
Tuning String Matching for Huge Pattern SetsJari Kytöjoki, Leena Salmela, and Jorma Tarhio?Department of Computer Science and EngineeringHelsinki University of TechnologyP.O. Box 5400, FIN-02015 HUT, FinlandAbstract We present three algorithms for exact string matching of mul-tiple patterns. Our algorithms are �ltering methods, which apply q-gramsand bit parallelism. We ran extensive experiments with them and com-pared them with various versions of earlier algorithms, e.g. di�erent trieimplementations of the Aho-Corasick algorithm. Our algorithms showedto be substantially faster than earlier solutions for sets of 1,000�100,000patterns. The gain is due to the improved �ltering e�ciency caused by
q-grams.1 IntroductionWe consider exact string matching of multiple patterns. Many good solutionshave been presented for this problem, e.g. Aho-Corasick [1], Commentz-Walter[5,14], and Rabin-Karp [11,12] with their variations. However, most of the earlieralgorithms have been designed for pattern sets of moderate size, i.e. a few dozens,and they do not unfortunately scale very well to larger pattern sets. In thispaper we concentrate on practical methods that can e�ciently handle severalthousand patterns even in a small main memory (e.g. in a handheld device).Such algorithms are needed in intrusion detection [8], in content scanning, andin speci�c data mining problems [9]. The focus is on �nding the occurrences ofrare patterns or on checking that unwanted patterns do not occur at all.The text T = t1t2 · · · tn is a string of n characters in an alphabet of size c.There are r patterns P1, . . . , Pr of length m in the same alphabet. If the lengthsof the patterns are not equal, we select a substring from each pattern accordingto the length of the shortest pattern. We consider cases where m varies between4 and 32 and r between 100 and 100,000 mostly for c=256. All exact occurrencesof the patterns should be reported.As our main contribution we will present three algorithms HG, SOG, andBG based on the Boyer-Moore-Horspool [10], shift-or [3], and BNDM [13] algo-rithms, respectively. Our algorithms are �ltering algorithms, which operate inthree phases. The patterns are �rst preprocessed. The second phase reports can-didates for matches, which are veri�ed in the third phase. A common feature ofour algorithms is matching of q-grams instead of single characters. We search for

? Corresponding author: jorma.tarhio@hut.�.

occurrences of a single generalized pattern of q-grams such that the pattern in-cludes all the original patterns. In addition, SOG and BG apply bit parallelism.Related methods for a single pattern have been suggested by Fredriksson [7].It is well known (see e.g. [2,4]) that the use of q-grams can increase theaverage length of shift in the algorithms of Boyer-Moore type. This can also beapplied to matching of multiple patterns [15]. We use q-grams in a di�erent wayin order to improve �ltration e�ciency by changing the alphabet.In order to show the applicability of our algorithms, we ran extensive testsand compared them with various implementations of earlier algorithms. We useda random text, which ensures the rareness of matches in our setting. Our algo-rithms showed to be very fast in practice. For example, HG is 15 times fasterthan the well-known Aho-Corasick algorithm in the case of random patterns for
r=10,000, m=8, and c=256. In addition, the �ltering phase of our algorithmsdoes not require much memory: 64 kB is enough in the speci�ed case. The �l-tering e�ciency of our algorithms will continue beyond 100,000 patterns if morememory is used.2 Earlier SolutionsThe classical Aho-Corasick algorithm [1] has been widely used for multiple pat-tern matching. Although it works rather well for small pattern sets, it is notsuitable for huge pattern sets because of intolerable memory requirements. Andthe algorithm gets slower when the number of patterns increases.2.1 Rabin-Karp ApproachA well-known solution [9,12,17] to cope with large pattern sets with less memoryis to combine the Rabin-Karp algorithm [11] with binary search. During prepro-cessing, hash values for all patterns are calculated and stored in an ordered table.Matching can then be done by calculating the hash value for each m-characterstring of the text and searching the ordered table for this hash value using binarysearch. If a matching hash value is found, the corresponding pattern is comparedwith the text.We implemented this method for m = 8, 16, and 32. The hash values forpatterns of eight characters are calculated as follows. First a 32-bit integer isformed of the �rst four bytes of the pattern and another from the last four bytesof the pattern. These are then xor'ed together resulting in the following hashfunction where ^ denotes the xor-operation:

Hash(x1 . . . x8) = x1x2x3x4ˆx5x6x7x8The hash values for m = 16 and 32 are calculated in a similar fashion:
Hash16(x1 . . . x16) = (x1x2x3x4ˆx5x6x7x8)ˆ(x9x10x11x12ˆx13x14x15x16)

Hash32(x1 . . . x32) = ((x1x2x3x4ˆx5x6x7x8)ˆ . . . ˆ(x25x26x27x28ˆx29x30x31x32))

Muth and Manber [12] use two-level hashing to improve the performance ofthe Rabin-Karp method. The second hash is calculated from the �rst one byxor'ing together the lower 16 bits and the upper 16 bits. At preprocessing time,a bitmap of 216 bits is constructed. The i'th bit is zero, if no pattern has i as itssecond hash value, and one, if there is at least one pattern with i as its secondhash value. When matching, one can quickly check from the bit table, when the�rst hash value does not need further inspection, and thus avoiding the timeconsuming binary search in many cases. In the following, we use the shorthandRKBT for the Rabin-Karp algorithm combined with binary search and two-levelhashing.2.2 Set HorspoolThe Commentz-Walter algorithm [5] for multiple patterns has been derived fromthe Boyer-Moore algorithm [4]. A simpler variant of this algorithm is calledset Horspool [14]. (The same algorithm is called set-wise Boyer-Moore in [8].)This algorithm is based on the Boyer-Moore-Horspool algorithm [10] for singlepatterns. In the Boyer-Moore-Horspool algorithm, the bad character function
B(a) is de�ned as the distance from the end of the pattern p1p2 · · · pm to thelast occurrence of the character a: B(a) = min{h | pm−h = a}. This function canbe generalized for multiple patterns. The bad character function for the set ofpatterns is de�ned as the minimum of the bad character functions of individualpatterns.The reversed patterns are stored in a trie. The initial endpoint is the lengthof the shortest pattern. The text is compared from right to left with the trie untilno matching entry is found for a character in the text. Then the bad characterfunction is applied to the endpoint character and the pattern trie is shiftedaccordingly.The Wu-Manber algorithm [15] is a variation of the set Horspool algorithm.It uses a hash table of the last q-grams of patterns. The famous agrep tool [16]includes an implementation of the Wu-Manber algorithm.3 Multi-Pattern Horspool with q-GramsThe Boyer-Moore-Horspool algorithm [10] can be applied to multiple patternsalso in another way. We call the resulting �ltering algorithm HG (short forHorspool with q-Grams). Given patterns of m characters, we construct a bittable for each of the m pattern positions as follows. The �rst table keeps trackof characters which appear in the �rst position in any pattern, the second tablekeeps track of characters which appear in the �rst or second position in anypattern and so on. Figure 1a shows the six tables corresponding to the pattern`qwerty'.These tables can then be used for pattern matching as follows. First the m'thcharacter is compared with the m'th table. If the character does not appear inthis table, the character cannot appear in positions 1 . . .m in any pattern and

1-gram tables: HGMatcher(T, n)1. 2. 3. 4. 5. 6. i = 0;q q q q q q while(i < n-6)w w w w w j = 6;e e e e while (1)r r r if (not 1GramTable[j][T[i+j]])t t i = i+j;y breakelse if (j = 0)Verify-match(i);i = i+1;breakelsej = j-1(a) (b)Figure 1. The HG algorithm: (a) the data structures for the pattern `qwerty' and (b)the pseudo-code for m=6.
a shift of m characters can be made. If the character is found in this table, the
m−1'th character is compared to the m−1'th table. A shift of m−1 characterscan be made if the character does not appear in this table and therefore notin any pattern in positions 1, . . . , m − 1. This process is continued until thealgorithm has advanced to the �rst table and found a match candidate there.The pseudo-code for m=6 is shown in Figure 1b. Given this procedure, it is clearthat all matches are found. However, also false matches can occur. E.g. `qqqqqq'is a false candidate in our example. The candidates are veri�ed by using theRKBT method described in Section 2.1.As the number of patterns grows, the �ltering e�ciency of the above schemedecreases until almost all the text positions are candidates because there only cdi�erent characters. A substantial improvement in the �ltering e�ciency can beachieved by using q-grams, q ≥ 2, instead of single characters since there are cqdi�erent q-grams. For an alphabet with 256 characters and for q = 2 this meansthat the alphabet size grows from 256 to 65,536. When using 2-grams, a patternof m characters is transformed into a sequence of m−1 2-grams. Thus the pattern`qwerty' would yield the 2-gram string `qw-we-er-rt-ty'. The HG algorithm canbe applied to these 2-grams just as it was applied to single characters. Witheven larger pattern sets, 3-grams could be used instead of 2-grams. Because thiswould require quite a lot of memory, we implemented a 3-gram version of thealgorithm with a hashing scheme. Before a 3-gram is used to address the tables,each character is hashed to a 7-bit value. This diminishes the number of di�erent3-grams from 224 to 221.

4 Multi-Pattern Shift-Or with q-GramsThe shift-or algorithm [3] can be extended to a �ltering algorithm for multiplepatterns in a straightforward way. Rather than matching the text against exactpatterns, the set of patterns is transformed to a single general pattern contain-ing classes of characters. For example if we have three patterns, `abcd', `pony',and `abnh', the characters {a, p} are accepted in the �rst position, characters{b, o} in the second position, characters {c, n} in the third position and charac-ters {d, h, y} in the fourth position. This approach has been used for extendedstring matching (see e.g. [14]). Given this scheme, it is clear that all actual oc-currences of the patterns in the text are candidates. However, there are also falsecandidates. In our example `aocy' would also match. Therefore, each candidatemust be veri�ed.When the number of patterns grows, this approach is no longer adequate. Asin the case of HG, the �ltering capability of this approach can be considerablyimproved by using q-grams instead of single characters. Then the pattern is astring of m − q + 1 q-gram classes. We call our modi�cation SOG (short forShift-Or with q-Grams). Again, the RKBT method is used for veri�cation.The improved e�ciency of this approach is achieved at the cost of space.If the alphabet size is 256, storing the 2-gram bit vectors requires 216 bytes for
m=8 while the single character vectors only take 28 bytes. We implemented SOGfor 2-grams and 3-grams as in the case of HG.Baeza-Yates and Gonnet [3] present a way to extend the shift-or algorithmfor multiple patterns for small values of r. Patterns P1 = p1

1 · · · p
1
m, . . . , Pr =

pr
1 · · · p

r
m are concatenated into a single pattern:

P = p1
1p

2
1 . . . pr

1p
1
2p

2
2 . . . pr

2 . . . p1
mp2

m . . . pr
m.The patterns can then be searched in the same way as a single pattern exceptthat the shift of the state vector will be for r bits and a match is found, if any ofthe r bits corresponding to the highest positions is 0. This method can also beapplied in a di�erent way to make the SOG algorithm faster for short patterns.The pattern set is divided into four or two subsets based on the �rst 2-gram.Each subset is then treated like a single pattern in the extension method ofBaeza-Yates and Gonnet.5 Multi-Pattern BNDM with q-GramsOur third �ltering algorithm is based on the backward nondeterministic DAWGmatching (BNDM) algorithm by Navarro and Ra�not [13]. The BNDM algo-rithm itself has been developed from the backward DAWG matching (BDM)algorithm [6].In the BDM algorithm [6], the pattern is preprocessed by forming a DAWG(directed acyclic word graph) of the reversed pattern. The text is processed inwindows of size m where m is the length of the pattern. The window is searched

for the longest pre�x of the pattern from right to left with the DAWG. When thissearch ends, we have either found a match (i.e. the longest pre�x is of length m)or the longest pre�x. If a match was not found, we can shift the start positionof the window to the start position of the longest pre�x.The BNDM algorithm [13] is a bit-parallel simulation of the BDM algorithm.It uses a nondeterministic automaton instead of the deterministic one in theBDM algorithm. For each character x, a bit vector B[x] is initialized. The i'thbit is 1 in this vector if x appears in the reversed pattern in position i. Otherwisethe i'th bit is 0. The state vector D is initialized to 1m. The same kind of right toleft scan in a window of size m is performed as in the BDM algorithm. The statevector is updated in a similar fashion as in the shift-and algorithm. If the m'thbit is 1 after this update operation, we have found a pre�x starting at position j.If j is the �rst position in the window, a match has been found.The BNDM algorithm can be extended to multiple patterns in the same wayas we did with the shift-or algorithm. We call this modi�cation BG (short forBndm with q-Grams). The matching is done with a general pattern containingclasses of characters. The bit vectors are initialized so that the i'th bit is 1 if thecorresponding character appears in any of the reversed patterns in position i.As with HG and SOG, all match candidates reported by this algorithm must beveri�ed. Just like in SOG, 2- and 3-grams can be used to improve the e�ciencyof the �ltering. Also the division to subsets, presented for the SOG algorithm,can be used with the BG algorithm. This scheme works in the same way as withSOG algorithm except that the subsets are formed based on the last 2-gram ofthe patterns.6 AnalysisLet us consider the time complexities of the SOG and BG algorithms withoutdivision to subsets. The algorithms can be divided in three phases: preprocess-ing, scanning, and checking. Let us assume that m ≤ w holds, where w is theword length of the computer. When considering the average case complexity, weassume the standard random string model, where each character of the text andthe pattern is selected uniformly and independently.In the best case, no match candidates are found and then checking needsno time. In the worst case there are h = n − m + 1 candidates, and then thechecking time O(nh log r) = O(nm log r) dominates. Here O(log r) comes frombinary search and O(m) from pairwise inspection.The preprocessing phase of the both algorithms is similar and it works in
O(rm). In addition, the initialization of the descriptor bit vectors needs O(cq).In SOG the scanning phase is linear. The expected number of candidates C1depends on r, c, and m:

C1 = h · (1 − (1 − 1/c)r)m.This number can be reduced by utilizing q-grams. With q-grams, we estimatethis expression by
Cq = h · (1 − (1 − 1/cq)r)m−q+1.

0.1

1

10

100

100 1000 10000 100000

R
un

 ti
m

es
 (

s)

Number of patterns

A-C with tables
A-C with hashtables (6 bit index)
A-C with hashtables (4 bit index)
A-C with binary trees

10

100

1000

10000

100000

1e+06

100 1000 10000 100000

M
em

or
y

us
ag

e
(k

B
)

Number of patterns

A-C with tables
A-C with hashtables (6 bit index)
A-C with hashtables (4 bit index)
A-C with binary trees

Figure 2. Performance of di�erent trie implementations of the Aho-Corasick algorithm.Note that even C2 is not accurate, because consecutive overlapping 2-grams arenot independent. However, the di�erence from the exact value is insigni�cant forhuge sets of patterns.Let us then consider BG. The worst case complexity of the basic BNDM is
O(nm). We did not want to apply any linear modi�cation, because the checkingphase of BG is not linear, and the linear versions of BNDM are slower in practice[13]. The average searching time of the BNDM algorithm is O(n logc′ m/m),where c′ is the size of the alphabet for the original BNDM. In our approach weneed to replace c′ by 1/d where d = 1 − (1 − 1/c)r is the probability that asingle position of a generalized pattern matches. Clearly log1/d m < m holds forsuitable values of c, r, and m, and BG is then sublinear on the average, i.e. itdoes not inspect every text character. Switching to q-grams, q ≥ 2, guaranteesthe sublinearity for smaller values of c and larger values of r.7 Experiments with Earlier AlgorithmsWe ran tests on several algorithms. We used a 32 MB randomly created text inthe alphabet of 256 characters. Also the patterns were randomly generated inthe same alphabet. Note that in our case random data is in a sense harder thanreal data. For example, `zg' is rarer in an English text than in a random text.If not otherwise stated, m=8 and c=256 hold. The times are averages over10 runs using the same text and patterns. Both the text and the patterns residein the main memory in the beginning of each test in order to exclude readingtimes. The tests were made on a computer with a 1.8 GHz Pentium 4 processor,1 GB of memory, and 256 kB on-chip cache. The computer was running Linux2.4.18. The algorithms were written in C and compiled with the gcc compiler.Aho-Corasick. We used a code based on the case-sensitive implementation byFisk and Varghese [8] to test the Aho-Corasick algorithm [1]. We tested threealternative implementations of the goto-function: table, hash table, and binarytree. The hash table version was tested with table sizes 16 and 64 (resulting in4- and 6-bit indexes), see Figure 2.

Although the speed of the Aho-Corasick algorithm is constant for small pat-tern sets, the situation is di�erent for large sets even in an alphabet of moderatesize. The run time graph of Figure 2 shows a steady increase. Given the memorygraph of Figure 2, the hierarchical memory could explain this behavior. For pat-tern set sizes between 100 and 2,000, the hash table version of the goto-functionis preferable. When there are more than 2,000 patterns, the table version is thefastest but its memory requirement does not make it very attractive.RKBT. The Rabin-Karp approach was tested both with and without two-levelhashing. The use of the second hash table of 216 bits signi�cantly improves theperformance of the algorithm when the number of patterns is less than 100,000.When there are more patterns, a larger hash table should be considered, becausethis hash table tends to be full of 1's and the gain of two-level hashing disappears.Set Horspool. We used the code of Fisk and Varghese [8] to test the setHorspool algorithm. The same variations as for the Aho-Corasick algorithm weremade. The results on memory usage were similar to those of the Aho-Corasickalgorithm because the trie structure is very similar. Also the test results on runtimes resemble those of the Aho-Corasick algorithm especially with very largepattern sets. This is probably due to the memory usage. Di�erences with lessthan 1,000 patterns were not signi�cant between modi�cations.Agrep. We also tested the agrep tool [16]. Since agrep is row-oriented, somecharacters, like newline, were left out of the alphabet. In the agrep tool, lines arelimited to 1024 characters so we chopped the text to lines each containing 1024characters. The run times measured do not contain the time used to preprocessthe patterns.In the experiments of Navarro and Ra�not [14] agrep was the fastest al-gorithm for 1,000 patterns for m=8. This holds true also for our experiments(excluding the new algorithms). The agrep tool is the fastest up to 2,000 patterns,the RKBT method is the fastest between 2,000 and 20,000 patterns and the setHorspool algorithm is the fastest with more than 20,000 patterns although itsmemory usage is excessive.Figure 3 shows a comparison of the four earlier algorithms mentioned above.The times include veri�cation but exclude preprocessing.8 Experiments with New AlgorithmsThe test setting is the same as in the previous section. The new algorithms are all�ltering algorithms, which use the RKBT method for veri�cation of candidates.Each run time contains the veri�cation time (if not otherwise speci�ed) andexcludes the preprocessing time.

0.01

0.1

1

10

100

1000

100 1000 10000 100000
R

un
 ti

m
e

(s
)

Number of patterns

A-C with tables
RKBT
Set Horspool with tables
agrep

Figure 3. Run time comparison of the earlier algorithms.
0.01

0.1

1

10

100

100 1000 10000 100000

R
un

 ti
m

e
(s

)

Number of patterns

HG using 2-grams
HG using 3-grams

0.01

0.1

1

10

100 1000 10000 100000

R
un

 ti
m

e
(s

)

Number of patterns

m=4
m=6
m=8
m=12
m=20

(a) (b)Figure 4. The HG algorithm: (a) comparison of 2-gram and 3-gram versions and (b)run times of the 2-gram version for di�erent pattern lenghts.8.1 HGThe HG algorithm was tested both with the 2-gram and 3-gram versions for
m=8, see Figure 4a. The 3-gram version is faster when the pattern set size isgreater than 10,000. This is due to the better �ltering e�ciency of the 3-gramapproach. However, when there are less than 10,000 patterns, the 2-gram versionis much faster because of the hashing overhead and memory requirement of the3-gram approach.We tested the HG algorithm also with several pattern lengths. The veri�-cation of candidates was not carried out in this case since we implemented theRKBT method only for m = 8, 16, and 32. If the veri�cation would be done,the performance of the algorithm would worsen for those set sizes that producespurious hits. Most of the candidates reported by the HG algorithm are falsematches because the probability of �nding a real match is very low.Figure 4b shows the results of these tests for the 2-gram version of the al-gorithm. With 50,000 patterns, the number of matches reported by the HGalgorithm is roughly the same regardless of the pattern length. For c=256 thereare 216 = 65,536 di�erent 2-grams. So, when there are more than 50,000 pat-

0.1

1

10

100

100 1000 10000 100000

R
un

 ti
m

es
 (

s)

Number of patterns

m=8
m=16
m=32

0.1

1

10

100

100 1000 10000 100000

R
un

 ti
m

es
 (

s)

Number of patterns

8-bit alphabet
7-bit alphabet
6-bit alphabet

(a) (b)Figure 5. The SOG algorithm: (a) the e�ect of pattern length and (b) the e�ect ofalphabet size.terns, nearly all text positions will match. Figure 4b shows that, when there areless than 10,000 patterns, HG is faster for longer patterns, because they allowlonger shifts. When the number of false matches grows, the algorithm is fasterfor shorter patterns, because most positions match anyway and the overheadwith shorter patterns is smaller.8.2 SOGWe tested the SOG algorithm with several pattern lengths and alphabet sizes.The 3-gram variation and the division of patterns to subsets were also tried.The tests with pattern length were made for m = 8, 16, and 32, see Fig-ure 5a. The performance of the SOG algorithm degrades fast when the numberof patterns reaches 100,000. This is the same e�ect that was found with theHG algorithm; Almost all text positions match because there are only 65,536di�erent 2-grams. When the pattern set size is less than 20,000, the run time ofthe algorithm is constant because no false matches are found.Figure 5a also shows that the algorithm is signi�cantly slower for m=32 thanfor m=8 and 16. This is likely due to the data cache. The structures of the SOGalgorithm take 64 kB memory for m=8, 128 kB for m=16, and 256 kB for m=32.Given the cache size of 256 kB, it is clear that the structures for m=32 cannotbe held in the cache all the time because also the text to be searched has to bethere.The behavior of SOG with alphabet sizes 64, 128, and 256 is shown in Fig-ure 5b. Given the alphabet size 64, there are 4,096 di�erent 2-grams, and sothe performance of the SOG algorithm was expected to degrade after 4,000 pat-terns. Using the same reasoning, the performance of the SOG algorithm usingthe 7-bit alphabet was expected to degrade after 16,000 patterns and the 8-bitalphabet version after 65,000 patterns. The graphs of Figure 5b follow nicelythis prediction.The 3-gram version of the SOG algorithm was tested for m=8. Figure 6ashows a comparison of the 2-gram and 3-gram versions. With less than 500,000

0.1

1

10

100

100 1000 10000 100000

R
un

 ti
m

e
(s

)

Number of patterns

SOG using 2-grams
SOG using 3-grams

0.1

1

10

100

100 1000 10000 100000

R
un

 ti
m

es
 (

s)

Number of patterns

1 subset
2 subsets
4 subsets

(a) (b)Figure 6. The SOG algorithm: (a) comparison of the 2- and 3-gram versions and (b)the e�ect of one, two and four subsets.patterns the run time of the 3-gram SOG algorithm is constant and there areonly a few false matches because given our hashing scheme there are about 2 ·106di�erent 3-grams. The 3-gram version is, however, much slower than the 2-gramversion due to the hashing overhead and the greater memory requirement whichcauses cache misses.The use of subsets with the SOG algorithm was tested for m=8. We triedversions with one, two and four subsets, see Figure 6b. The versions using oneor two subsets are almost as fast up to 20,000 patterns. After that the versionusing two subsets is slightly faster. The version using four subsets is signi�cantlyslower than the other two versions with small pattern set sizes. The problemhere is that the table needed to store the 32-bit vectors is as large as the datacache. In computers with larger caches this version would likely perform as wellas the other two. Given r patterns, using four subsets should result in roughly asmany false matches as using one subset with r/4 patterns because in the versionwith four subsets only one subset can match at a given position. The results ofthe tests show that there are a little more matches than that. This is due to themore homogeneous sets produced by the division of patterns.8.3 BGWe tested the performance of the BG algorithm for m = 8, 16 and 32. Thealgorithm is faster for m=16 than for m=8. In the case of m=32, the algorithmsu�ers from the large table which cannot be kept in the cache all the time.However, the �ltering e�ciency improves slightly with longer patterns.The 3-gram version of the BG algorithm was also tested. The result wassimilar to that of SOG. With less than 50,000 patterns, the 2-gram approachis clearly faster but after that the 3-gram version performs faster. The 3-gramversion is slower mainly because of its memory usage. The hashing scheme usedalso slows it down.

Table 1. Run times of the algorithms when r varies for m=8 and c=256.100 200 500 1,000 2,000 5,000 10,000 20,000 50,000 100,000Aho-Corasick 0.538 0.944 1.559 1.824 2.221 3.055 4.433 6.804 12.427 17.951RKBT 0.265 0.293 0.358 0.483 0.735 1.551 2.942 5.660 16.423 29.567Set Horspool 0.235 0.513 1.375 1.848 2.252 2.990 4.083 6.068 10.154 13.225agrep 0.130 0.160 0.220 0.370 0.820 2.090 7.670 26.480 74.370 148.690SOG 0.167 0.166 0.167 0.168 0.166 0.167 0.166 0.169 0.435 6.357HG 0.031 0.033 0.038 0.046 0.067 0.142 0.266 0.784 8.182 26.884BG 0.027 0.029 0.035 0.041 0.056 0.106 0.151 0.206 0.649 7.389
0.01

0.1

1

10

100

1000

100 1000 10000 100000

R
un

 ti
m

e
(s

)

Number of patterns

RKBT
SOG
agrep
HG
BG

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000

R
un

 ti
m

e
(s

)

Number of patterns

RKBT
SOG
A-C
HG
BG

(a) (b)Figure 7. Run time comparison of the algorithms for (a) random data (m=8, c=256)and (b) dna data (m=32).The use of subsets with the BG algorithm was tested for m=8 with one, twoand four subsets. The results of these tests were very similar to the ones of theSOG algorithm.8.4 Comparison of the AlgorithmsA run-time comparison of the algorithms is shown in Figures 3 and 7a based onTable 1. These times include veri�cation but exclude preprocessing.The memory usage and the preprocessing times of the algorithms are shownin Table 2. These are results from tests with patterns of eight characters, whereHG, SOG, and BG use 2-grams.Figure 7a shows that our algorithms are considerably faster than the algo-rithms presented earlier. The HG and BG algorithms are the fastest, when thereare less than 5,000 patterns. Between 5,000 and 100,000 patterns the SOG andBG algorithms are the fastest. The BG algorithm has the best overall e�ciency.With larger patterns sets, the use of subsets with these algorithms would beadvantageous. Our algorithms scale to even larger pattern sets by using larger
q-grams if there is enough memory available.

Table 2. Memory usage and preprocessing times of the algorithms for r = 100 and100,000. Algorithm Memory (kB) Preproc. (s)100 100,000 100 100,000RKBT 13 1,184 0.02 0.20HG 69 1,240 0.03 0.23SOG 77 1,248 0.03 0.21BG 77 1,248 0.03 0.21A-C (with tables) 799 663,174 0.54 5.10Set Horspool (with tables) 793 656,338 0.19 1.68Table 2 shows that the preprocessing phase of our algorithms is fast. Table 2also shows that the memory usage of our algorithms is fairly small. In fact, thememory usage of our �ltering techniques is constant. Because our algorithmsuse RKBT as a subroutine, their numbers cover also all the structures of RKBTincluding the second hash table. The space increase in Table 2 is due to the needto store the patterns for the veri�cation phase. The space for the patterns couldbe reduced by using clever hash values. For example for m=8, we could storeonly four characters of each pattern and use a 32-bit hash value such that theother four characters can be obtained from these characters and the hash value.We also run a preliminary test on dna data. Our text was the genome of fruit�y (20 MB). We used random patterns of 32 characters for q=8. The results areshown in Figure 7b. This test was made on a 1.0 GHz computer with 256 MBof memory and 512 kB cache. The algorithms HG and BG worked very well forsets of less than 10,000 patterns.9 Concluding RemarksWe have presented e�cient solutions for multiple string matching based on �lter-ing with q-grams and bit-parallelism. We showed that on random test data, ouralgorithms perform faster and use a smaller amount of memory than the earlierones. The preprocessing phase of our algorithms is fast. We tuned the algorithmsto handle e�ciently up to 100,000 patterns of eight characters. Our algorithmssuit especially well to the searching of huge static sets of rare patterns.Our approach seems to be sensitive to cache e�ects. We need to test thealgorithms in several computers of di�erent types in order to get additionalinformation on their behavior.We utilized overlapping q-grams. We tested our algorithms also with con-secutive non-overlapping q-grams, but this modi�cation brought clearly worseresults. We used mainly the alphabet c=256. In the near future we will try smallalphabets and compare our algorithm with the SBOM algorithm of Navarro andRa�not [14]. We will also consider approximate matching (see e.g. [12]).

References1. A. Aho, M. Corasick: E�cient string matching: An aid to bibliographic search.Communications of the ACM 18, 6 (1975), 333�340.2. R. Baeza-Yates. Improved string searching. Software � Practice and Experience,19, 3 (1989), 257�271.3. R. Baeza-Yates, G. Gonnet: A new approach to text searching. Communicationsof ACM 35, 10 (1992), 74�82.4. R. Boyer, S. Moore: A fast string searching algorithm. Communications of theACM 20 (1977), 762�772.5. B. Commentz-Walter: A string matching algorithm fast on the average. Proc.6th International Colloquium on Automata, Languages and Programming, LectureNotes on Computer Science 71, 1979, 118�132.6. M. Crochemore, W. Rytter: Text algorithms. Oxford University Press, 1994.7. K. Fredriksson: Fast string matching with super-alphabet. Proc. SPIRE '02, StringProcessing and Information Retrieval, Lecture Notes in Computer Science 2476,2002, 44�57.8. M. Fisk, G. Varghese: Fast content-based packet handling for intrusion detection.UCSD Technical Report CS2001-0670, 2001.9. B. Gum, R. Lipton: Cheaper by the dozen: batched algorithms. Proc. First SIAMInternational Conference on Data Mining, 200110. N. Horspool: Practical fast searching in strings. Software � Practice and Experience10 (1980), 501�506.11. R. Karp, M. Rabin: E�cient randomized pattern-matching algorithms. IBM Jour-nal of Research and Development 31 (1987), 249�260.12. R. Muth, U. Manber: Approximate multiple string search. Proc. CPM '96, Combi-natorial Pattern Matching, Lecture Notes in Computer Science 1075, 1996, 75�86.13. G. Navarro, M. Ra�not: Fast and �exible string matching by combining bit-parallelism and su�x automata. ACM Journal of Experimental Algorithms 5, 4(2000), 1�36.14. G. Navarro, M. Ra�not: Flexible pattern matching in strings. Cambridge Univer-sity Press, 2002.15. S. Wu, U. Manber: A fast algorithm for multi-pattern searching. Report TR-94-17,Department of Computer Science, University of Arizona, 1994.16. S. Wu, U. Manber: Agrep � A fast approximate pattern-matching tool. Proc. UsenixWinter 1992 Technical Conference, 1992, 153�162.17. R. Zhu, T. Takaoka: A technique for two-dimensional pattern matching. Commu-nications of the ACM 32 (1989), 1110�1120.

