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Abstract. We consider exact string searching in compressed texts. We
utilize a semi-static compression scheme, where characters of the text
are encoded as variable-length sequences of base symbols, each of which
is represented by a fixed number of bits. In addition, we split the sym-
bols into two parallel files in order to allow faster access. Our searching
algorithm is a modification of the Boyer-Moore-Horspool algorithm. Our
approach is practical and enables faster searching of string patterns than
earlier character-based compression models and the best Boyer-Moore
variants in uncompressed texts.

1 Introduction

The string matching problem, which is a common problem in many ap-
plications, is defined as follows: given a pattern P = p; ...p, and a text
T =1t;...1, in an alphabet X, find all the occurrences of P in T'. Various
good solutions [6] have been presented for this problem. The most efficient
solutions in practice are based on the Boyer-Moore approach [5].
Recently the compressed matching problem [1] has gained much atten-
tion. In this problem, string matching is done in a compressed text without
decompressing it. Researchers have proposed several efficient methods [12,
2,15, 13| based on Huffman coding |9] or the Ziv-Lempel family [20, 21].
One of the most efficient approaches has been developed by Shibata et
al. [17]. They present a method called BM-BPE which finds text patterns
faster in a compressed text than Agrep [18] finds the same patterns in an
uncompressed text. Their search engine is based on the Boyer-Moore al-
gorithm and they employ a restricted version of byte pair encoding (BPE)
[7] achieving a saving of 40% in space. BPE replaces recursively the most
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common character pair by an unused character code. According to their
experiments BM-BPE is faster than most of the earlier methods.

Two other works apply the Boyer-Moore approach in compressed texts.
Manber [11]| presents a non-recursive coding scheme related to BPE. No
character can be both the right character of one pair and the left char-
acter of another. His method achieves a saving of 30% in space and the
search speed is 30% faster than Agrep. Because of special coding, Manber’s
approach works poorly with short patterns. Moura et al. [12| present a
method with a better compression ratio than BPE and with a faster search
than Manber, but their search works only with words.

We present a new method, which is faster than the best variation of
BM-BPE with a comparable compression ratio. In our method characters
are encoded as variable-length sequences of base symbols, where each base
symbol is represented by a fixed number of bits. Our coding approach is
a generalization of that of Moura et al. [12], where bytes are used as base
symbols for coding words. In addition, we split the base symbols into two
parallel files in order to allow faster access. Our search algorithm is a
variation of the Boyer-Moore-Horspool algorithm [8]. The shift function
is based on several base symbols in order to enable longer jumps than the
ordinary occurrence heuristic.

We tested our approach with texts of natural language. Besides outper-
forming BM-BPE, our approach was clearly more efficient than the best
Boyer-Moore variants of Hume and Sunday [10] in uncompressed texts for
m > 3. Our approach is efficient also for short patterns, which are impor-
tant in practice. For example, our approach is 20% faster than BM-BPE
and an efficient Boyer-Moore variant for patterns of four characters.

Our approach is not restricted to exact matching nor the Boyer-Moore
algorithm, but it can be applied to string matching problems of other types
as well.

2 Stopper Encoding

2.1 Stoppers and Continuers

We apply a semi-static coding scheme called stopper encoding for charac-
ters, where the codewords are based on frequencies of characters in the
text to be compressed. The frequencies of characters are gathered in the
first pass of the text before the actual coding in the second pass. Alter-
natively, fixed frequencies based on the language and the type of the text
may be used.



A codeword is a variable-length sequence of base symbols which are
represented as k bits, where k is a parameter of our scheme. Because the
length of a codeword varies, we need a mechanism to recognize where a
new one starts. A simple solution is to reserve some of the base symbols
as stoppers which can only be used as the last base symbol of a codeword.
All other base symbols are continuers which can be used anywhere but in
the end of a codeword. If u ... u; is a codeword, then ui, ..., uj_; are
continuers and wu; is a stopper.

Moura et al. [12] use a fixed coding scheme related to our approach.
They apply 8-bit base symbols to encode words where one bit is used to
describe whether the base symbol is a stopper or a continuer. Thus they
have 128 stoppers and 128 continuers.

2.2 Number of Stoppers

It is an optimization problem to choose the number of stoppers to achieve
the best compression ratio (the size of the compressed file divided by
that of the original file). The optimal number of stoppers depends on the
number of different characters and the frequencies of the characters. Let
F; be the frequency of the ' character in the decreasing order according
to frequency. When encoding with k-bit base symbols, s stoppers, and
2k — s continuers, the compression ratio C for a fixed division to stoppers
and continuers can be calculated with the following formulas, where L, ,
is the number of different codewords with x or less base symbols when
there are s stoppers.

z—1
Loz = s(2F —s)t
t=0
kx . .
Q; ng where z is the smallest such that ¢ < L ;.
C— > Qi
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Let us consider 3-bit base symbols as an example. Table 1 shows how
many characters at most can be processed optimally with s stoppers, when
the frequency distribution of the characters is uniform or follows Zipf’s
law.

As another example, let us consider the bible.txt of the Canterbury
Corpus [3]. For this text, 14 is the best number of stoppers, when base
symbols of four bits are used. Then each of the 14 most common characters



Table 1. Optimal stopper selection.

Stoppers| Uniform  Zipf
7 15 16
6 19 44
5 66 79
4 87 437
3 480 15352

of the text (63.9% of all characters) is encoded with one base symbol of
4 bits and the next 28 characters with two base symbols. In this scheme,
56 of the next characters could be encoded with three base symbols, but
there are only 21 of them left (0.6% of all characters.)

Moura et al. [12] use 128 stoppers for 8-bit base symbols. This number
is not optimal. More stoppers produce a better compression ratio—the
gain is about 5% in the case of the words of the bible.txt. However, the
difference is marginal in the case of longer texts.

Perhaps the easiest method of finding the optimal number of stoppers
is to calculate first the cumulative frequencies of characters. Let F'(i) be
the cumulative frequency of the i*" character in the decreasing order of
frequency such that F'(0) = 0. Then S;, = %m(F’(Ls’x) — F'(Ls 1))
is the total coding space for all k-bit base symbols of width z. Then we
examine which value of s minimizes the sum Y 7~ Ss, where N is the
number of different characters and z is the largest x such that L, , < N
holds.

2.3 Building the Encoding Table

After the number of stoppers (and with it, the compression ratio) has
been decided, an encoding table can be created. The average search time
is smaller if the distribution of base symbols is as uniform as possible.
We present here a heuristic algorithm, which produces comparable results
with an optimal solution in the average case.

The procedure depends on the width of base symbols. We present
here the 4-bit version. Let us assume that the characters are ordered
in a decreasing order of frequency. If the number of stoppers is s, we
allocate the s first base symbols as one-symbol codewords for the s most
common characters. The next s(16 — s) characters will have two-symbol
codewords, starting with a continuer (the index of the base symbol is
s+ (¢ —s) mod (16 — s)), and ending with a stopper (the index of the
base symbol is (¢ — s) div (16 — s)), where ¢ is the index of the character



in turn. Further symbols are encoded with more continuers and a stopper
according to the same idea.

The encoding table is stored with the compressed text. We need N + 2
bytes to encode the table for N 8-bit characters. One byte is reserved for
the number of characters and another byte for the number of stoppers.
After these bytes, all the characters present in the text are given in the
decreasing order of frequency. With this information, the encoding table
can be reconstructed before decompression.

3 Code Splitting

We made an experiment of accessing 100 000 bytes from a long array.
For each ¢ = 0,1,...,7 we run a test where the bytes were accessed with
repetitive gaps of g, i.e. we access bytes g -4, 2 = 0,1, ...,99999.

Table 2 shows the results of the experiment which was run on a 500
MHz Celeron processor under Linux. The times are relative execution
times with a fixed gap width. The main task of the test program was
access the array, but it did some additional computation to make the
situation more realistic. This extra computation was the same for each
run.

Table 2. An access experiment.

Gap 0 1 2 3 4 5 6 7
Time| 1.00 1.56 2.18 2.70 2.02 239 2.55 2.72

According to Table 2, dense accessing is clearly more efficient than
sparse accessing, although the total time does not grow monotonously.
This dependency is a consequence of the hierarchical organization of mem-
ory in modern computers. We tested the same program also with other
processors and the results were rather similar. This phenomenon suggests
that string matching of the Boyer-Moore type could be made faster by
splitting the text to several parallel files.

Combining code splitting with stopper encoding. The splitting of
the text could be done in many ways. We apply the following approach.
Let the text be represented as k-bit base symbols. We concatenate the h
high bits of the base symbols to a file and the [ low bits to another file,



h 4+ 1 = k. In practice these files could be still concatenated, but here we
consider two separate files for clarity. We call this method code splitting.

We denote stopper encoding with the division to A high bits and [ low
bits by SEj, 5. The version without code splitting is denoted by SEj . The
plain code splitting without compression is denoted by SEg ;. Note that
SEgj, can be seen a representative of stopper encoding: in SEgj all the
256 base symbols of eight bits are stoppers.

We consider mainly three versions of stopper encoding: SE4 0, SEg 4,
and SEg o. Note that SE4 ¢ applies compression, SEg 4 code splitting, and
SE672 both of them.

4 The Searching Algorithm

The key point of the searching algorithm is that the pattern is encoded
in the same way as the text. So we actually search for occurrences of a
string of base symbols, or low bits of them, if code splitting is applied.
In the latter case, the search in low bits produces only potential matches
which all should be checked with high bits.

After finding an occurrence of the encoded pattern, we simply check
the base symbol preceding the occurrence. If the base symbol is a stopper
(or the occurrence starts the text), we report a match, otherwise we ignore
this alignment and move on.

4.1 Searching in an Alphabet of 16 Characters

Let us assume that we have a text with 16 or less different characters.
Then all the characters of the text can be represented with four bits, and
we can store two consecutive characters in one 8-bit byte.

The basis of our searching algorithm is ufast.fwd.md2, a fast Boyer-
More-Horspool variant presented by Hume and Sunday [10]. This algo-
rithm employs an unrolled skip loop and a fixed shift in the case of the
match of the last character of the pattern. The shift is based on the text
character under the rightmost character of the pattern. It is straightfor-
ward to modify ufast.fwd.md2 to our setting.

Because one byte holds two characters, there are two different byte
alignments of an occurrence of the pattern. Therefore there are two ac-
ceptable bytes which may start the checking phase of the algorithm, cor-
responding to these two alignments.

The shift is based on a character pair in the terms of the original text.
This approach in ordinary string matching has been studied by Baeza-
Yates [4] and Zhu and Takaoka [19]. Zhu and Takaoka take the shift as a



minimum of shifts based on match and occurrence heuristics like in the
original Boyer-Moore algorithm [5]. However the mere occurrence heuristic
is faster in practice for natural language texts.

This searching algorithm works fine with the variant SE4 o, where 4-bit
base symbols are used and thus the size of alphabet is just 16.

4.2 Searching in SEg 4

Recall that no compression is involved with SEg4. All the bytes of the
text are split in two parts: the four high bits to one part and the four low
bits to the other. These parts are stored in separate files, where new bytes
are made from two half-bytes. For example the text “Finland!”, which is
46-69-6e-6c-61-6e-64-21 in hexadecimal, will have its high bits stored
as 46-66-66-62 and the low bits as 69-ec-1e-41.

Now suppose we wanted to search the pattern land, which is
6c-61-6e-64, in the encoded text. We start by searching the low bits for
the corresponding combination of low bits which we will call the encoded
pattern, namely cl-e4. Then the pattern could start from the beginning
of a byte in the low bits (c1-e4) or from the middle of a byte (xc-le-4%),
where the asterisk represents any hexadecimal digit.

Now we use some method to search the low bits for all occurrences (of
both variants) of this encoded pattern. When and only when a match is
found in the low bits, the corresponding high bits are checked. So if there
are no matches in the low bits, the high bits can be ignored.

An advantage of this method is that only a fraction of the characters
of the text are inspected. Fulse matches (substrings of the text where the
low bits match with the pattern and the high bits do not) are rare in most
texts of natural language, so we seldom need to check the high bits at all.
Another advantage is that two characters are accessed at a time while
scanning the text.

4.3 Searching in SEg 2

This 6-bit variant sacrifices space for speed. The ideal compression ratio
is 75%), when there are 64 or fewer different characters in the text. Since it
is difficult to store sequences of 6-bit base symbols into 8-bit bytes, code
splitting is applied. We store four low bits and two high bits separately.
This allows two variations. The first variation goes through the 4-bit
part and checks the 2-bit part only when a match in the 4-bit part is
found. This is what we will call the 442 searching algorithm. The sec-
ond variation, 244, does the same thing vice versa. The 244 variation is



generally faster, because it only needs to take % of all data into account
on the first pass, while the 4+2 takes % of it. However, the overhead of
having to search 4 patterns simultaneously and inefficiency in the case of
patterns of 7 or less characters, also make the 442 variation usable on
the side of the 2+4 one. The best algorithm is obviously a combination.
Based on our experiments, we decided to use the 2+4 variation for m > 8

and the 4+2 one for m < 8.

5 Experimental Results

When Boyer-Moore string searching described above is combined with
stopper encoding SEy, 5, the total method is denoted by BM-SEy, 5,.

We tested the performance of the algorithms BM-SE,4 o, BM-SEg 4, and
BM-SEg 3. Recall that SE4 ¢ applies compression, SEg 4 code splitting, and
SEg 2 both of them. We compared them with four other searching algo-
rithms. We used Tuned Boyer-Moore or ufast.fwd.md2 [10] denoted by
TBM as the searching algorithm for uncompressed texts. Three versions
of the BM-BPE algorithm (a courtesy from M. Takeda) for compressed
texts were tested: one with maximal compression ratio and no upper limit
for the number of characters represented by a byte (max), another with
optimal search speed where a byte can represent at most two characters
(fast), and the third one where a byte can represent at most three charac-
ters and which was recommended by the authors (rec). All the algorithms
were modified to read first the whole text to the main memory and then
to perform the search. All the tests were run on on a 500 MHz Celeron
processor with 64 MB main memory under Linux.

The compression ratio was measured with four texts (Table 3): the
bible.txt [3], the CIA World Factbook of 1992, Kalevala, the national epic
of Finland (in Finnish), and E.coli, the genome of Escherichia coli, entirely
composed of the four DNA symbols. As explained earlier, there is no com-
pression involved with SEg4, only a different encoding. The compressed
files include the encoding tables which are necessary to uncompress them.
As a reference, we give also the compression ratios achieved with Gzip.

To make a fair comparison with BM-BPE, the version BM-SE4 is
the right choice, because its compression rate is similar to that of the fast
BM-BPE.

The compression and decompression algorithms of BM-SE are very
fast (17 MB/s) due to the lightweight encoding and decoding schemes.

We tested the search speed with two texts: bible.txt (Table 4) and
E.coli (Table 5). We used command-line versions of all the algorithms.



Table 3. Compression ratio.

bible.txt|CIA1992|Kalevala| E.coli
3.86 MB|2.36 MB|0.52 MB|4.42 MB
BM-BPE max| 47.8% 56.8% 51.9% | 31.3%
BM-BPE fast | 56.2% | 63.0% 55.1% | 50.0%

BM-SEa o 58.9% | 68.2% | 58.1% | 50.0%
BM-SEg,> 75.0% | 75.8% | 75.1% | 75.0%
Gzip 29.4% | 29.3% | 36.3% | 28.9%

We measured the processor time in milliseconds required by the search.
Although the excluding of the I/O time slightly favors poorer compres-
sion methods, we wanted to measure the efficiency of the pure algorithms
without any disturbance due to buffering. The same test was repeated for
500 different strings of the same length randomly chosen in the text.

Table 4. Search times (ms), bible.txt, 3 < m < 20.

3 4 5 6 8 10 12 16 | 20
TBM 53.4| 47.4| 42.8| 40.4| 37.0| 35.2| 35.0| 33.8 31.8
BM-BPE max| 68.4| 66.2| 63.4| 61.2| 57.6| 55.2| 53.2| 39.4| 38.6
BM-BPE rec | 71.8] 51.2| 45.0| 44.2| 35.0| 31.2| 30.6| 26.8| 25.8
BM-BPEfast | 52.4| 46.4| 38.2| 36.2| 31.0| 27.8| 26.4| 24.2| 23.6

BM-SEg,4 59.4| 38.4| 32.0| 26.2| 22.6| 20.0{ 18.8| 17.2| 17.0
BM-SE4, o 49.01 37.2| 31.6] 28.0| 24.2| 22.2| 21.0{ 20.0] 19.4
BM-SEs,> 66.8| 38.0| 32.6| 26.6| 18.8| 15.2| 13.6| 12.0| 10.4

In the bible.txt, the versions BM-SE4 o and BM-SE¢ 2 of Boyer-Moore
with stopper encoding are clearly faster than BM-BPE for all pattern
widths shown in Table 4. However, they are also faster than TBM exclud-
ing very short patterns m < 4. Even the version without compression,
BM-SEg 4 is faster than TBM and BM-BPE for m > 3. None of the BM-
SE algorithms is distinctly the fastest one. BM-SE, o is the fastest for
m < 6, BM-SEg 4 for m = 6, BM-SEg > for m > 6. The times of four
algorithms are shown graphically in Figure 1.

The advantage of BM-SE is smaller in the DNA text, because the aver-
age length of shift is shorter. According to Table 5, BM-SE, ¢ is the fastest
for short patterns m < 12 and BM-BPE rec for longer ones. Note that
BM-BPE rec is now clearly faster than BM-BPE fast. As one may expect,
BM-SEg 3 is very poor in the DNA text and so we left it out from this
comparison. Probably BM-SE; ¢ (which has not yet been implemented)
will be even better than BM-SE, o for DNA data.
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Fig. 1. Search times in bible.txt.

TBM is not a good reference algorithm for DNA matching. BNDM
[14] would be more appropriate, because is the fastest known algorithm
for patterns m < w, where w is the number of bits in the computer word.
Other alternatives would have been ufast.rev.gd2 [10] or algorithms based
on alphabet transformations |4, 16].

Table 5. Search times (ms), E.coli, 6 < m < 48.

6 12 24| 48
TBM 67.0] 61.2| 60.0| 60.2
BM-BPE max| 52.8| 34.2| 26.0| 23.0
BM-BPE rec | 43.2| 28.0| 22.0{ 21.0
BM-BPE fast | 52.4| 36.8| 31.4| 30.4
BM-SEg 4 37.8] 27.4| 23.6] 22.0
BM-SE4 o 35.8| 26.2| 23.0| 21.4

6 Concluding Remarks

We have presented a new practical solution for the compressed matching
problem. According to our experiments the search speed of our BM-SE



is clearly faster than that of BM-BPE for natural language texts. The
version BM-SE4 o has similar compression ratio to the fast BM-BPE. In
DNA texts there is no significant difference in the search speed.

Moreover our BM-SE is faster than TBM for patterns longer than
three characters.

It would be interesting to compare BM-SE with Manber’s method [11],
because he reports a gain of 30% in search times. It is clear that this gain
is not possible for short patterns because of Manber’s pairing scheme. A
part of the gain is due to the save in I/O time which was excluded in our
measurements.
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