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Abstract

We develop bit-parallel algorithms for exact string
matching. Our algorithms are variations of the BNDM
and Shift-Or algorithms. At each alignment the algo-
rithms read a g-gram before testing the state variable.
In addition we apply reading a 2-gram in one instruc-
tion. Our experiments show that many of the new vari-
ations are substantially faster than any previous string
matching algorithm on x86 processors for English and
DNA data.

1 Introduction

Searching for occurrences of a string pattern in a text is
a common task. It is utilized not only in text processing
but also in other fields of science where patterns need to
be found (e.g. DNA processing, musicology, computer
vision). Although the task of exact string matching has
been extensively studied since seventies, new algorithms
or modifications of the previous ones still appear that
slightly improve time needed for searching.

The Boyer—-Moore algorithm [2] with its many vari-
ations is a widely known solution for exact string match-
ing. Horspool’s algorithm (BMH) [10] and Sunday’s QS
algorithm [20] have been considered examples of efficient
variations of the Boyer—Moore algorithm. But because
modern processors give favor to straight-forward and
bit-parallel algorithms, the advantage of BMH and QS
is not any more clear.

An elegant way of reaching the asymptotic opti-
mum average time complexity is the Backward DAWG
Matching algorithm (BDM) [3]. However, the algorithm
is complicated to implement and it is not fast for many
typical text searching tasks. Its asymptotic optimality
is exposed only when searching for very long patterns.

More suitable is BNDM (Backward Nondetermin-
istic DAWG Matching) by Navarro and Raffinot [17].
BNDM is a kind of cross of the BDM and Shift-Or [1, 4]
algorithms. The idea is similar as in BDM, while instead
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of building a deterministic automaton, a nondetermin-
istic automaton is simulated even without constructing
it. The resulting code applies bit-parallelism and it is
efficient and compact.

In this paper we present new variations of the
BNDM and Shift-Or algorithms. Our point of view is
the practical efficiency of algorithms. These algorithms
are an outcome of a long series of experimentation on
bit-parallelism. At each alignment our algorithms read
and process a ¢g-gram, i.e. a string of ¢ characters, before
testing the state variable, which is a bit vector holding
partial matches recognized so far. In addition we apply
reading a 2-gram in one instruction. We concentrate on
tuning the algorithms for x86 processors, and the results
may be different on other platforms. Our experiments
show that the new algorithms are very efficient on
newish x86 and x86_64 processors. For example, the
search time of the fastest version is less than 36% of the
search time of QS for English patterns of five characters.
In addition, the best versions are faster than Shift-Or
on short DNA patterns. In particular, our algorithms
beat clearly the winner of the recent state-of-the-art
comparison [15].

We use the following notations. Let a pattern
P = pips...pm and a text T = tits...t, be two
strings over a finite alphabet X. The task of exact
string matching is to find all occurrences of P in
T. Formally we search for all positions i such that
titiv1 .. -titm—1 = P1P2 - .. Pm. In the algorithms we use
C-like notations: ‘|, ‘&’, ‘neg()’, ‘<’, and ‘>’ represent
bitwise operations OR, AND, one’s complement, left
shift, and right shift respectively. The register width
(or word size informally speaking) of a processor is
denoted by w. If not otherwise stated we assume that
the rightmost bit of the computer word represents the
value 20 = 1.

The rest of the paper is organized as follows.
Since our work is based on BNDM, we start with
the BNDM algorithm in Section 2. Two variations
BNDMg and SBNDMyg are introduced in Sections 3
and 4, respectively. In Section 5 we present UFNDMg,
which is a ¢g-gram variation of the Shift-Or algorithm.
Reading a 2-gram in one instruction is dealt with in
Section 6. Section 7 reviews the complexity issues
and the results of our experiments before concluding



remarks in Section 8.

2 BNDM

Let us start with BNDM. Its pseudocode [17] is shown
as Alg. 2.1. The precomputed table B associates each
character a with a bit mask expressing its locations
in the pattern. At each alignment of the pattern,
the algorithm reads the text from right to left until
the whole pattern is recognized or the processed text
string is not any substring of the pattern. Between
alignments, the algorithm shifts the pattern forward to
the start position of the longest found prefix of the
pattern (assigned to last), or if no prefix is found,
over the current alignment (last = m). With the bit-
parallel shift-and technique the algorithm maintains a
state vector D, which has one in each position where a
substring of the pattern starts such that the substring is
a suffix of the processed text string. The basic version
of BNDM works for patterns which are not longer than
w.

Algorithm 2.1 (BNDM)

for a € ¥ do Bla] «+ 0 endfor
for j«— 1..m do
Bip,) — Blp;] | (1 < (m — j)) endfor
10
while i <n—-m do
je—m;last —m; D — (1<m)—1
while D #0 do
D — D & Blt;y;]
Je—=Jj—1
if D& (1<« (m—1))#0 then
if j >0 then last «— j
else report occurrence at ¢ + 1 endif
endif
D—D<x1
endwhile
i — i+ last
endwhile

3 BNDMyq

We develop BNDM further. We present a version called
BNDMg which at each alignment first reads a ¢-gram,
i.e., q characters, before testing the state vector D.
Another difference is a more simple instruction flow
when the g-gram is not present in the pattern. This
loop has been made as short as possible in order to
quickly advance m — ¢ + 1 positions in such a case.
The pseudocode of BNDMg is shown as Alg. 3.1, where
F(i,q) is a shorthand notation for instructions

Blti] & (Bltis1] < 1) & -+ & (Bltitg—1] < (¢ —1)).

Note that BNDMg does not have the last variable
storing the found prefix, but the variable ¢, which points
to the counter position of p,,_441, is updated directly.

Algorithm 3.1 (BNDMyg)

for a € ¥ do Bla] — 0 endfor
for j—1.m do
Bipj] — Blp, | (1< (m — j)) endfor
i1—m-—q-+1
while i <n—-q¢+1 do
D «— F(i,q)
if D#0 then
jei
first —i—(m—q+1)
do
Je—=Jj—1
if D> (1<« (m—1)) then
if j > first then i «— j
else report occurrence at j + 1 endif
endif
D — (D < 1) & Bltj]
while D # 0
endif
t—1+m—q+1
endwhile

At the implementation level, the test starting the
outer while loop can be removed by placing a copy of
the pattern as a stopper in the end of the text [11]. Then
the end of the text is tested every time an occurrence
of the pattern is encountered.

4 SBNDMyq

The inner while loop of BNDM checks one alignment of
the pattern in the right-to-left order. In the same time
the loop recognizes prefixes of the pattern. The leftmost
one of the found prefixes determines the next alignment
of the algorithm. Peltola and Tarhio [19] presented
SBNDM, a simplified version of BNDM. SBNDM does
not care of prefixes, but shifts the pattern simply
past a mismatch. SBNDM is slightly faster than
BNDM especially for short patterns. Independently,
Navarro [16] has utilized a similar approach already
earlier in the code of his NR-grep.

Next we present SBNDMg, which is a revised
version of SBNDM applying g-grams. The pseudocode,
which has been developed from BNDMg, is shown as
Alg. 4.1.

The inner loops of BNDM and BNDMgq contain two
tests per a text character. The inner loop of SBNDMgq
has only one test. This feature was also present in the
code of Navarro’s NR-grep [16]. When removing the
test of j (see Alg. 3.1) the loop runs in the case of a



Algorithm 4.1 (SBNDMyg)

for a € ¥ do Bla] < 0 endfor
for j— 1.m do
Blp;] < Blp;] | (1 <« (m — j)) endfor
Compute sg with Alg. 4.2
1e—m-—q+1
while i <n—-¢+1 do
D — F(i,q)
if D#0 then
je—i—(m—-q+1)
doi—1i1—-1
D — (D < 1) & B[t;]
while D # 0
if j =14 then
report occurrence at j + 1
1+ 14 So
endif
endif
t—i1+m—q+1
endwhile

match one position further to the left than in BNDMg.
The loop does not go any further, because the w — m
leftmost bits of each Bla] are zeros, where w is the
word length, and the m rightmost bits of D are zeros
because of shifting left for m times. Note that if there
is an occurrence of the pattern in the beginning of the
text, the algorithm reads the character ty, which should
be accessible or the beginning of the text should be
processed otherwise. (Also BNDMg reads ¢y in such
a situation. But in the case of BNDMg it can be easily
avoided at the implementation level.)

In the case of a match, the shift is sg, which
corresponds to the distance to the leftmost prefix of the
pattern in itself. For example, sq is three for P = abcab.
If the proportional number of matches is not high, the
algorithm runs equally fast with the conservative value
sg = 1. The computation of sq is shown as Alg. 4.2.

Algorithm 4.2 (Computing sg)

S« Blpm]; s — m

for i< m —1downto 1 do
if S& (1<« (m—1))#0 then sy < i endif
S — (S« 1) & Blp]

endfor

As an example we give a compact C implementation
of the main loop of BNDM2 in Algorithm 4.3. Because
of clearness and compactness, this code differs slightly
from Alg. 4.1. The initial value of i is m. It is assumed
that ¢,,41...t+m 1S a stopper, i.e. a copy of the pattern.
Here sy = 1 is applied. The code computes the number

of matches (nmatches).

Algorithm 4.3 (BNDMZ2.c)

while (1) {

while (!(D = (B[t[i]]<<1)&B[t[i-1]1))
i +=m-1;

j= 1

while (D = (D<<1)&B[t[i-2]]) i--;

i +=m-1;

if (1 == j) {
if (i > n) return (mmatches);
nmatches++;
i++;

>

}
}

5 UFNDMy

Algorithms of BNDM and SBNDM type apply back-
ward matching. The TNDM algorithm [19] (a BNDM
variant) uses backward and forward scanning. It makes
slightly less accesses to the text than BNDM, but it
is slower than BNDM. Here we present a new varia-
tion called FNDM (Forward Nondeterministic DAWG
Matching) as Alg. 5.1. A preliminary version of FNDM
was introduced by Holub and Durian [9]. The idea is to
read every m:th character = of the text while x does not
occur in the pattern. If x is present in the pattern, the
corresponding alignments are checked by the naive algo-
rithm. BNDM and its descendants apply the shift-and
approach while FNDM uses shift-or.

Algorithm 5.1 (FNDM)

for a € ¥ do Bla] < neg(0) endfor
for j«— 1..m do
Blp;] < Blp;] & neg(l <« (j — 1)) endfor
1 m
while i <n do
while D # neg(0) do
if D < (neg(0) < (m—1)) then
if pip2.. . Pm—1 =ticmirtiomye .- tica
then report occurrence at i —m + 1
endif
endif
i—1+1
D — (D < 1) | B[t;]
endwhile
1+ 1+m
endwhile

Next we extend FNDM to handle g-grams. Let



G(i,q) be a shorthand notation for instructions
Blti] | (Bltia] <1) | -+ | (Blti—gt1] < (¢ —1)).

If we replace the first occurrence of B[t;] in Alg. 5.1 by
G(i,q), we get FNDMg.

We will develop FNDMg further. The resulting
algorithm is UFNDMgq which is given as Alg. 5.2. The
letter U stands for upper bits because the algorithm
utilizes those in the state vector D. Like FNDM,
UFNDMgq is a filtration algorithm. A candidate is
checked by the naive algorithm only if at least ¢
characters are correct. The reading step is ¢ instead of
m or 1 after a candidate has been processed. Checking
can be done in any order.

Algorithm 5.2 (UFNDMyg)

mask — (1< (¢g—1)—1)
for a€¥ do
Bla] < neg(mask < m) endfor
for j—1.m do
Blp,] < Blp;] & neg(1 < (j — 1)) endfor
tn+1tn+2 e tn+m — P
i+ 0; D« neg(0)
while (1) do
while (D | mask) = neg(0) do
i—i+m;D— (D<m)]|G(,q)
endwhile
F—D|(1lx(m—-1)-1))
if F' then
Scan through unset (=0) upper bits in F
and check candidates starting
at corresponding positions
if end position > n then Return endif
endif
i+i+q; D (D<q)|G(iq)
endwhile

Checking is done if any of the highest bits in D is
not set. Those bits correspond to candidate positions.

Let us study an example. Let abcdefgh be the
pattern, and let g be 4. Let us assume that the marked
4-grams have been read.

...xxxxabcdefghxxxx...

Then the rightmost bits of D are computed as shown in
Fig. 1. So the candidate abcdefgh should be checked.

Let us consider another example. Let ¢ be 2. When
be of an occurrence of the same pattern has been read,
i is advanced by 2 until the end of the pattern is
recognized.

Notice that unlike the other ¢-gram algorithms
UFNDMg works reasonably also on “undersized” pat-
terns i.e. when ¢ > m. Then it must be allowed to

...00011111111
...100011111111
...1100011111110
...11100011111101
...1111111100010111111
...11111111110001111111
...111111111100011111111
...1111111111100011111111
..1111111111110111111111

OlX W BT m X K

Figure 1: Computation of D.

access characters before the beginning of text or better
by evaluating the first value of D separately. A disad-
vantage of UFNDMyg is that the pattern length is limited
by ¢ + m < w.

6 Reading 2-grams

Some CPU architectures, notably the x86, allow un-
aligned memory reads of several bytes. This inspired
us to try reading several bytes in one instruction, in-
stead of separate character reads. One may argue that
it is not fair to apply such multiple reading, because all
CPU architectures do not support it. But because of
the dominance of the x86 architecture it is reasonable
to tune algorithms for that.

Fredriksson [5] was probably the first one who
applied reading several bytes simultaneously to string
matching. We adopted a similar approach by Kalsi et
al. [12] to BNDMg and SBNDMg. We developed three
versions for both. BNDM2b/SBNDM2b reads a 2-gram
as a 16-bit halfword. The value of Blt;] & (B[ti+1] < 1)
is stored to a precomputed table g for each halfword.
In BNDM4b/SBNDM4b the corresponding value of 4-
gram is computed as g[z1] & (g[z2] < 2) where 24
and xo are the halfwords and ¢ is the same table
used in the 2-gram version. In BNDM6b/SBNDMG6b
the value of 6-gram is computed as g[z;1] & (g[re] <
2) & (g[zs] < 4). From SBNDM4b we made a modified
version SBNDM2+-2b, where a 4-gram is tested in two
parts. If the first 2-gram do not exits in the pattern, we
can shift m — 1 positions instead of m — 3 with 4-gram.

Reading more than two bytes simultaneously does
not seem to give extra advantage. Based on the
tests by Kalsi et al. [12], unaligned memory reads on
x86 processors incur a speed penalty of up to 70%
when compared with aligned reads. This unfortunately
reduces the speed of reading four bytes, because then
75% of the reads are unaligned on average.

Reading 2-grams works readily on some other CPU
architectures besides x86. During preprocessing we take
care of endianess (the order in which integer values are



stored as bytes in the computer memory). The indexing
of the table g is different. On a little endian machine
the bitvector is stored to (t;41 < 8) + ¢; and on a big
endian machine to (t; < 8) + t;11-

7 Evaluation

Complexity. Providing m < w, the worst case time
complexity of BNDM is O(mn), but the average time
complexity is sublinear. The space complexity of
BNDM is O(|X|). It is straightforward to show that
BNDMg and SBNDMg inherit these complexities. Also
UFNDMg is sublinear on average and O(mn) in the
worst case.

There exists a linear time version of BNDM [17],
but it is in practice slower on average than the standard
version. Therefore we did not develop linear versions of
our algorithms.

Experimental results. The tests were run on a 2.8
GHz Pentium D (dual core) CPU with 1 GB of mem-
ory. Both cores have 16 KB L1 data cache and 1024 KB
L2 cache. The computer was running Fedora 8 Linux.
All the algorithms were tested in a testing framework of
Hume and Sunday [11]. All programs were written in
C and compiled with the gce compiler 4.1.2 producing
x86_64 “32-bit” and “64-bit” code and using the opti-
mization level -03.

The change of the process from one processor core
to another empties cache memories with various degree.
This would slow down reads from memory and induce
annoying variation to the timing of test runs. To avoid
it we have used Linux function sched_setaffinity to
bind the process to only one processor or core.

We used three texts of 1 MB in our tests: English,
DNA, and binary. The English text is the beginning
of the KJV bible. The DNA text is from Hume and
Sunday [11]. The binary text was generated randomly.
For each text there were pattern sets of lengths 5, 10,
20, 30, and 50. For DNA and binary, each set contained
200 patterns taken from the same data source as the
corresponding text. So every pattern do not necessary
occur in the text. For English, each set contained 300
patterns drawn from non-overlapping positions of the
text.

The set of tested algorithms include several clas-
sical algorithms. Besides Shift-Or [1, 4] we have two
versions of BNDM: the original one and the NR-grep
variation BNDMnr [16]. BM is the implementation
fast.rev.d12 of Boyer—-Moore algorithm by Hume
and Sunday [11] which follows original suggestions of
Boyer and Moore [2] about maximal efficiency. QS is
their implementation uf .rev.sdl of Sunday’s QS algo-
rithm [20]. KS by Kim and Shawe-Taylor [13] uses a trie

of reversed g-grams of the pattern. In the tested imple-
mentation ¢ is five. KS was designed only for DNA, and
therefore it does not find all English patterns (inaccu-
rate times are marked with a star).

We also tested some new algorithms. Lec is the
‘New’ algorithm of Lecroq [15], which uses ¢-grams and
hashing. We used 256 as the size of the hash table of
Lec. WW-LBNDM is an algorithm developed by He
et al. [8] for large alphabets. It examines the text in
regions of 2m — 1 characters, i.e. wide windows (WW).
The bit-parallel version was called LBNDM [7]. It is
interesting that upper limit for characters examinations
is 2n. BLIM is Kiilekci’s bit-parallel algorithm designed
for long patterns. The tested implementation uses 32-
bit vectors.

Because a preliminary version of SBNDM2 was
already present in Lecroq’s tests [15], we show also its
run times. It is called SBNDM2x.

Results of test runs are shown in Tables 2 (32-bit)
and 1 (64-bit). For the 32-bit case we used pattern
sets of lengths 5, 10, 20, and 30. For the 64-bit case
we used pattern sets of lengths 5, 10, 20 and 50 (5—
30 for English). The times are averages of processor
times of 50 runs. The data was in the main memory so
that the times do not contain any I/O time. The test
environment does not show the locations of occurrences.
It only counts the number of occurrences. The three
best times for each pattern set has been underlined.

Behavior with the 64-bit code. The speed of
BNDMyg is very close to that of SBNDMgq for ¢ = 3, ..., 6.
The same is true for English and DNA in the case ¢ = 2,
but BNDM1 is clearly slower than SBNDM1. It is re-
markable that the maximal shift of SBNDM4 is two for
patterns of 5 characters (except when s is applied), but
the search speed is still reasonably good.

Lecq was not competitive in our tests, e.g. SB-
NDM4 seems to be faster than Lec3 on other cases than
binary patterns of 10 characters. On DNA and English
the speed of Lecq slows down, when ¢ increases. Thus
Lec3 is the fastest of Lecq versions on those data sets.
This behavior differs slightly from the results reported
at [15]. On the other hand Lecq works well on binary
data.

SBNDM2+2b is the fastest tested algorithm for
short English patterns. Its search time is less than half
of that of QS. For long English patterns SBNDM4b
is the fastest. Versions of Lecq are slower for English
patterns than SBNDMg with an equal value of q.

On DNA sequences SBNDM4b is the best for m <
20, and SBNDMG6Db is the best for m > 20. Observe the
good performance of KS on long DNA patterns.

On DNA we tested SBNDM2b and Shift-Or sepa-



Table 1: Search times in milliseconds with the 64-bit code.

patterns — English DNA binary

| algorithm 5 10 20 30 5 10 20 50 5 10 20 50
Shift-Or 1001 1002 1002 1002 | 667 668 668 668 | 669 669 669 671
BNDM 568 468 300 224 | 744 412 229 109 | 1340 752 398 173
BNDMnr 530 435 272 184 | 680 375 204 89 | 1266 682 334 138
SBNDM2x 407 224 180 134 | 669 370 202 91 | 1554 774 359 139
WW-LBNDM | 681 562 352 248 | 967 577 330 152 | 1561 1039 595 = 273
BNDM1 597 474 289 201 | 835 459 256 113 | 1515 877 464 201
BNDM2 222 191 172 137 | 526 348 206 93 | 1327 751 388 166
BNDM3 311 165 120 90 | 300 184 134 80 | 1081 681 344 146
BNDM4 534 191 113 87| 381 145 84 51 772 555 311 138
BNDM5 1354 265 124 90 | 905 179 85 41 | 1025 415 273 134
BNDM6 — 373 149 97 — 249 98 44 — 362 205 123
SBNDM1 546 447 283 194 | 722 398 218 96 | 1339 722 354 141
SBNDM2 220 194 174 138 500 341 198 92 | 1233 694 340 139
SBNDM3 311 163 120 90 | 286 178 132 81 | 1015 667 337 136
SBNDM4 532 193 115 86 | 377 141 8 54 | 716 544 320 137
SBNDM5 1350 264 125 91 | 903 182 82 43 | 955 420 276 137
SBNDM6 — 363 142 94 — 242 93 42 — 352 208 124
BNDM2b 208 206 184 141 504 326 191 90 | 1296 732 381 164
BNDM4b 410 163 108 88 | 255 _98 62 48 | 650 516 290 130
BNDMG6b — 317 136 96 — 159 65 37 — 275 174 106
SBNDM2b 202 210 183 141 448 295 172 82 | 1233 657 325 130
SBNDM2+2b | 175 174 160 126 | 399 245 124 56 | 928 533 299 123
SBNDM4b 402 158 105 81 | 237 96 58 48 627 488 285 124
SBNDM6b — 202 134 94| — 145 59 38 — 266 174 105
UFNDM3 282 174 120 96 | 316 211 143 77 | 1069 683 407 201
UFNDM5 374 198 117 87 | 258 140 80 47 | 521 439 267 124
UFNDMS 505 264 140 102 | 343 174 95 50 | 559 220 132 _77
Lec3 629 282 158 123 | 464 207 118 75| 882 511 389 372
Lec4 1047 369 189 136 | 717 250 127 78 | 971 398 236 179
Lech — 460 219 156 — 308 145 75 — 383 191 118
Lec6 — 560 231 162 — 376 154 79 — 417 176 _93
Lec7 — 825 289 184 — 552 195 87 — 571 203 _90
BM 497 340 228 182 | 920 667 565 464 | 1867 1381 989 701
QS 466 330 226 182 | 89 726 704 702 | 1618 1688 1739 1728
KS —  *422  *211 *143 — 267 126 63 — 453 295 162

rately for m = 2,3,4,5 (the data is not shown). We
tested all the possible combinations of a, ¢, g, and t.
SBNDM2b is faster than Shift-Or for m > 2, and SB-
NDM3 and SBNDM4b are still faster than SBNDM2b
for m > 4. This is significant, because Shift-Or is known
to be fastest for short DNA [18, Fig. 2.22, p. 39].

On short patterns the extra work of fetching sg
instead of adding 1 seems to slow down the searching.
Even larger values of ¢ than were used in these tests
work fast on long patterns.

For binary data, the optimal value of g is higher
than for other tested data sets. Lec6 is the fastest for
m = 30. For short patterns, SBNDM4b is best, and
SBNDMGb is the fastest when m is around 10-20. On
small alphabets the length of expected shift increases

only a little for algorithms using mere the occurrence
shift (e.g. QS) when patterns get longer.

The algorithms WW-LBNDM and BLIM were not
competitive in our tests. The obvious reason is that they
have been designed for problem settings of another kind.

Behavior with the 32-bit code. We ran the same
tests using the 32-bit code in our test machine. Inter-
estingly most algorithms (e.g. UFNDMBS8) were faster in
the 64-bit mode while others (e.g. SBNDM2+2b) were
faster in the 32-bit mode. Some of the differences are
significant. A possible reason is that in 64-bit mode,
there are more addressable registers.

SBNDM versions with ¢ > 3 became clearly slower
for m = 5. The noteworthy exceptions were also



Table 2: Search times in milliseconds with the 32-bit code.

patterns— English DNA binary

lalgorithm 5 10 20 30 5 10 20 30 5 10 20 30
Shift-Or 969 970 968 970 | 647 645 647 644 | 647 648 647 648
BNDM 608 462 286 197 | 835 460 259 183 | 1546 899 475 328
BNDMnr 551 448 279 188 705 381 209 145 | 1290 692 337 232
SBNDM2x 498 258 196 142 | 773 388 208 144 | 1627 766 348 228
WW-LBNDM | 611 505 318 223 | 884 520 296 208 | 1473 940 520 363
BLIM 545 390 270 242 652 373 236 227 | 1247 685 389 379
BNDM1 632 489 302 214 | 864 479 269 188 | 1569 902 480 331
BNDM?2 316 232 191 148 565 364 212 151 | 1369 759 393 272
BNDM3 480 230 146 109 409 216 146 120 | 1200 678 345 242
BNDM4 886 299 154 106 | 617 212 112 84 | 997 609 335 234
BNDM5 2086 382 174 116 | 1390 258 117 79 | 1508 482 296 219
BNDM6 — 522 197 133 — 351 130 90 — 462 235 184
SBNDM1 548 444 278 192 704 388 210 146 | 1259 700 344 234
SBNDM2 323 241 194 144 547 347 201 140 | 1264 678 334 224
SBNDM3 480 228 145 107 | 401 213 149 121 | 1115 662 332 223
SBNDM4 884 300 152 106 | 608 210 108 80 | 913 593 329 231
SBNDM5 2103 382 176 116 | 1402 258 117 78 | 1402 477 295 218
SBNDM6 — 530 200 133 — 355 133 87 — 460 238 187
BNDM2b 234 202 182 139 | 511 334 196 139 | 1378 758 393 268
BNDM4b 512 186 _110 83| 339 125 74 60| 711 534 302 213
BNDMG6b — 291 123 88 — 173 69 52 — 286 185 150
SBNDM2b 193 194 173 132 | 450 299 177 125 | 1217 660 330 216
SBNDM2+2b | 156 161 151 115 | 404 248 129 84 | 938 536 299 203
SBNDM4b 366 142 97 77| 237 96 64 52| 669 487 284 198
SBNDMG6b — 250 113 83 — 143 59 45 — 261 173 141
UFNDM3 928 512 295 204 815 474 284 210 | 1740 1107 666 486
UFNDM5 1106 554 281 — | 745 380 191 — | 1041 785 468 —
UFNDMS8 1145 664 364 792 443 243 — | 1176 517 297 —
Lec3 606 275 155 120 | 449 204 117 93 | 82 502 383 370
Lec4 980 354 183 135 | 675 239 122 93 | 919 385 226 192
Lecb — 449 211 154 — 303 141 103 — 373 189 144
Lec6 — 559 234 164 — 374 156 111 — 411 176 128
Lec7 — 766 279 180 — 513 186 121 — 530 195 129
BM 444 324 218 171 | 821 608 516 463 | 1562 1169 838 737
QS 434 312 215 172 822 691 671 668 | 1555 1654 1703 1610
KS — %333  *160 *117 — 221 98 76 — 436 283 213

SBNDM2b, SBNDM2+2b, SBNDM4b, and SBNDMG6b,
which were generally faster than with the 64-bit code;
especially the fastest times for English and DNA data
became better. We repeated this test also with a 1.0
GHz AMD Athlon 64 X2 dual core 5000+ processor, 2
GB of memory, 64 kB L1 cache and 512 kB L2 cache.
The relative performance of algorithms remained mostly
the same. Moreover, we tested the algorithms in four
other computers having a x86 processor (Pentium IIT or
newer). The results were similar.

The 32-bit code of UFNDMg was dramatically
slower than the 64-bit code. We tried a newer gcc
4.3.0 compiler, but results were similar. On the other
hand the 32-bit code compiled with earlier gcc version

4.1.2 ran about 30% faster. We suspect that the reason
for the problem is a compiler bug in optimization.
In another computer, the 32-bit codes of UFNDMyg
compiled with Dev-C++ 4.9.9.2 run relatively faster.

We did also some preliminary testing with the 32-
bit version of the FAOSO algorithm [6]. It was slower
than the fastest one of our algorithms for all the pattern
sets tested. The relatively best result of FAOSO was 571
milliseconds for binaries of five characters, but this did
not beat 64-bit UFNDM5. Although FAOSO is fast for
short patterns, it is rather unpractical. Namely it has
two constant parameters and it is a tedious process to
find out the best combination of them for each type of
input.



Examined characters. The relative numbers of ex-
amined text characters are shown in Table 3. The value
200 means that every character is examined twice on av-
erage. The values for BNDMgb and SBNDMg¢b are not
shown, because they are naturally the same as for the
basic versions. On the given value of ¢ the number of
examined characters is correlated with the search time.
When ¢ increases, it is obvious that more characters are
read from the text. Table 3 clearly shows how fuzzy the
connection between the search time and the number of
examined text characters is. For example, SBNDM4 is
clearly faster than SBNDM1 on binary patterns of five
characters, though it examines substantially more char-
acters.

Memory requirements. All versions of BNDM need
occurrence vectors B for each character. They need
thus 1 kB (bitvectors of 32 bits) or 2 kB (bitvectors of
64) of memory. Moreover, BNDMgb and SBNDMg¢b
require additional 262 kB (bitvectors of 32) or 524
kB (bitvectors of 64). The initialization of BNDMgb
and SBNDMgb takes about 15-20 milliseconds per 200
patterns.

Behavior on a different processor. Although the
current market share of x86 processors is over 99%,
it is also necessary to try other processors. So we
tested the algorithms on Sparc. The results were mixed.
The new algorithms BNDMg and SBNDMg did not
get similar gain as on x86 processors. However, the
best version, SBNDM3 was faster on binary and DNA
than old versions of BNDM. We tested also such version
of SBNDM2b that never reads 2-grams that cross the
word border, which is not allowed in Sparc. However,
there was not significant difference between the speed
of SBNDM2b and SBNDM2.

8 Concluding remarks

We have presented new variations of the BNDM and
Shift-Or algorithms. Our experiments show that several
variations are clearly faster than the corresponding
original algorithms on x86 processors. Moreover, our
algorithms seem to be faster than any previous exact
string matching algorithm for English and DNA data on
those processors. Therefore our algorithms will be most
useful for practitioners!. Our algorithms work well also
with short patterns which is not typical for algorithms
of Boyer—Moore type.

Our algorithms can also be applied to multiple
matching and approximate matching. See the book [18]

TThe codes of our new algorithms will be made available on

the Web.

for the basic techniques. Here we described algorithms
only for patterns of at most w characters. Next we
will work on bit-parallel algoritms for longer patterns
in order to compete with BLIM [14]. The LBNDM
algorithm [19] is a good starting point.
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