
Boyer-Moore String Matching over Ziv-LempelCompressed TextGonzalo Navarro1? and Jorma Tarhio2??1 Dept. of Computer Science, University of Chile. gnavarro@dcc.uchile.cl2 Dept. of Computer Science, University of Joensuu, Finland. tarhio@cs.joensuu.fiAbstract. We present a Boyer-Moore approach to string matching overLZ78 and LZW compressed text. The key idea is that, despite that wecannot exactly choose which text characters to inspect, we can still usethe characters explicitly represented in those formats to shift the pat-tern in the text. We present a basic approach and more advanced ones.Despite that the theoretical average complexity does not improve be-cause still all the symbols in the compressed text have to be scanned, weshow experimentally that speedups of up to 30% over the fastest previ-ous approaches are obtained. Moreover, we show that using an encodingmethod that sacri�ces some compression ratio our method is twice asfast as decompressing plus searching using the best available algorithms.1 IntroductionThe string matching problem is de�ned as follows: given a pattern P = p1 : : : pmand a text T = t1 : : : tu, �nd all the occurrences of P in T , i.e. return the setfjxj; T = xPyg. The complexity of this problem is O(u) in the worst case andO(u log�(m)=m) on average (where � is the size of the alphabet �), and thereexist algorithms achieving both time complexities using O(m) extra space [3, 6].A particularly interesting case of string matching is related to text com-pression. Text compression [4] tries to exploit the redundancies of the text torepresent it using less space. There are many di�erent compression schemes,among which the Ziv-Lempel family [23, 24] is one of the best in practice be-cause of their good compression ratios combined with e�cient compression anddecompression time.The compressed matching problem was �rst de�ned in the work of Amirand Benson [1] as the task of performing string matching in a compressed textwithout decompressing it. Given a text T , a corresponding compressed stringZ = z1 : : : zn, and a pattern P , the compressed matching problem consists in�nding all occurrences of P in T , using only P and Z. A naive algorithm, which�rst decompresses the string Z and then performs standard string matching,? Work developed during postdoctoral stay at the University of Helsinki, partiallysupported by the Academy of Finland and Fundaci�on Andes. Also supported byFondecyt grant 1-990627.?? Supported in part by the Academy of Finland.

takes time O(m+u). An optimal algorithm takes worst-case time O(m+n+R),where R is the number of matches (note that it could be that R = u > n).The compressed matching problem is important in practice. Today's textualdatabases are an excellent example of applications where both aspects of theproblem are crucial: the texts should be kept compressed to save space and I/Otime, and they should be e�ciently searched. These two combined requirementsare not easy to achieve together, as the only solution before the 90's was toprocess queries by uncompressing the texts and then searching into them.There exist a few works about searching on compressed text, which we coverin the next section. The most promising ones run over the LZ78/LZW variantsof the LZ family. They have achieved a good O(m2 + n + R) worst case searchtime, and there exist practical implementations able to search in less time thanthat needed for decompression plus searching. All those works have concentratedin the worst case.However, Boyer-Moore type techniques, which are able to skip some charac-ters in the text, have never been explored for searching compressed text. Ourwork points in this direction. We present an application of Boyer-Moore tech-niques for string matching over LZ78/LZW compressed texts. The resulting al-gorithms are
(n) time on average, O(mu) time the worst case, and O(n) extraspace. This does not improve the existing complexities, but they are faster inpractice than all previous work for m � 15, taking up to 30% less time thanthe fastest existing implementation. We also present experiments showing that,using an LZ78 encoder that sacri�ces some compression ratio for decompressionspeed, our algorithms are twice as fast as a decompression followed by a searchusing the best algorithms for both tasks.2 Related WorkTwo di�erent approaches exist to search compressed text. The �rst one is ratherpractical. E�cient solutions based on Hu�man coding [10] on words have beenpresented in [16], but they need that the text contains natural language andis large (say, 10 Mb or more). Moreover, they allow only searching for wholewords and phrases. There are also other practical ad-hoc methods [15], butthe compression they obtain is poor. Moreover, in these compression formatsn = �(u), so the speedups can only be measured in practical terms.The second line of research considers Ziv-Lempel compression, which is basedon �nding repetitions in the text and replacing them with references to similarstrings previously appeared. LZ77 [23] is able to reference any substring of thetext already processed, while LZ78 [24] and LZW [20] reference only a singleprevious reference plus a new letter that is added. String matching in Ziv-Lempelcompressed texts is much more complex, since the pattern can appear in di�erentforms across the compressed text. The �rst algorithm for exact searching is from1994 [2], which searches in LZ78 needing time and space O(m2 + n) for theexistence problem.

The only search technique for LZ77 [7] is a randomized algorithm to deter-mine in time O(m + n log2(u=n)) whether a pattern is present or not in thetext. It seems that with O(R) extra time both [2] and [7] could �nd all the Roccurrences of the pattern.An extension of [2] to multipattern searching was presented in [13], togetherwith the �rst experimental results in this area. They achieve O(m2 + n) timeand space, although this time m is the total length of all the patterns. Otheralgorithms for di�erent speci�c search problems have been presented in [8, 11].New practical results appeared in [17], who presented a general scheme tosearch on Ziv-Lempel compressed texts (simple and extended patterns) and spe-cialized it for the particular cases of LZ77, LZ78 and a new variant proposedwhich was competitive and convenient for search purposes. A similar result, re-stricted to the LZW format, was independently found and presented in [14].Finally, [12] generalized the existing algorithms and nicely uni�ed the conceptsin a general framework.3 Basic Concepts3.1 The Ziv-Lempel Compression Formats LZ78 and LZWThe general idea of Ziv-Lempel compression is to replace substrings in the textby a pointer to a previous occurrence of them. If the pointer takes less spacethan the string it is replacing, compression is obtained. Di�erent variants overthis type of compression exist, see for example [4]. We are particularly interestedin the LZ78/LZW format, which we describe in depth (this is taken from [17]).The Ziv-Lempel compression algorithm of 1978 (usually named LZ78 [24])is based on a dictionary of blocks, in which we add every new block computed.At the beginning of the compression, the dictionary contains a single block b0of length 0. The current step of the compression is as follows: if we assumethat a pre�x T1:::j of T has been already compressed in a sequence of blocksZ = b1 : : : br, all them in the dictionary, then we look for the longest pre�x ofthe rest of the text Tj+1:::u which is a block of the dictionary. Once we found thisblock, say bs of length `s, we construct a new block br+1 = (s; Tj+`s+1), we writethe pair at the end of the compressed �le Z, i.e Z = b1 : : : brbr+1, and we addthe block to the dictionary. It is easy to see that this dictionary is pre�x-closed(i.e. any pre�x of an element is also an element of the dictionary) and a naturalway to represent it is a trie.We give as an example the compression of the word ananas in Figure 1. The�rst block is (0; a), and next (0; n). When we read the next a, a is already theblock 1 in the dictionary, but an is not in the dictionary. So we create a thirdblock (1; n). We then read the next a, a is already the block 1 in the dictionary,but as do not appear. So we create a new block (1; s).The compression algorithm is O(u) in the worst case and e�cient in practiceif the dictionary is stored as a trie, which allows rapid searching of the new textpre�x (for each character of T we move once in the trie). The decompression

0

1

a

2

n

0

1

a

2

n

n

3

0

1

a

2

n

n

3

s

4

1

a

0

a

(0,a)

Prefix encoded

Dictionary

Compressed file

an

(0,a)(0,n)

anan

(0,a)(0,n)(1,n) (0,a)(0,n)(1,n)(1,s)

ananas

Fig. 1. Compression of the word ananas with the algorithm LZ78.needs to build the same dictionary (the pair that de�nes the block r is readat the r-th step of the algorithm), although this time it is not convenient tohave a trie, and an array implementation is preferable. Compared to LZ77, thecompression is rather fast but decompression is slow.Many variations on LZ78 exist, which deal basically with the best way tocode the pairs in the compressed �le, or with the best way to cope with limitedmemory for compression. A particularly interesting variant is from Welch, calledLZW [20]. In this case, the extra letter (second element of the pair) is not coded,but it is taken as the �rst letter of the next block (the dictionary is started withone block per letter). LZW is used by Unix's Compress program.In this paper we do not consider LZW separately but just as a coding variantof LZ78. This is because the �nal letter of LZ78 can be readily obtained bykeeping count of the �rst letter of each block (this is copied directly from thereferenced block) and then looking at the �rst letter of the next block.3.2 Boyer-Moore String MatchingThe Boyer-Moore (BM) family of text searching algorithms proceed by sliding awindow of length m over the text. The window is a potential occurrence of thepattern in the text. The text inside the window is checked against the patternnormally from right to left (although not always). If the whole window matchesthen an occurrence is reported. To shift the window, a number of criteria areused, which try to balance between the cost to compute the shift and the amountof shifting obtained. Two main techniques are used:Occurrence heuristic: pick a character in the window and shift the windowforward the minimum necessary to align the selected text character with thesame character in the pattern. Horspool [9] uses the m-th window characterand Sunday [19] the (m+1)-th (actually outside the window). These methodsneed a table d that for each character gives its last occurrence in the pattern(the details depend on the versions). The Simpli�ed BM (SBM) method [5]uses the character at the position that failed while checking the window,which needs a larger table indexed by window position and character.

Match heuristic: if the pattern was compared from right to left, some partof it has matched the text in the window, so we precompute the minimumshift necessary to align the part that matched again with the pattern. Thisrequires a table of size m that for each pattern position gives that last oc-currence of Pi:::m in P1:::m�1. This is used in the original Boyer and Mooremethod [5].4 A Simple Boyer-Moore TechniqueConsider Figure 2, where we have plotted a hypothetical window approach toa text compressed using LZ78. Each LZ78 block is formed by a line and a �nalbox. The box represents the �nal explicit character c of the block b = (s; c), whilethe line represents the implicit characters, i.e. a text that has to be obtained byresorting to previous referenced blocks (s, then the block referenced by s, andso on).
P

TFig. 2. A window approach over LZ78 compressed text. Black boxes are the explicitcharacters at the end of each block, while the lines are the implicit text that is repre-sented by a reference.Trying to apply a pure BM in this case may be costly, because we needto access the characters \inside" the blocks (the implicit ones). A character atdistance i to the last character of a block needs going i blocks backward in thereferencing chain, as each new LZ78 block consists of a previous one concatenatedwith a new letter.Therefore we prefer to start by considering the explicit characters in thewindow. To maximize the shifts, we go from the rightmost to the leftmost. Weprecompute a tableB(i; c) = min(fig [fi � j; 1 � j � i ^ Pj = cg)which gives the maximum safe shift given that at window position i the textcharacter is c (this is similar to the SBM table, and can be easily computedin O(m2 + m�) time). Note that the shift is zero if the pattern matches thatwindow position.As soon as one of the explicit characters permits a non-zero shift, we shift thewindow. Otherwise, we have to consider the implicit characters. Figure 3 showsthe order in which we consider them. The last block is left for the end, sincedespite it can give good shifts, it is costly to reach the relevant characters (theblock can be unfolded only from right to left). The other blocks are unfolded

in right to left order, block by block. When unfolding a block, we obtain a newtext character (right to left) for each step backward in the referencing chain. Foreach such character, if we obtain a non-zero shift we immediately advance thewindow and restart the whole process with a new window.
3 2 1456 7

P

TFig. 3. Evaluation order for the simple algorithm. First the explicit characters right toleft, then the implicit ones right to left (save the last one), and �nally the last block.If, after having considered all the characters we have not obtained a non-zeroshift, we can report an occurrence of the pattern at the current window position.The window can then be advanced by one.The algorithm can be applied on-line, that is, reading the compressed �leblock by block from disk. We read zero or more blocks until the last block read�nishes ahead the window, then apply the previous procedure until we can shiftthe window, and start again. For each block read we store its last character, theblock it references, its position in the uncompressed text and its length (theselast two are not stored in the compressed �le but computed on the y).Note that it is possible that the pattern is totally contained in a block, inwhich case the above algorithm will unfold the block to compare its internalcharacters against the pattern. It is clear that the method is e�cient only if thepattern is not too short compared to the block length.A slight improvement over this scheme is to add a kind of \skip-loop": insteadof delaying the shifting until we read enough blocks, try to shift with the explicitcharacter of each new block read. This is in practice like considering the explicitcharacters in left to right order. It needs more and shorter shifts but resorts lessto previously stored characters. We call \BM-simple" our original version and\BM-simple-opt" this improvement.Note that even in the best case we have a complexity of
(n) because all thetext blocks have to be scanned. However, the method is faster in practice thanprevious algorithms, as shown later. Appendix A depicts the complete algorithm.5 Multicharacter Boyer-MooreAlthough the simple method is fast enough for reasonably large alphabets, it failsto produce good shifts when the alphabet is small (e.g. DNA). Multicharactertechniques, consisting in shifting by q-tuples of characters instead of one char-acter, have been successfully applied to search uncompressed DNA [18]. Thosetechniques e�ectively increase the alphabet size and produce longer shifts inexchange for slightly more costly comparisons.

We have attempted such an approach for our problem. We select a numberq and build the shift tables considering q-grams. For instance, for the pattern"abcdefg", the 3-gram "cde" considered at the last position yields a shift of 2,while "xxx" yields a shift of 5. Once the pattern is preprocessed we can shift usingtext q-grams instead of text characters. That is, if the text window is x1x2 : : :xmwe try to shift using the q-grams xm�q+1 : : : xm, then xm�q : : :xm�1, etc. untilx1 : : :xq. If none of these q-grams produces as positive shift, then the patternmatches the window. The preprocessing takes O(m2 +m�q) time.The method is applied to the same LZ78 encoding as follows. At search time,we do not store anymore the last character of each block but its last q-gram.This last q-gram is computed on the y, the format of the compressed �le isthe same as before. To compute it, we take the referenced block, strip the �rstcharacter of its �nal q-gram and append the extra character of the new block.Then, the basic method is used except because we shift using the whole q-grams.One complication appears when the block is shorter than q. In this casethe best choice is to pad its q-gram with the last characters of the block thatappears before it (if this is done all the time then the previous block does havea complete q-gram, except for the �rst blocks of the text). However, we must becareful when this short block is referenced, since only the characters that reallybelong to it must be taken from its last q-gram.Finally, if q is not very small, the shift tables can be very large (O(�q) size).We have used hashing from the q-grams to an integer range 0 : : :N �1 to reducethe size of the tables and to lower the preprocessing time to O(m2 +mN). Thismakes it necessary an explicit character-wise checking of possible matches, whichis anyway required because we cannot e�ciently check the �rst q� 1 charactersof the pattern.We have implemented this technique using q = 4 (which is appropriate tostore the q-gram in a word of our machine), and it is called \BM-multichar" inthe experiments, where we show that it improves over BM-simple on DNA text.6 Shifting by Complete BlocksDespite that we have obtained good results with BM-multichar, we present nowa more sophisticated technique that gave better results.The idea is that, upon reading a new block, we could shift using the wholeblock. However, we cannot have an B(i; b) table with one entry for each possibleblock b. Instead, we precomputeJ(i; `) = max(fj; ` � j < i ^ Pj�`+1:::j = Pi�`+1:::ig[fj; 0 � j < ` ^ P1:::j = Pi�j+1:::ig)that tells, for a given pattern substring of length ` ending at i, the ending pointof its closest previous occurrence in P (a partial occurrence trimmed at thebeginning of the pattern is also valid). The J table can be computed in O(m2)time by the simple trick of going from ` = 0 to ` = m and using J(�; ` � 1)

to compute J(�; `), so that for all the cells of the form J(i; �) there is only onebackward traversal over the pattern.Now, for each new block read br = (s; c), we compute its last occurrence inP , last(r). This is acomplished as follows. We start considering last(s), i.e. thelast position where the referenced block appears in P . We check if Plast(s)+1 = c,in which case last(r) = last(s) + 1. If this is not the case, we need to obtainthe previous occurrence of bs in P , but this is also the previous occurrence of apattern substring ending at last(s). So we can use the J table to obtain all thefollowing occurrences of bs inside P , until we �nd one that is followed by c (andthen this is the last occurrence of br = bsc in P) or we conclude that last(r) = 0.This process takes O(min(mn; �m)) across all the search and is cheap in practice.Once we have computed the last occurrence of each block inside P , we canuse the information to shift the window. However, it is possible that the lastoccurrence of a block br inside P is indeed after the current position of br insidethe window. In the simple approach (Section 4) this is solved by computingB(i; c), i.e. the last occurrence of c inside P before position i. This would requiretoo much e�ort in our case. We prefer to use J again in order to �nd previousoccurrences of br inside P until we �nd one that is at the same position of br inthe window or before. If it is at the same position we cannot shift, otherwise wedisplace the window. Figure 4 illustrates.
b r

P

last(r)J(last(r),|b |)rFig. 4. Using the whole LZ78 block to shift the window. If its last occurrence in P isahead, we use J until �nding the adequate occurrence.The blocks covered by the window are checked one by one, from right to left(excluding the last one whose endpoint is not inside the window). As soon asone allows a shift the window is advanced and the process restarted. If no shiftis possible, the last block is unfolded until we obtain the contained block thatcorresponds exactly to the end of the window and make a last attempt with it.If all the shifting attempts fail, the window position is reported as a match andshifted in one.As before, we read blocks until surpass the window and then try to shift. Thismethod is called \BM-blocks" in this paper. The alternative method of tryingto shift with each new block read is called \BM-blocks-opt". The algorithm isdepicted in Appendix B.In the same spirit of shifting using a variable number of characters, we havealso adapted the match heuristic of BM. In this case, however, we cannot guar-

antee that the pattern will be matched right-to-left as on uncompressed text.Therefore, we compute a table C(i; j) that gives the maximum shift if we havematched Pi:::j and Pi�1 has mismatched. The de�nition of C is very similar tothat of J . The C table is used when we compare the internal characters, since inthat case a contiguous portion of P has been compared (the situation when com-paring the explicit characters is much more complex since an arbitrary subset ofthe pattern positions have been compared). This method, called \BM-complete"in the experiments, did not yield good results.7 Experimental ResultsWe tested our algorithms against the fastest existing implementation of previouswork [17]1, using the same LZ78 compression format. The format uses a versionthat loses some compression in exchange for better decompression/search time.It stores the pair (s; c) as follows: s is stored as a sequence of bytes where thelast bit is used to signal the end of the code; and c is coded as a whole byte.The experiments were run on an Intel Pentium III machine running Linux.We have averaged user times over two di�erent �les of 10 Mb each. Patterns oflengths 10 to 100 were randomly selected from the texts (1,000 patterns of eachlength) and the same patterns were used for all the algorithms. The �rst text,WSJ, is a set of articles from The Wall Street Journal 1987 (natural language),while the second one is DNA with lines cut every 60 characters. We show usertimes in all the experiments.Table 1 shows results related to compression e�ciency for our compressionformat and two widely used compressors. As can be seen, our compression ratiosare worse than those of classical compressors. On the other hand, decompressiontime is faster for our format, which improves search time.Method Compression ratio Compression time Decompression timeOurs WSJ: 45.02% WSJ: 5.09 sec WSJ: 0.79 sec(LZ78) DNA: 39.69% DNA: 4.31 sec DNA: 0.72 secUnix Compress WSJ: 38.75% WSJ: 2.52 sec WSJ: 0.92 sec(LZW) DNA: 27.91% DNA: 2.43 sec DNA: 0.75 secGnu gzip WSJ: 33.57% WSJ: 10.63 sec WSJ: 0.81 sec(LZ77) DNA: 30.43% DNA: 25.10 sec DNA: 0.78 secTable 1. Results on compression and decompression using di�erent formats.Figure 5 shows a comparison of the diverse search methods we have proposedalong the paper. As can be seen, BM-simple-opt is the best choice for naturallanguage, while BM-blocks (without the \optimization") is the best on DNA.BM-multichar works better than BM-simple on DNA, but BM-blocks is superior.1 The bit-parallel algorithm of [14] should be similar, but it is implemented over UnixCompress and it is slower.

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100
m [10 Mb of WSJ]

BM-simple
BM-simple-opt
BM-complete
BM-multichar

BM-blocks
BM-blocks-opt

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

10 20 30 40 50 60 70 80 90 100
m [10 Mb of DNA]

BM-simple
BM-simple-opt
BM-complete
BM-multichar

BM-blocks
BM-blocks-optFig. 5. Search time (in seconds of user time) for our di�erent algorithms.Figure 6 compares our best algorithms against previous work. The previousalgorithm [17] is called \Bit-parallel" and our implementation of it works onlyuntil m = 32 (it would be slower, not faster, for longer patterns). We have alsoconsidered the \naive" approach of decompressing-then-searching. Two choicesare shown: DS uses our LZ78 format and decompresses the �le in memory whileapplying a Sunday [19] search algorithm over it; \D+Agrep" �rst decompressesthe text and then then runs agrep over it. Agrep [21, 22] is considered the fastesttext searching tool, and we recall that the decompression time of our format isthe fastest.As can be seen, our algorithms are signi�cantly faster than Bit-parallel (upto 30%) and than both decompress-then-search approaches (up to 50%), evenfor short patterns (m � 15).

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

10 20 30 40 50 60 70 80 90 100

m [10 Mb of WSJ]

BM-simple-opt
BM-blocks
Bit-parallel

D+Agrep
DS

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

10 20 30 40 50 60 70 80 90 100

m [10 Mb of DNA]

BM-simple-opt
BM-blocks
Bit-parallel

D+Agrep
DSFig. 6. Search time (in seconds of user time) of the best previous algorithms and ournew ones.

It is also interesting that the methods reach soon a limit on m from wherethey do not improve anymore. This is due to the need for reading all the textblocks, regardless of how long is the pattern. This is unavoidable in principle toknow the text position we are on.If we compute the scanning e�ciency of our best algorithms, we have thatthey are able to search at up to 16.6 Mb/sec on DNA and 22.2 Mb/sec on nat-ural language text (computed on the uncompressed text). Bit-parallel obtains 14Mb/sec on DNA and 16 Mb/sec on WSJ, while decompress-then-search achieves13 Mb/sec on DNA and 12 Mb/sec on WSJ. If we have the text already decom-pressed, then agrep alone scans the text at about 300 Mb/sec times faster. Thisshows that, despite that we o�er an interesting alternative to decompressingand searching of texts that have to be compressed by some other reason, we arefar from giving an extra reason to compress the text (i.e. achieving less time insearching the compressed text than for searching the uncompressed text).On the other hand, we would like to point out that these results have a strongdependence with respect to the type of machine used. The same experiments runon a Sun UltraSparc-1 of 167 MHz gave, for m = 30 on WSJ, 1.4 seconds forBM-simple-opt as well as for the bit-parallel algorithm of [17], while agrep tookabout 0.45 seconds. We developed another version of BM-simple-opt based on adi�erent coding that, in exchange for 2% to 4% extra space, permits to know thelength of the new block without accessing the referenced one. This new algorithmtakes about 0.85 seconds under the above conditions, which is 60% of the time ofthe bit-parallel algorithm and about twice the time of pure agrep. This version,however, is slower than the original one on the Intel machine. This shows thatlocality of reference is much more important on the Sun machine.8 ConclusionsWe have presented the �rst Boyer-Moore approaches to string matching overZiv-Lempel compressed text (speci�cally, the LZ78 format). We �rst presenteda simple approach close to the Simpli�ed-Boyer-Moore algorithm that is the bestfor all but very small alphabets (e.g. it is suitable for natural language). Thenwe presented stronger approaches, the most successful one based on shifting oncomplete LZ78 blocks. This one is the fastest for small alphabets (e.g. DNAtext). Our experimental results show that the new algorithms are faster thanthe best previous approaches even from patterns of length 15, achieving up to30% reductions in the search time. The new algorithms hold the characteristicfeature of all the search algorithms of Boyer-Moore type: the algorithms runfaster when the pattern gets longer (up to a certain limit).We could theoretically strenghten the algorithms in the following way: if thewindow contains a border between blocks then we apply our shifting machinery,but when it is inside a block we simply copy the matches already found in thetext area that the containing block references, and shift the window to the endof the block. However, in practice the blocks are not so long for this to make areal di�erence.

We are currently working in improving the current techniques and exploringnew ones, as there are many open options. A very interesting question is whetherit is possible to avoid reading all the text blocks, as this is the major bottleneckfor further improvement.References1. A. Amir and G. Benson. E�cient two-dimensional compressed matching. In Proc.DCC'92, pages 279{288, 1992.2. A. Amir, G. Benson, and M. Farach. Let sleeping �les lie: Pattern matching inZ-compressed �les. J. of Comp. and Sys. Sciences, 52(2):299{307, 1996.3. A. Apostolico and Z. Galil. Pattern Matching Algorithms. Oxford University Press,Oxford, UK, 1997.4. T. Bell, J. Cleary, and I. Witten. Text Compression. Prentice Hall, 1990.5. R. S. Boyer and J. S. Moore. A fast string searching algorithm. CACM, 20(10):762{772, 1977.6. M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.7. M. Farach and M. Thorup. String matching in Lempel-Ziv compressed strings.Algorithmica, 20:388{404, 1998.8. L. Gasieniec, M. Karpinksi, W. Plandowski, and W. Rytter. E�cient algorithmsfor Lempel-Ziv encodings. In Proc. SWAT'96, 1996.9. R. N. Horspool. Practical fast searching in strings. Software Practice and Experi-ence, 10:501{506, 1980.10. D. Hu�man. A method for the construction of minimum-redundancy codes. Proc.of the I.R.E., 40(9):1090{1101, 1952.11. J. K�arkk�ainen, G. Navarro, and E. Ukkonen. Approximate string matching overziv-lempel compressed text. In Proc. CPM'2000, LNCS, 2000. In this same volume.12. T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. A unifying frame-work for compressed pattern matching. In Proc. 6th Intl. Symp. on String Process-ing and Information Retrieval (SPIRE'99), pages 89{96. IEEE CS Press, 1999.13. T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, and S. Arikawa. Multiple patternmatching in LZW compressed text. In Proc. DCC'98, 1998.14. T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, and S. Arikawa. Shift-And ap-proach to pattern matching in LZW compressed text. In Proc. CPM'99, LNCS1645, pages 1{13, 1999.15. U. Manber. A text compression scheme that allows fast searching directly in thecompressed �le. ACM Trans. on Information Systems, 15(2):124{136, 1997.16. E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and exible wordsearching on compressed text. ACM Trans. on Information Systems, 2000. Toappear. Previous versions in SIGIR'98 and SPIRE'98.17. G. Navarro and M. Ra�not. A general practical approach to pattern matchingover Ziv-Lempel compressed text. In Proc. CPM'99, LNCS 1645, pages 14{36,1999.18. H. Peltola and J. Tarhio. String matching in the DNA alphabet. Software Practiceand Experience, 27(7):851{861, 1997.19. D. Sunday. A very fast substring search algorithm. CACM, 33(8):132{142, 1990.20. T. A. Welch. A technique for high performance data compression. IEEE ComputerMagazine, 17(6):8{19, June 1984.

21. S. Wu and U. Manber. Fast text searching allowing errors. Comm. of the ACM,35(10):83{91, October 1992.22. S. Wu and U. Manber. Agrep { a fast approximate pattern-matching tool. In Proc.USENIX Technical Conference, pages 153{162, Berkeley, CA, USA, Winter 1992.23. J. Ziv and A. Lempel. A universal algorithm for sequential data compression.IEEE Trans. Inf. Theory, 23:337{343, 1977.24. J. Ziv and A. Lempel. Compression of individual sequences via variable lengthcoding. IEEE Trans. Inf. Theory, 24:530{536, 1978.A The Simple Optimized Algorithm in DetailSearch (P,m,Z,n)/* Preprocessing */for (i 2 1 : : :m, c 2 �) B(i; c) ifor (i 2 1 : : :m)for (j 2 i : : :m) B(j;Pi) j � i/* Searching */tpos 0 /* window initial position */rpos 0 /* amount of text read */length(0) 0 /* length of the blocks */from(0) 0 /* text position of the blocks */i 0 /* number of current block */while (true)readBlocks:if (rpos� tpos � m)while (true)i i + 1if (i > n) finish the searchobtain bi = (j; c) from Zref(i) j /* referenced block */lastchar(i) c /* char at the end */from(i) rposlength(i) length(j) + 1rpos rpos+ length(i)if (rpos� tpos > m) break looptpos tpos +B(rpos� tpos; c)/* try to shift with explicit characters */j iwhile (true)offset from(j)� tposif (offset < 1) break loopshift B(offset;char(j � 1))if (shift > 0)tpos tpos + shiftgoto label readBlocksj j � 1/* unable to shift by explicit characters, unfold */j i � 1

while (true)length length(j)� 1k joffset from(j)� tposif (offset+ length � 0) goto label expandLastwhile (length > 0)k ref(k)shift B(offset+ length; char(k))if (shift > 0)tpos tpos+ shiftgoto label readBlockslength length � 1if (offset+ length � 0) goto label expandLastj j � 1/* only the last (i-th) block rests to be tested */expandLast:length length(i) � 1k ioffset from(i)� tposwhile (offset+ length > m)k ref(k)length length � 1while (length > 0 ^ offset+ length > 0)k ref(k)shift B(offset+ length; char(k))if (shift > 0)tpos tpos + shiftgoto label readBlockslength length � 1/* it passed all the tests, report the match */report a match beginning at tpostpos tpos+ 1B The Algorithm that Shifts by Blocks in DetailSearch (P,m,Z,n)/* Preprocessing (O(m2), not O(m3)) */for (` 2 0 : : :m) J(0; `) 0for (i 2 1 : : :m) J(i; 0) ifor (` 2 1 : : :m)for (i 2 2 : : :m)j J(i� 1; `� 1)while (j > 0 ^ Pj+1 6= Pi) j J(j; `� 1)if (j = 0 ^ Pj+1 6= Pi) j j � 1J(i; `) j + 1/* Searching */tpos 0 /* window initial position */rpos 0 /* amount of text read */

length(0) 0 /* length of the blocks */from(0) 0 /* text position of the blocks */last(0) mi 0 /* number of current block */while (true)readBlocks:while (rpos� tpos �m)i i + 1if (i > n) finish the searchobtain bi = (j; c) from Zref(i) j /* referenced block */lastchar(i) c /* char at the end */from(i) rposlength(i) length(j) + 1pos last(j)if (length(j) > m) ` m else ` length(j)while (pos > 0 ^ (pos =m _ Ppos+1 6= c))pos J(pos; `)if (pos = 0 ^ (P1 6= c)) pos pos� 1last(i) pos+ 1rpos rpos+ length(i)/* try to shift with complete blocks (exclude last one) */j i � 1while (true)offset from(j + 1)� tposif (offset < 1) break looppos last(j)if (pos > offset)` length(j)if (` > m) ` mpos J(pos; `)while (pos > offset) pos J(pos; `)if (pos < offset)tpos tpos + offset� posgoto label readBlocksj j � 1/* only the last (i-th) block rests to be tested */j ioffset from(j)� tpos�mlength length(i)while (offset+ length > 0)j ref(j)length length � 1pos last(j)if (pos < m)tpos tpos+m� posgoto label readBlocks/* it passed all the tests, report the match */report a match beginning at tpostpos tpos+ 1

