabac’ is transformed into 0-1-0-2-0. Now it can be fairly easily seen
that if two strings p-match their predecessor strings match exactly [3].

Another way to transform the two strings so that the transformed strings
will match exactly if the original strings p-matched is to transform them into
restricted growth functions (RGF) [14]. A string is transformed into a RGF by
replacing the first occurring character with 1, the second one with 2 and so on.
We call the resulting string the RGF string. For example the string 'aabac’ is
transformed into 1-1-2-1-3. The properties of restricted growth functions have
been studied previously. In [14] it is shown that there are b,, different RGFs of
length n where b, is the n:th Bell number. Kreher and Stinson [14] also give
an algorithm for ranking RGFs.

To classify the repetitiveness of a pattern we introduce the concept of ¢-
repetitiveness. A pattern is g-repetitive if for all substrings of length ¢ there is a
character that occurs at least twice in the substring. Thus the pattern “aaaa” is
2-repetitive while the pattern “aabb” is 3-repetitive but not 2-repetitive because
the substring “ab” contains no repetition. Similarly a two-dimensional pattern
is g-repetitive if for all substrings of size ¢ x ¢ there is a character that occurs
at least twice in the substring.

3 Earlier Solutions

3.1 One-Dimensional Algorithms

In her original paper Baker [2] gave a suffix tree based algorithm for finding
parameterized matches. The algorithm first preprocesses both the text and the
pattern by transforming them into predecessor strings. After this preprocess-
ing the problem can almost be solved by conventional exact string matching
algorithms. The only remaining problem is that if we are considering a window
in the text the predecessor pointers might point to positions outside the win-
dow. Baker proposed modifications to the suffix tree construction algorithm
that take care of this problem. The construction of the suffix tree was further
improved by Kosaraju [13] and Cole and Hariharan [6].



Baker [3] has also proposed a Boyer-Moore based algorithm. Also this al-
gorithm preprocesses both the text and the pattern into predecessor strings.
Baker then uses a modification of the TurboBM algorithm [7] for finding the
p-matches. The algorithm has a good worst case performance but because of
the preprocessing the sublinearity of the Boyer-Moore type algorithms is lost
unless we are to make several searches with the same text.

3.2 Two-Dimensional Algorithms

The two-dimensional parameterized matching problem was first considered by
Amir et al. [1] in the context of function matching. They give an algorithm
that preprocesses the text into a predecessor representation suitable for two-
dimensional strings and then apply a conventional two-dimensional algorithm.
Hazay et al. [10] give another algorithm for two-dimensional parameterized
matching that is based on the “duel-and-sweep” paradigm. Both of these algo-
rithms are quite complicated and neither one of them has been implemented
as far as we know.

4 Our Algorithms

In this section we develop Boyer-Moore type algorithms that do not preprocess
the text and thus can be sublinear on average. First we describe the one-
dimensional algorithm with several variations and then we discuss the two-
dimensional algorithm.

4.1 Three One-Dimensional Algorithms

Our one-dimensional algorithms are derived from the Horspool [11] variant of
the Boyer-Moore algorithm. In the Boyer-Moore-Horpsool algorithm the text
is processed in windows of size m. The last character of the window is read
first. If it does not match the last character of the pattern the window is shifted
based on it. Otherwise the window is checked for a match after which a shift is
made. In the parameterized matching problem the last character alone never
tells that there cannot be a match and even the last two characters usually do
not indicate that the window cannot match the pattern. Therefore we form a
g-gram of the last ¢ characters of the window and make the shift based on it.

The preprocessing phase of the Boyer-Moore-Horspool constructs the shift
table which is consulted in the matching phase to find out the length of the
shift based on the last character of the text window. The shift is calculated so
that after the shift the last character of the previous window will be aligned
with the last occurrence of that character in the pattern.

In the parameterized matching problem the shifts are made based on the
last g-gram of the window and we wish to make a shift that aligns it with
the last g-gram of the pattern that p-matches it. As described in Section 2
two strings p-match if their predecessor strings match or equally if their RGF
strings match. Thus we wish to index the table with the predecessor or RGF



Table 1. The number of entries in the shift table for PBMH-RGF, FPBMH and PBMH-Hash
for various values of q.

Algorithm  |q=2|q=3|q=4|q=5|g=6l¢g=T| ¢g=8 q=9 qg=10
PBMH-RGF| 2| 5| 15| 52| 203 877 4,140] 21,147| 115,975
FPBMH 2 8| 32| 256|2,048(1,638|131,072|2,097,152|33,554,432
PBMH-Hash 2 4 71 11 16| 22 29 37 46

strings. An obvious solution is using the rank of the RGF strings as indexes. We
call this algorithm Parameterized Boyer-Moore-Horspool with RGF or PBMH-
RGF for short.

The problem with this approach is that calculating the rank of an RGF
takes quite a lot of time and this needs to be done for each window we are
inspecting. Another alternative for calculating the indexes is to transform the g-
grams into predecessor strings and then reserving enough bits for each character
of the predecessor strings in the index. The first character of the predecessor
string is always 0 so we need not reserve any space for it. The second character
is either O or 1 because the character in the original string is either the same as
the first or not. The third character is either 0, 1 or 2 with similar reasoning.
This means that the last bit of the index is reserved for the second character of
the predecessor strings the next two bits and reserved for the third character
and so on. We call this algorithm Fast Parameterized Boyer-Moore-Horspool
or FPBMH for short. This approach clearly wastes some space but the indexes
are much faster to calculate. The RGF approach needs a table of size b, where
by is the g:th Bell number while the FPBMH algorithms needs a table of size
92 {28271 Table 1 shows the number of entries in the shift table for both
approaches for different values of q.

In a random text the distribution of the predecessor strings is very steep.
The most common predecessor string of length g, 09, has quite a high proba-
bility if the alphabet is reasonably large while the least common predecessor
string, 01971, has a probability close to 0. This means that we might need to
use quite large g-grams which is a problem for FPBMH. On the other hand
hashing the g-grams cleverly might let us use even larger g-grams than the
PBMH-RGF algorithm can handle. We considered hashing the ¢-grams by
transforming them first to predecessor strings and then adding up all the posi-
tions of the predecessor string. This hashing scheme has the property that the
most common ¢-gram is the only one hashed to 0 and thus the hashing might
even out the distribution of the g-grams. This approach need a table of size
q-(qg—1)/2+ 1. Table 1 includes the space requirement for this approach also.
This modification of the algorithm is called PBMH-Hash.

4.2 A Two-Dimensional Algorithm

The two-dimensional algorithm is based on the two-dimensional string match-
ing algorithm by Tarhio [15] which is an extension of the Boyer-Moore-Horspool
algorithm. In the algorithm by Tarhio the text is divided into [(n—m)/m]|+1



strips each of which has m columns. Each strip is then searched for an occur-
rence with a BMH like algorithm and each potential match is verified with the
trivial algorithm.

In each position the character at the right low corner is investigated. If this
character occurs in the lowest row of the pattern, there is a potential match
which has to be verified. These are found with the help of two tables, M and N.
M]x] is the column where the character x occurs first in the lowest row of the
pattern and N links the occurrences of x in the lowest row of the pattern. The
pattern is shifted down the strip with another table D. D|x] is the occurrence
of x that is closest to the lowest row of the pattern but not in the last row. If
x does not appear in the pattern D|x] is m.

The algorithm can be modified to read several characters and calculate
the shifts based on all these characters. If we read ¢ X ¢ characters (a two-
dimensional ¢g-gram), the text will then be divided into [(n—m)/(m—q+1)]+1
strips each containing m — ¢ + 1 columns.

This algorithm which uses g-grams can fairly easily be extended to pa-
rameterized matching in a similar fashion as the BMH algorithm was extended
for one-dimensional parameterized matching. The resulting algorithm proceeds
exactly like the algorithm by Tarhio but the read g-grams are transformed
into predecessor strings and these are then used to index the tables. As with
the one-dimensional case, there are several ways to transform the predecessor
strings into indexes. We implemented the transformation the same way as in
the FPBMH algorithm.

5 Analysis

We first analyze the worst and average case complexity of the one-dimensional
algorithms and then turn to the two-dimensional case. When analyzing the
average case complexity we assume the standard random string model where
each character of the text is chosen independently and uniformly.

5.1 The One-Dimensional Algorithms

The PBMH-RGF and FPBMH algorithms have the same time complexities.
The only difference in the algorithms is in handling of the ¢g-grams but both
algorithms do this in O(q) time and thus the resulting complexities will be
the same. The hashing in the PBMH-Hash algorithm slightly changes the time
complexity of the algorithm but the difference is negligible.

In the worst case the one-dimensional algorithms find a match in each posi-
tion. This means that in each window the whole window is read and compared
to the pattern so the worst case complexity of the algorithms is O(nm).

Let us then analyze the average case complexity. In order to do that we
need to consider the probability distribution of the different predecessor strings
corresponding to random ¢-grams. Let o denote the size of the alphabet and
let z be the number of zeros in the given predecessor string. Each of the zeros
presents a different character in the original string and each non-zero element



of the predecessor string is defined by the zeros. Then the probability that the
given predecessor string matches a random string is:

o!

P =——

The probability of a window to be checked is the probability that the last

g-gram of the window p-matches the last (or m — ¢:th) ¢g-gram of the pattern.
Thus the expected number of checked windows is

C:(n—m—i—l)-P(Zm—ch)

where 2,4 is the number of zeros in the last g-gram of the pattern. Now if we
can choose ¢ so that z,_, < ¢ the probability P(2p,—g4,q) is low enough and
there are only a few checked windows so the scanning time will dominate.

Let us now turn to analyzing the scanning time. We estimate the expected
length of shift in the algorithm with

m—q

S > (m—q+1)- (1= Pzmaz, )™ "+ Y _ i P(2m—gi;0)- (1= P(2maz; )"
=1

where 2,4, is the maximum number of zeros in the g-grams of the pattern.
Note that this estimate for S is not quite accurate because the consecutive
overlapping ¢-grams of the pattern are not independent. However the difference
from the accurate value is insignificant.

If we now choose g to be the smallest ¢ such that the pattern is ¢g-repetitive,
the probability P(zma.,q) will be low enough. Then the expected length of shift
approaches the value m — ¢+ 1 so on average O((¢qn)/(m — ¢+ 1)) characters
are read. Furthermore if ¢ < (m + 1)/2 the algorithm is sublinear on average.

Note that all patterns are not g-repetitive for any ¢ < (m + 1)/2 and in
these cases we cannot guarantee the sublinearity of the algorithm. However pa-
rameterized matching is most often applied to searching for repetitive patterns
so in most practical cases the sublinearity can be guaranteed.

5.2 The Two-Dimensional Algorithm

The worst case for the two-dimensional algorithm occurs when all positions of
the text match. The worst case time complexity is then clearly O(n?m?).
For the average case complexity we will need to estimate the number of

checked windows. There are a total of (n —m + 1)? windows so on average
C=(Mm-m+ 1)2 : P(zm—q,m—q’Q)

of them are checked where z,,_q.m—q is the number of zeros in the g-gram
of the pattern that starts at position (m — q,m — q). If zm—gm—q < ¢* ,
P(zm—q,m—q,q) is low enough and there will only be a few checked windows.
Therefore the scanning time will dominate.



Let us next consider the expected length of shift, S. The estimate is very
similar to the one-dimensional case:

S > (m —q+ 1) : (1 - P(zmax,Q))(m_q).(m_q+l)

» i . (1 — (i—1)-(m—q+1)
—+ Z (3 P( < min 1Zm—q—z,z)q) (1 P(Zmar’Q))

where z,,4, 1S the maximum number of zeroes in the predecessor strings cor-
responding to any of the g-grams of the pattern. As with the one-dimensional
case, if we now choose ¢ to be the smallest value such that the pattern is g-
repetitive, zmar < ¢, P(Zmaz,q) is low enough and S approaches m — ¢ + 1.
So on average O((n —m)/(m —q+1) -qn/(m — g+ 1)) = O(qn?/(m — q)?)
characters are read. So if the pattern is g-repetitive for a suitable ¢ then the al-
gorithm will be sublinear on average. Again some patterns are not g-repetitive
for a suitable ¢ and in these cases the sublinearity of the algorithm cannot be
guaranteed.

6 Experimental Results

The analysis predicts that the value of ¢ should be chosen to be the smallest
q such that the pattern is g-repetitive. To validate this we ran our algorithms
with several patterns. Figures 1, 2 and 3 show the proportion of read characters
and the runtime for some of the tests. The proportion of read characters is
calculated as lookups divided by the length of the text so for a sublinear
algorithm this value is less than one. All these tests were run on a computer
with a 1.0 GHz AMD Ahtlon processor, 512 MB of memory and 256 kB on-chip
cache. The computer was running Linux 2.4.22. The algorithms were written
in C and compiled with the gcc compiler.

Figure 1 shows that choosing a larger ¢ with a highly repetitive pattern does
not make the algorithms perform faster. Using 2-grams already guarantees long
enough shifts and thus assembling larger g-grams just wastes time. Figure 2
presents a completely different scenario. Here the pattern is not g-repetitive
for any ¢ and as can be seen we cannot choose large enough ¢ to guarantee
the sublinearity of the algorithms. In Figure 3 the situation is something in
between. The pattern is 3-repetitive but not 2-repetitive. As can be seen the
value ¢ = 3 is optimal in this situation and using larger ¢-grams only makes
the algorithms do more work.

Table 2 shows a runtime comparison of our one-dimensional algorithms
and a Boyer-Moore-Horspool algorithm (PBMH) which we use as a reference
method. The PBMH algorithm preprocesses the text into a predecessor string
and then matches the pattern against the text. The preprocessing of the text
is included in the figures but the preprocessing of the pattern is not. As can be
seen our algorithms are faster when the pattern contains a substantial amount
of repetition. However when the pattern contains no repetition the algorithm
that preprocesses the text is faster.



8 0.14
—— PBMH-RGF —— PBMH-RGF
| -->-—- FPBMH ; —-%-- FPBMH ;
“%-" PBMH-Hash b 042 | ---%-- PBMH-Hash A
0 : ;
é 51 A 01| 4
8 ; — *
£ 5 s .
< * > e |
I3 Vv [ L
L 4 B E E3
s ;! < ’ E
§ 3t X 4 &
5 «
g . ]
s 2 4
i B *
s R ] ]
2 4 6 8 10 12 14 2 4 6 8 10 12

Fig. 1. Proportion of read characters (a) and runtime (b) for the pattern “aaaaaaaaaaaaaaaa’.
The text is random with alphabet size 256.
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Fig. 2. Proportion of read characters (a) and runtime (b) for the pattern “qwertyuiopsadfgh”.
The text is random with alphabet size 256.
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Fig. 3. Proportion of read characters (a) and runtime (b) for the pattern “aassddssaa”. The
text is random with alphabet size 256.



Table 2. Runtime comparison of the one-dimensional algorithms. The text is a random text
with alphabet size 256.

Algorithm |P=aaaaaaaaaaaaaaaaaa|P=qwertyuiopasdfgh|P=aassddssaa
PBMH 0.08 s 0.29 s 0.08 s
PBMH-RGF 0.02 s 0.74 s 0.04 s
FPBMH 0.01s 0.58 s 0.03 s
PBMH-Hash 0.02 s 0.70 s 0.03 s
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Fig. 4. Proportion of read characters (a) and runtime (b) for a text of DNA data and patterns
of varying length. Our algorithms used 6-grams in these tests.

To demonstrate the performance of our algorithms in a more realistic sce-
nario we ran some tests with DNA data also. The text was a chromosome from
the fruit fly genome (20 MB) and the patterns were chosen randomly from the
text. Our algorithms turned out to be fastest when using 6-grams. Figure 4
shows the averages over 50 runs. As can be seen our algorithms have charac-
teristics typical to Boyer-Moore based algorithms. With longer patterns the
shifts get longer and thus the algorithms are faster with longer patterns.

We ran also some tests with the two-dimensional algorithm. We used two
different texts. One was a random text where the characters were drawn from
an alphabet of 256 characters. The other one was a picture of a map from
the photo archive of Gimp-Savvy.com [8]. We examined the proportion of read
characters for three different patterns of size 8 x 8. The first one contained
repetitions of one character. The second pattern contained no repetitions and
the third contained a map symbol which contains some repetition. Table 3
shows the results of the tests run with the two-dimensional algorithm using
3-grams. As can be seen the algorithm performs well when the text or the
pattern contains repetitions.

7 Conclusions

We have presented practical Boyer-Moore type algorithms for one and two-
dimensional parameterized matching. We have showed that these algorithms
are sublinear on average for g-repetitive patterns and confirmed this analysis
with experiments.



Table 3. Proportion of read characters for two different texts and several different patterns.
All the patterns are of size 8 x 8.

Text Single-character pattern|Pattern with no repetitions|Pattern with repetitions
Random 0.25 7.90 0.25
Map 1.14 0.25 0.33

The analysis assumes the random string model which might not be appli-
cable especially with two-dimensional texts which are typically images. It is
very characteristic of such data that the probability of two nearby characters
being the same is very high. We need to further investigate these typical char-
acteristics of texts and analyze our algorithms in this context. We also need to
make further tests on real data to confirm the usefulness of our algorithms.
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