
String Mat
hing with Stopper En
odingand Code Splitting?Jussi Rautio1, Jani Tanninen2, and Jorma Tarhio11 Department of Computer S
ien
e and EngineeringHelsinki University of Te
hnologyP.O. Box 5400, FIN-02015 HUT, Finland{jrautio,tarhio}�
s.hut.fi2 Department of Computer S
ien
e, University of JoensuuP.O. Box 111, FIN-80101 Joensuu, Finlandjtanni�
s.joensuu.fiAbstra
t. We 
onsider exa
t string sear
hing in 
ompressed texts. Weutilize a semi-stati
 
ompression s
heme, where 
hara
ters of the textare en
oded as variable-length sequen
es of base symbols, ea
h of whi
his represented by a �xed number of bits. In addition, we split the sym-bols into two parallel �les in order to allow faster a

ess. Our sear
hingalgorithm is a modi�
ation of the Boyer-Moore-Horspool algorithm. Ourapproa
h is pra
ti
al and enables faster sear
hing of string patterns thanearlier 
hara
ter-based 
ompression models and the best Boyer-Moorevariants in un
ompressed texts.1 Introdu
tionThe string mat
hing problem, whi
h is a 
ommon problem in many ap-pli
ations, is de�ned as follows: given a pattern P = p1 : : : pm and a textT = t1 : : : tn in an alphabet �, �nd all the o

urren
es of P in T . Variousgood solutions [6℄ have been presented for this problem. The most e�
ientsolutions in pra
ti
e are based on the Boyer-Moore approa
h [5℄.Re
ently the 
ompressed mat
hing problem [1℄ has gained mu
h atten-tion. In this problem, string mat
hing is done in a 
ompressed text withoutde
ompressing it. Resear
hers have proposed several e�
ient methods [12,2, 15, 13℄ based on Hu�man 
oding [9℄ or the Ziv-Lempel family [20, 21℄.One of the most e�
ient approa
hes has been developed by Shibata etal. [17℄. They present a method 
alled BM-BPE whi
h �nds text patternsfaster in a 
ompressed text than Agrep [18℄ �nds the same patterns in anun
ompressed text. Their sear
h engine is based on the Boyer-Moore al-gorithm and they employ a restri
ted version of byte pair en
oding (BPE)[7℄ a
hieving a saving of 40% in spa
e. BPE repla
es re
ursively the most? This work has been supported by the National Te
hnology Agen
y (Tekes).




ommon 
hara
ter pair by an unused 
hara
ter 
ode. A

ording to theirexperiments BM-BPE is faster than most of the earlier methods.Two other works apply the Boyer-Moore approa
h in 
ompressed texts.Manber [11℄ presents a non-re
ursive 
oding s
heme related to BPE. No
hara
ter 
an be both the right 
hara
ter of one pair and the left 
har-a
ter of another. His method a
hieves a saving of 30% in spa
e and thesear
h speed is 30% faster than Agrep. Be
ause of spe
ial 
oding, Manber'sapproa
h works poorly with short patterns. Moura et al. [12℄ present amethod with a better 
ompression ratio than BPE and with a faster sear
hthan Manber, but their sear
h works only with words.We present a new method, whi
h is faster than the best variation ofBM-BPE with a 
omparable 
ompression ratio. In our method 
hara
tersare en
oded as variable-length sequen
es of base symbols, where ea
h basesymbol is represented by a �xed number of bits. Our 
oding approa
h isa generalization of that of Moura et al. [12℄, where bytes are used as basesymbols for 
oding words. In addition, we split the base symbols into twoparallel �les in order to allow faster a

ess. Our sear
h algorithm is avariation of the Boyer-Moore-Horspool algorithm [8℄. The shift fun
tionis based on several base symbols in order to enable longer jumps than theordinary o

urren
e heuristi
.We tested our approa
h with texts of natural language. Besides outper-forming BM-BPE, our approa
h was 
learly more e�
ient than the bestBoyer-Moore variants of Hume and Sunday [10℄ in un
ompressed texts form > 3. Our approa
h is e�
ient also for short patterns, whi
h are impor-tant in pra
ti
e. For example, our approa
h is 20% faster than BM-BPEand an e�
ient Boyer-Moore variant for patterns of four 
hara
ters.Our approa
h is not restri
ted to exa
t mat
hing nor the Boyer-Moorealgorithm, but it 
an be applied to string mat
hing problems of other typesas well.2 Stopper En
oding2.1 Stoppers and ContinuersWe apply a semi-stati
 
oding s
heme 
alled stopper en
oding for 
hara
-ters, where the 
odewords are based on frequen
ies of 
hara
ters in thetext to be 
ompressed. The frequen
ies of 
hara
ters are gathered in the�rst pass of the text before the a
tual 
oding in the se
ond pass. Alter-natively, �xed frequen
ies based on the language and the type of the textmay be used.



A 
odeword is a variable-length sequen
e of base symbols whi
h arerepresented as k bits, where k is a parameter of our s
heme. Be
ause thelength of a 
odeword varies, we need a me
hanism to re
ognize where anew one starts. A simple solution is to reserve some of the base symbolsas stoppers whi
h 
an only be used as the last base symbol of a 
odeword.All other base symbols are 
ontinuers whi
h 
an be used anywhere but inthe end of a 
odeword. If u1 : : : uj is a 
odeword, then u1, . . . , uj�1 are
ontinuers and uj is a stopper.Moura et al. [12℄ use a �xed 
oding s
heme related to our approa
h.They apply 8-bit base symbols to en
ode words where one bit is used todes
ribe whether the base symbol is a stopper or a 
ontinuer. Thus theyhave 128 stoppers and 128 
ontinuers.2.2 Number of StoppersIt is an optimization problem to 
hoose the number of stoppers to a
hievethe best 
ompression ratio (the size of the 
ompressed �le divided bythat of the original �le). The optimal number of stoppers depends on thenumber of di�erent 
hara
ters and the frequen
ies of the 
hara
ters. LetFi be the frequen
y of the ith 
hara
ter in the de
reasing order a

ordingto frequen
y. When en
oding with k-bit base symbols, s stoppers, and2k � s 
ontinuers, the 
ompression ratio C for a �xed division to stoppersand 
ontinuers 
an be 
al
ulated with the following formulas, where Ls;xis the number of di�erent 
odewords with x or less base symbols whenthere are s stoppers.Ls;x = x�1Xt=0 s(2k � s)tQi = kx8 Fi; where x is the smallest su
h that i � Ls;x:C = PiQiPi FiLet us 
onsider 3-bit base symbols as an example. Table 1 shows howmany 
hara
ters at most 
an be pro
essed optimally with s stoppers, whenthe frequen
y distribution of the 
hara
ters is uniform or follows Zipf'slaw.As another example, let us 
onsider the bible.txt of the CanterburyCorpus [3℄. For this text, 14 is the best number of stoppers, when basesymbols of four bits are used. Then ea
h of the 14 most 
ommon 
hara
ters



Table 1. Optimal stopper sele
tion.Stoppers Uniform Zipf7 15 166 19 445 66 794 87 4373 480 15352of the text (63.9% of all 
hara
ters) is en
oded with one base symbol of4 bits and the next 28 
hara
ters with two base symbols. In this s
heme,56 of the next 
hara
ters 
ould be en
oded with three base symbols, butthere are only 21 of them left (0.6% of all 
hara
ters.)Moura et al. [12℄ use 128 stoppers for 8-bit base symbols. This numberis not optimal. More stoppers produ
e a better 
ompression ratio�thegain is about 5% in the 
ase of the words of the bible.txt. However, thedi�eren
e is marginal in the 
ase of longer texts.Perhaps the easiest method of �nding the optimal number of stoppersis to 
al
ulate �rst the 
umulative frequen
ies of 
hara
ters. Let F 0(i) bethe 
umulative frequen
y of the ith 
hara
ter in the de
reasing order offrequen
y su
h that F 0(0) = 0. Then Ss;x = kx8 (F 0(Ls;x) � F 0(Ls;x�1))is the total 
oding spa
e for all k-bit base symbols of width x. Then weexamine whi
h value of s minimizes the sum PxNx=1 Ss;x where N is thenumber of di�erent 
hara
ters and xN is the largest x su
h that Ls;x � Nholds.2.3 Building the En
oding TableAfter the number of stoppers (and with it, the 
ompression ratio) hasbeen de
ided, an en
oding table 
an be 
reated. The average sear
h timeis smaller if the distribution of base symbols is as uniform as possible.We present here a heuristi
 algorithm, whi
h produ
es 
omparable resultswith an optimal solution in the average 
ase.The pro
edure depends on the width of base symbols. We presenthere the 4-bit version. Let us assume that the 
hara
ters are orderedin a de
reasing order of frequen
y. If the number of stoppers is s, weallo
ate the s �rst base symbols as one-symbol 
odewords for the s most
ommon 
hara
ters. The next s(16 � s) 
hara
ters will have two-symbol
odewords, starting with a 
ontinuer (the index of the base symbol iss + (
 � s) mod (16 � s)), and ending with a stopper (the index of thebase symbol is (
� s) div (16� s)), where 
 is the index of the 
hara
ter



in turn. Further symbols are en
oded with more 
ontinuers and a stoppera

ording to the same idea.The en
oding table is stored with the 
ompressed text. We need N+2bytes to en
ode the table for N 8-bit 
hara
ters. One byte is reserved forthe number of 
hara
ters and another byte for the number of stoppers.After these bytes, all the 
hara
ters present in the text are given in thede
reasing order of frequen
y. With this information, the en
oding table
an be re
onstru
ted before de
ompression.3 Code SplittingWe made an experiment of a

essing 100 000 bytes from a long array.For ea
h g = 0; 1; :::; 7 we run a test where the bytes were a

essed withrepetitive gaps of g, i.e. we a

ess bytes g � i, i = 0; 1; :::; 99999.Table 2 shows the results of the experiment whi
h was run on a 500MHz Celeron pro
essor under Linux. The times are relative exe
utiontimes with a �xed gap width. The main task of the test program wasa

ess the array, but it did some additional 
omputation to make thesituation more realisti
. This extra 
omputation was the same for ea
hrun. Table 2. An a

ess experiment.Gap 0 1 2 3 4 5 6 7Time 1.00 1.56 2.18 2.70 2.02 2.39 2.55 2.72A

ording to Table 2, dense a

essing is 
learly more e�
ient thansparse a

essing, although the total time does not grow monotonously.This dependen
y is a 
onsequen
e of the hierar
hi
al organization of mem-ory in modern 
omputers. We tested the same program also with otherpro
essors and the results were rather similar. This phenomenon suggeststhat string mat
hing of the Boyer-Moore type 
ould be made faster bysplitting the text to several parallel �les.Combining 
ode splitting with stopper en
oding. The splitting ofthe text 
ould be done in many ways. We apply the following approa
h.Let the text be represented as k-bit base symbols. We 
on
atenate the hhigh bits of the base symbols to a �le and the l low bits to another �le,



h+ l = k. In pra
ti
e these �les 
ould be still 
on
atenated, but here we
onsider two separate �les for 
larity. We 
all this method 
ode splitting.We denote stopper en
oding with the division to h high bits and l lowbits by SEk;h. The version without 
ode splitting is denoted by SEk;0. Theplain 
ode splitting without 
ompression is denoted by SE8;h. Note thatSE8;h 
an be seen a representative of stopper en
oding: in SE8;h all the256 base symbols of eight bits are stoppers.We 
onsider mainly three versions of stopper en
oding: SE4;0, SE8;4,and SE6;2. Note that SE4;0 applies 
ompression, SE8;4 
ode splitting, andSE6;2 both of them.4 The Sear
hing AlgorithmThe key point of the sear
hing algorithm is that the pattern is en
odedin the same way as the text. So we a
tually sear
h for o

urren
es of astring of base symbols, or low bits of them, if 
ode splitting is applied.In the latter 
ase, the sear
h in low bits produ
es only potential mat
heswhi
h all should be 
he
ked with high bits.After �nding an o

urren
e of the en
oded pattern, we simply 
he
kthe base symbol pre
eding the o

urren
e. If the base symbol is a stopper(or the o

urren
e starts the text), we report a mat
h, otherwise we ignorethis alignment and move on.4.1 Sear
hing in an Alphabet of 16 Chara
tersLet us assume that we have a text with 16 or less di�erent 
hara
ters.Then all the 
hara
ters of the text 
an be represented with four bits, andwe 
an store two 
onse
utive 
hara
ters in one 8-bit byte.The basis of our sear
hing algorithm is ufast.fwd.md2, a fast Boyer-More-Horspool variant presented by Hume and Sunday [10℄. This algo-rithm employs an unrolled skip loop and a �xed shift in the 
ase of themat
h of the last 
hara
ter of the pattern. The shift is based on the text
hara
ter under the rightmost 
hara
ter of the pattern. It is straightfor-ward to modify ufast.fwd.md2 to our setting.Be
ause one byte holds two 
hara
ters, there are two di�erent bytealignments of an o

urren
e of the pattern. Therefore there are two a
-
eptable bytes whi
h may start the 
he
king phase of the algorithm, 
or-responding to these two alignments.The shift is based on a 
hara
ter pair in the terms of the original text.This approa
h in ordinary string mat
hing has been studied by Baeza-Yates [4℄ and Zhu and Takaoka [19℄. Zhu and Takaoka take the shift as a



minimum of shifts based on mat
h and o

urren
e heuristi
s like in theoriginal Boyer-Moore algorithm [5℄. However the mere o

urren
e heuristi
is faster in pra
ti
e for natural language texts.This sear
hing algorithm works �ne with the variant SE4;0, where 4-bitbase symbols are used and thus the size of alphabet is just 16.4.2 Sear
hing in SE8;4Re
all that no 
ompression is involved with SE8;4. All the bytes of thetext are split in two parts: the four high bits to one part and the four lowbits to the other. These parts are stored in separate �les, where new bytesare made from two half-bytes. For example the text �Finland!�, whi
h is46-69-6e-6
-61-6e-64-21 in hexade
imal, will have its high bits storedas 46-66-66-62 and the low bits as 69-e
-1e-41.Now suppose we wanted to sear
h the pattern land, whi
h is6
-61-6e-64, in the en
oded text. We start by sear
hing the low bits forthe 
orresponding 
ombination of low bits whi
h we will 
all the en
odedpattern, namely 
1-e4. Then the pattern 
ould start from the beginningof a byte in the low bits (
1-e4) or from the middle of a byte (*
-1e-4*),where the asterisk represents any hexade
imal digit.Now we use some method to sear
h the low bits for all o

urren
es (ofboth variants) of this en
oded pattern. When and only when a mat
h isfound in the low bits, the 
orresponding high bits are 
he
ked. So if thereare no mat
hes in the low bits, the high bits 
an be ignored.An advantage of this method is that only a fra
tion of the 
hara
tersof the text are inspe
ted. False mat
hes (substrings of the text where thelow bits mat
h with the pattern and the high bits do not) are rare in mosttexts of natural language, so we seldom need to 
he
k the high bits at all.Another advantage is that two 
hara
ters are a

essed at a time whiles
anning the text.4.3 Sear
hing in SE6;2This 6-bit variant sa
ri�
es spa
e for speed. The ideal 
ompression ratiois 75%, when there are 64 or fewer di�erent 
hara
ters in the text. Sin
e itis di�
ult to store sequen
es of 6-bit base symbols into 8-bit bytes, 
odesplitting is applied. We store four low bits and two high bits separately.This allows two variations. The �rst variation goes through the 4-bitpart and 
he
ks the 2-bit part only when a mat
h in the 4-bit part isfound. This is what we will 
all the 4+2 sear
hing algorithm. The se
-ond variation, 2+4, does the same thing vi
e versa. The 2+4 variation is



generally faster, be
ause it only needs to take 13 of all data into a

ounton the �rst pass, while the 4+2 takes 23 of it. However, the overhead ofhaving to sear
h 4 patterns simultaneously and ine�
ien
y in the 
ase ofpatterns of 7 or less 
hara
ters, also make the 4+2 variation usable onthe side of the 2+4 one. The best algorithm is obviously a 
ombination.Based on our experiments, we de
ided to use the 2+4 variation for m � 8and the 4+2 one for m < 8.5 Experimental ResultsWhen Boyer-Moore string sear
hing des
ribed above is 
ombined withstopper en
oding SEk;h, the total method is denoted by BM-SEk;h.We tested the performan
e of the algorithms BM-SE4;0, BM-SE8;4, andBM-SE6;2. Re
all that SE4;0 applies 
ompression, SE8;4 
ode splitting, andSE6;2 both of them. We 
ompared them with four other sear
hing algo-rithms. We used Tuned Boyer-Moore or ufast.fwd.md2 [10℄ denoted byTBM as the sear
hing algorithm for un
ompressed texts. Three versionsof the BM-BPE algorithm (a 
ourtesy from M. Takeda) for 
ompressedtexts were tested: one with maximal 
ompression ratio and no upper limitfor the number of 
hara
ters represented by a byte (max), another withoptimal sear
h speed where a byte 
an represent at most two 
hara
ters(fast), and the third one where a byte 
an represent at most three 
hara
-ters and whi
h was re
ommended by the authors (re
). All the algorithmswere modi�ed to read �rst the whole text to the main memory and thento perform the sear
h. All the tests were run on on a 500 MHz Celeronpro
essor with 64 MB main memory under Linux.The 
ompression ratio was measured with four texts (Table 3): thebible.txt [3℄, the CIA World Fa
tbook of 1992, Kalevala, the national epi
of Finland (in Finnish), and E.
oli, the genome of Es
heri
hia 
oli, entirely
omposed of the four DNA symbols. As explained earlier, there is no 
om-pression involved with SE8;4, only a di�erent en
oding. The 
ompressed�les in
lude the en
oding tables whi
h are ne
essary to un
ompress them.As a referen
e, we give also the 
ompression ratios a
hieved with Gzip.To make a fair 
omparison with BM-BPE, the version BM-SE4;0 isthe right 
hoi
e, be
ause its 
ompression rate is similar to that of the fastBM-BPE.The 
ompression and de
ompression algorithms of BM-SE are veryfast (17 MB/s) due to the lightweight en
oding and de
oding s
hemes.We tested the sear
h speed with two texts: bible.txt (Table 4) andE.
oli (Table 5). We used 
ommand-line versions of all the algorithms.



Table 3. Compression ratio.bible.txt CIA1992 Kalevala E.
oli3.86 MB 2.36 MB 0.52 MB 4.42 MBBM-BPE max 47.8% 56.8% 51.9% 31.3%BM-BPE fast 56.2% 63.0% 55.1% 50.0%BM-SE4;0 58.9% 68.2% 58.1% 50.0%BM-SE6;2 75.0% 75.8% 75.1% 75.0%Gzip 29.4% 29.3% 36.3% 28.9%We measured the pro
essor time in millise
onds required by the sear
h.Although the ex
luding of the I/O time slightly favors poorer 
ompres-sion methods, we wanted to measure the e�
ien
y of the pure algorithmswithout any disturban
e due to bu�ering. The same test was repeated for500 di�erent strings of the same length randomly 
hosen in the text.Table 4. Sear
h times (ms), bible.txt, 3 � m � 20.3 4 5 6 8 10 12 16 20TBM 53.4 47.4 42.8 40.4 37.0 35.2 35.0 33.8 31.8BM-BPE max 68.4 66.2 63.4 61.2 57.6 55.2 53.2 39.4 38.6BM-BPE re
 71.8 51.2 45.0 44.2 35.0 31.2 30.6 26.8 25.8BM-BPEfast 52.4 46.4 38.2 36.2 31.0 27.8 26.4 24.2 23.6BM-SE8;4 59.4 38.4 32.0 26.2 22.6 20.0 18.8 17.2 17.0BM-SE4;0 49.0 37.2 31.6 28.0 24.2 22.2 21.0 20.0 19.4BM-SE6;2 66.8 38.0 32.6 26.6 18.8 15.2 13.6 12.0 10.4In the bible.txt, the versions BM-SE4;0 and BM-SE6;2 of Boyer-Moorewith stopper en
oding are 
learly faster than BM-BPE for all patternwidths shown in Table 4. However, they are also faster than TBM ex
lud-ing very short patterns m < 4. Even the version without 
ompression,BM-SE8;4 is faster than TBM and BM-BPE for m > 3. None of the BM-SE algorithms is distin
tly the fastest one. BM-SE4;0 is the fastest form < 6, BM-SE8;4 for m = 6, BM-SE6;2 for m > 6. The times of fouralgorithms are shown graphi
ally in Figure 1.The advantage of BM-SE is smaller in the DNA text, be
ause the aver-age length of shift is shorter. A

ording to Table 5, BM-SE4;0 is the fastestfor short patterns m � 12 and BM-BPE re
 for longer ones. Note thatBM-BPE re
 is now 
learly faster than BM-BPE fast. As one may expe
t,BM-SE6;2 is very poor in the DNA text and so we left it out from this
omparison. Probably BM-SE2;0 (whi
h has not yet been implemented)will be even better than BM-SE4;0 for DNA data.



Fig. 1. Sear
h times in bible.txt.TBM is not a good referen
e algorithm for DNA mat
hing. BNDM[14℄ would be more appropriate, be
ause is the fastest known algorithmfor patterns m � w, where w is the number of bits in the 
omputer word.Other alternatives would have been ufast.rev.gd2 [10℄ or algorithms basedon alphabet transformations [4, 16℄.Table 5. Sear
h times (ms), E.
oli, 6 � m � 48.6 12 24 48TBM 67.0 61.2 60.0 60.2BM-BPE max 52.8 34.2 26.0 23.0BM-BPE re
 43.2 28.0 22.0 21.0BM-BPE fast 52.4 36.8 31.4 30.4BM-SE8;4 37.8 27.4 23.6 22.0BM-SE4;0 35.8 26.2 23.0 21.46 Con
luding RemarksWe have presented a new pra
ti
al solution for the 
ompressed mat
hingproblem. A

ording to our experiments the sear
h speed of our BM-SE



is 
learly faster than that of BM-BPE for natural language texts. Theversion BM-SE4;0 has similar 
ompression ratio to the fast BM-BPE. InDNA texts there is no signi�
ant di�eren
e in the sear
h speed.Moreover our BM-SE is faster than TBM for patterns longer thanthree 
hara
ters.It would be interesting to 
ompare BM-SE with Manber's method [11℄,be
ause he reports a gain of 30% in sear
h times. It is 
lear that this gainis not possible for short patterns be
ause of Manber's pairing s
heme. Apart of the gain is due to the save in I/O time whi
h was ex
luded in ourmeasurements.Referen
es1. A. Amir and G. Benson. E�
ient two-dimensional 
ompressed mat
hing. In Pro
.DCC'92, pages 279�288, 1992.2. A. Amir, G. Benson, and M. Fara
h. Let sleeping �les lie: Pattern mat
hing inZ-
ompressed �les. J. of Comp. and Sys. S
ien
es, 52(2):299�307, 1996.3. R. Arnold and T. Bell. A 
orpus for the evaluation of lossless 
ompression algo-rithms. In Pro
. DCC '97, Data Compression Conferen
e. IEEE, 1997.4. R. Baeza-Yates. Improved string sear
hing. Software � Pra
ti
e and Experien
e,19(3):257�271, 1989.5. R. S. Boyer and J. S. Moore. A fast string sear
hing algorithm. CACM, 20(10):762�772, 1977.6. M. Cro
hemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.7. P. Gage. A new algorithm for data 
ompression. C/C++ Users Journal, 12(2),1994.8. R. N. Horspool. Pra
ti
al fast sear
hing in strings. Software Pra
ti
e and Experi-en
e, 10:501�506, 1980.9. D. Hu�man. A method for the 
onstru
tion of minimum-redundan
y 
odes. Pro
.of the I.R.E., 40(9):1090�1101, 1952.10. A. Hume and D. Sunday. Fast string sear
hing. Software � Pra
ti
e and Experien
e,21(11):1221�1248, 1991.11. U. Manber. A text 
ompression s
heme that allows fast sear
hing dire
tly in the
ompressed �le. ACM Trans. on Information Systems, 15(2):124�136, 1997.12. E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and �exible wordsear
hing on 
ompressed text. ACM Trans. on Information Systems, 18(2):113�139, 2000.13. G. Navarro, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Faster approximatestring mat
hing over 
ompressed text. In Pro
. 11th IEEE Data CompressionConferen
e (DCC'01), pages 459�468, 2001.14. G. Navarro and M. Ra�not. Fast and �exible string mat
hing by 
ombiningbit-parallelism and su�x automata. ACM Journal of Experimental Algorithmi
s(JEA), 5, 2000.15. G. Navarro and J. Tarhio. Boyer-Moore string mat
hing over Ziv-Lempel 
om-pressed text. In Pro
. 11st Annual Symposium on Combinatorial Pattern Mat
hing(CPM 2000), LNCS 1848, pages 166�180, 2000.



16. H. Peltola and J. Tarhio. String mat
hing in the DNA alphabet. Software �Pra
ti
e and Experien
e, 27:851�861, 1997.17. Y. Shibata, T. Matsumoto, M. Takeda, A. Shiohara, and S. Arikawa. A Boyer-Moore type algorithm for 
ompressed pattern mat
hing. In Pro
. 11st AnnualSymposium on Combinatorial Pattern Mat
hing (CPM 2000), LNCS 1848, pages181�194, 2000.18. S. Wu and U. Manber. Agrep � a fast approximate pattern-mat
hing tool. In Pro
.USENIX Te
hni
al Conferen
e, pages 153�162, Berkeley, CA, USA, 1992.19. R. Zhu and T. Takaoka. On improving the average 
ase of Boyer-Moore stringmat
hing algorithm. Journal of Information Pro
essing, 10:173�177, 1987.20. J. Ziv and A. Lempel. A universal algorithm for sequential data 
ompression.IEEE Trans. Inf. Theory, 23:337�343, 1977.21. J. Ziv and A. Lempel. Compression of individual sequen
es via variable length
oding. IEEE Trans. Inf. Theory, 24:530�536, 1978.


