em8051

Jari Komppa

em8051

Jari Komppa

Published 2.4.2006
Copyright © 2006 Jari Komppa

Table of Contents

| oS 21 PPN 1
L1 WhatiSemBO05 T ...iunieiiiiiie e ettt a e 1
1.2 What@mBOS T ISTIO .. c.ueeeie et ettt et et e e e e e 1
G T8 7. 1 Ut 1

B B3 Ted et PP 3
2.1.RUNnin@emBO0S5 T ... ooeii e 3
R €3 10) 1211 S £ PPN 3
2.3 MAINVICW ettt et et ettt ettt e e e e eaa e 4
2. 4. MeMOTY CAIEOTVIBWeiuneiieiieii et et et et eetie et e et e et e et e e e eaneesn e enneeneaneeanaeaneens 7
2.5.L0ZICDOATAVIEWieiiie et 8
@ 41103 1 T4 1o PPN 9

3.8MBOSTINEEINALS ..e..eeiie ettt et et e e et e e e et e e 11
3.1.S0UrCEOTZANIZATIONeevteiii ettt ettt e e et e ea e e 11
3.2. EMUIAtiONCOTENOLES oeeeieeiiie ettt et e e e e e et e e 11

3.3.Simulation Front-End Notes

vi

Chapter 1. Preface
1.1. What is em8051

em8051 is a software simulator of the intel MCS-51 microcontroller architecture. Its goal is to be a free software
simulator capable enough to help development and debugging of 8051-based applications.

While the em8051 executable is useful as is, source code is also provided so that additional features can be
added to, for example, simulate different kinds of configurations.

While effort has been made to make this program as flawless as possible, there are bound to be some problems.

Some of the supported features include:

e Full 8051 instruction set
e Timer 0 and timer 1 modes 0,1,2 and 3
* Interrupt priorities

* Debugging exceptions for invalid instructions, odd stack behavior, messing up important registers in inter-
rupts

* Intel HEX file loading
» Single-stepping and various speed run modes, including "real time", if host is powerful enough
* ncurses-based text-mode UI, including

* Main view, with memory, stack, opcode and disassembly, history view of most registers, cycle- and real-
time counters.

* Memory editor view which shows all five types of memory at the same time

* 'logic board' view with ports PO-P3 wired to leds and switches, plus optional additional widgets, includ-
ing 7-segment displays and 8-bit shift registers

* Options view, where user can disable exceptions and set the desired clock speed

1.2. What em8051 is not

em8051 does not attempt to be a hardware emulator, in a way that no sub-clock actions are emulated. For in-
stance, the MUL AB instruction, which takes four cpu cycles (or 48 clock oscillations) executes on the first cycle
and then waits for the rest of the operation. This may cause some slightly errornous timing behavior.

1.3. Legalese

This document is released wunder the creative commons Attribution 2.5 license. See
http://creativecomons. org/licenses/by/ 2.5/ for details.

em8051, including the front-end, is released under the MIT license.

1.3.1. MIT license

1.3.1. MIT license

Copyright (¢) 2006 Jari Komppa

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated doc-
umentation files (the "Software"), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to per-
mit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of
the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Chapter 2. Using em8051
2.1. Running em8051

em8051 can be launched either without any commandline parameters, or optionally with the name of an Intel
HEX-format object file.

2.2. Global keys

The simulator has several global keys that work regardless of the viewing mode.

* Function keys

Quick switch between views.
e v

Cycle between views
c k

Set breakpoint. When the simulation reaches the breakpoint, the simulation is stopped. Pressing k again
clears the breakpoint.

° 8
Set program counter value.
* h
Shows brief help.
o 1
Load an intel HEX format .obj file.
* space

Simulation step. Depending on the options, this steps a single cpu cycle or a single instruction. An instruc-
tion may take more than one cpu cycle.

A

Toggle run mode. In run mode, the simulator executes cpu cycles automatically at desired speed. Run mode
is also terminated if space is pressed or some popup event, such as exception, occurs.

e +and-
Adjust run speed. Various run speed modes are supported.
* Home key

Reset emulator. Shows popup giving user choise of reset style, ranging from simply setting program counter
to zero to a complete wipe of all memory.

2.3. Main view

In view

Resets clock counter, useful for timing events, for example from one breakpoint to the next.
Quit em8051

End key
Shift-Q

2.3. Ma

1
" <
| 5 g
o = |
O 15100 = S
DEEEEE | S A Sl=1-HN & =
1 ol fuafim = Sl s =
S E RS & =L o Rl oy ko)
= oo Bl o fus o | O
Tl gy o O S S S 2
o 9]
. 5 15 05 5 5] (5] 5 155 5] S 5] Ral
= oo oSS =il fiafur iy - >
555 DS %] .
: % 9
e et R el e R f | B S 5 5 5 1] ifa)
il o =
rfifuf el DRSS S E A
Rl R R o Q
o,
TEESES | n
DR | 0SS <
il o
Rl o) Mla.
= s S S8
o e e g = 17}
&S &S ERE S S] =]
EEms s | O)
= N =
= Lol R Rl .n|.a
) 15 N)) 15) - S) 5] 5] 05 5] u
2 = =)
==l oy Bl o
= = E
= kil ol il fua oy pur] =
DEREEE | oo | G -
1 g
= + e
- oo i) <
B &S & &S B SSS S S n
g
m =
= <
fr m
il funfioafio =
DI NE DS S S = L
S s
) =
S
il i) o = =m [iafunun]
ol & =1 g = aEE
o o
gl e e = = - 3 =& =
TERESE S = = W ° =& IS1=1=]
- Il
O S) o .z oo gl
DEEESE S = =" en =& [SI=1=]
= = = = 8 =& = s
oSS T a = & = =& BEE
=]
= = = il en]
oSS = o o0 =& [1]
- = ‘n
il = : o Q =& =EE
oo =1 o =& e
oo = ~
IEEEE S = — 84 =& aIEE
AR S = = = S =& [S1=1=]
‘=Yl = > o w
o i = = 9 [t =
eSS > kel) [SI=l=]
=y En S 5 = [.m
= en 5 on 5 a0 5 e o - -9 =] ‘s ©
= 5 - = =] m m =]
= 5 L iy =Pl o Rl i1} o
& & 55 55 ™ Qo o <
£ £ 8
=

Memory editor

2.3. Main view

Memory view / editor. Shows 64 bytes of memory at once, and can be toggled between the five memory types
of the 8051 using the b key. Cursor keys, pageup and pagedown can be used to move cursor in the memory
view, and numbers plus a-f keys can be used to adjust memory values.

d:\wvcproj\emuB051\Release\emuB051.exe”

Stack view

Stack view shows the current state of the stack.

d:\vcproj\emuB8051\Release\emuBi51.exe”

LowBOBA: B B B B B A 18

Cycles 372
Time A.831ms
HU Superdfdhl @12 . BMH=

Misc view

Misc. view, below the memory view shows the address and bit mask of the currently edited byte. Apart from
this, the elapsed clock cycles and real time are shown, along with the currently emulated hardware and clock
speed.

2.3. Main view

d:\wvcproj\emuB8051\Release\emuB051.exe”

PC—Opcodes—HfAssenbly
8aip 31 927 ACALL 81i97h
aie? @A HOP
ai98 22 RET
BA1lF 12 81 99 LCALL #819%h
#8199 @8 HOP

> Bai9a 32 RETI

Execution window

On lower left is the execution window, which shows the program counter, opcodes and disassembly. The lowest
line shows the most recently executed instruction.

e "de\weprojiemuB8051)\Release\emuBiS5lexe”

—RB-R1-R2-R3-R4-R5-R6-RY-B -DPTR
88 82 83 B A1 81 88 @88a
88 82 83 A1 A1 81 B8 G808
88 82 83 A1 A1 81 88 Q888
860 682 03 61 @1 81 9@ G80A
88 82 83 b1 81 81 88 G888
* 88 82 B3 w1 81 81 88 A88A <
I |

Common registers

On the right from the execution window are the common registers. User can switch focus between the memory
editor and the common registers with the tab key, and edit the common registers directly.

2.4. Memory editor view

d:\wvcproj\emuB8051\Release\emuB051.exe”

SP-PA-P1-P2-P3-1P-1E
@2 FF FF FF FF B8 &8
@2 FF FF FF FF B@ &8
@7 FF FF FF FF 0@ &8
8?2 FF FF FF FF B8 B8
#? FF FF FF FF B@ B8

> @87 FF FF FF FF B8 88 <

- 0 - - O O 0

THOD-TCON——THO-TLB——TH1-TL1——SCON-PCOMN
a8 B8 aa a8
aa o8 aa
a8 o8 aa
a8 B8 aa
aa @8 aa
a8 o8 a8

Control registers and output ports

Two of the remaining windows show the state of the control registers and output ports.

d:\vcproj\emuB8051\Release\emuBi51.exe”

2]

EEEE DD
=

EEEE S
=

LEEE&EE
&

EEEERERERS

|
P ek ek b ek

P

<

EEEEEZ
ooaEEEmI
@& |

{,

Processor status word

The window in the top right corner shows the state of the processor status word bits.

2.4. Memory editor view

2.5. Logic board view

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=
=
=

=

=

=

=

=

=

=

=

=

=
=

=
=

=

=

=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

o RN
T

g

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=

I
oot

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=

=
=

=
=

=

=

=

=
=

=
=

=
=

=
=

=
=

=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=
=
=

=

=

=

=

=

=

=

=

=

=
=

=

=

=
=

=
=

=

=

=

=
=

=
=

=
=

=

=
=

=

=

=

=

=

=

=

=

=
=

=

=

=

=
=

=

=
=

=
=

=

=
=

=
=

=
=

=
=

=
=

=
=

=

=

=

=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=

=
=

=

=

=
=

21

=
+

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=

=
=

=

=

=
=

=

=

—Qiguit

ome =rst

diew

+/—11H=

Junning

pc=step

1>o0ad

Jelp

Memory editor view

The second view shows all of the five memory areas at the same time. User can switch between the memory ar-

eas using the tab key.

The editors work the same way as with the main view memory editors, with the additional feature of showing

the current ASCII value of the contained bytes.

Logic board view

2.5. Logic board view

Mo additional hw

-

=]
c
A=
[
e
=
Lat

Logic board view

The logic board view shows the output port bits as LEDs and input ports as switches.

The currently active port can be changed using the up and down cursor keys. The switches are toggled using the

keys 1,2,3,4,5,6,7 and 8.

bit shift registers can be enabled by us-

Additionally, different kinds of widgets, such as 7-segment displays or 8

2.6. Options view

ing the left and right keys on the additional hardware selector.

"d:\wcproj\emug051\Release\emuB051l.exe”

. 7’—seq displavus

hielp cpc=step Prdunning —QIguit

7-segment displays

A8h P2_8-1: B@h
d8h P2.2-3: B@h
A8h P2_4-5: B@h
Aah P2_6-7: B@8h

A8h P3.8-1: B@h
Aah P3.2-3: B@h
A8h P3.4-5: B@h
Aah P3.6-7: B@h_

. 8bit shift registers >

Fdunning

8-bit shift registers

2.6. Options view

2.6. Options view

d:\wvcproj\emuB8051\Release\emuB051.exe”

Options

. Hardware: ‘super’ BHL1 >
Clock at 12.A0@ HH= >

Stack exception enabled >

Illegal opcode exception enabled >

Fdunning

The options view

The options view can be used to change the simulator's behavior. Different options are selected using the up and
down cursor keys, and the options are changed using the left and right cursor keys.

Options include:

* Hardware
As of this writing, the simulator only supports the "super 8051" option.
* Clock speed

In addition to the several preset speeds, the clock speed can be set to a custom value by selecting the right-
most option.

* Step mode
The simulator can step a single cpu cycle (12 clocks for 8051) or one single instruction (1 to 4 cpu cycles)
* Exception enable

All debug exceptions can be enabled or disabled separately.

10

Chapter 3. em8051 Internals

3.1. Source Organization

The em8051 project is split into two logical sections, the emulation core and the simulator front-end. It is possi-
ble to create new front-ends using just the emulation core.

The core consists of only three source files:

* core.Cc

Main emulation source. Contains most of the public functions, and takes care of timer- and interrupt ser-
vices, device resetting and intel hex file loading.

* disasm.c
Contains handlers for disassembling opcodes.
* opcodes.c
Contains handlers for emulating the opcodes.
The simulator front-end is split into several source files. The basic idea is that the main source file contains the
global information and all the views have their own source files.
* emu.c
Main front-end source. Contains most of the global data, misc. utility functions and the main loop.
* popups.c
The source code of all of the different popup windows.
* mainview.c
Main view related code and data.
* logicboard.c
Logic board view related code and data.
* memeditor.c
Memory editor view related code and data.
* options.c

Options view related code and data. Also contains the global variables for options.

Additionally the emulation core and the simulator front end have one header file each for global information.

3.2. Emulation Core Notes

11

3.3. Simulation Front-End
Notes

The emulation core was written to be as independent of the environment as possible. There are no memory allo-
cations, and the interfaces are very simple. There is no global data and the source code is ANSI-C for maximum
portability. Emulation accurancy was valued over emulation speed.

All of the data used by the emulator is stored in one structure. It would be trivial to simulate several 8051 cores
at the same time due to this structure.

Instruction decoding is performed using a function pointer table, with one entry for each instruction. The 8051
has 256 different opcodes, but due to overlapping logic, only 111 functions needed to be written.

Optimization-wise the function pointer is a headache for branch prediction, and an alternate switch/case imple-
mentation was also written but it did not show much difference in performance based on profiling.

The 'reset' function builds the function pointer tables, so it has to be called before attempting to run 'tick'. Each
call to 'tick' emulates one cpu cycle (i.e. 12 clock cycles on 8051).

3.3. Simulation Front-End Notes

Since the simulator only displays text, it was decided to make the simulator run in text mode. For this reason,
the simulator uses ncurses, a standard text mode full-screen application library.

On windows, pdcurses was used instead, since there is no ncurses port for windows.

The ncurses library also makes it possible to run the simulator on a unix shell over ssh, or locally, or in mac os x
console.

Since most of the front-end is Ul code, it is a rather tangled mess. This is especially true for the main view,
which simply has a lot going on. This could have been helped by writing the application in C++ instead, but that
would have reduced the portability. The fact that ncurses code itself is rather cryptic does not help matters.

Everything except the emulation itself is implemented in the front-end code. This includes the run modes, break-
points, and the additional widgets in the logic board view.

12

	Chapter 1. Preface
	1.1. What is em8051
	1.2. What em8051 is not
	1.3. Legalese
	1.3.1. MIT license

	Chapter 2. Using em8051
	2.1. Running em8051
	2.2. Global keys
	2.3. Main view
	2.4. Memory editor view
	2.5. Logic board view
	2.6. Options view

	Chapter 3. em8051 Internals
	3.1. Source Organization
	3.2. Emulation Core Notes
	3.3. Simulation Front-End Notes

