
SoLoud Audio Engine

Jari Komppa
April 27, 2015

Contents

1 Introduction 2
1.1 How Easy? . 2
1.2 How Free? . 2
1.3 How Powerful? . 3
1.4 There’s a Catch, Right? . 3

2 Legal 4
2.1 SoLoud Proper . 4
2.2 OGG Support . 4
2.3 Speech Synthesizer . 4
2.4 Fast Fourier Transform (FFT) . 5
2.5 Sfxr . 5
2.6 Libmodplug . 5
2.7 RPGMaker Wrapper Generator . 6
2.8 TED and SID support . 7

3 Quick Start 8
3.1 Download SoLoud . 8
3.2 Add SoLoud to your project . 8
3.3 Include files . 8
3.4 Variables . 9
3.5 Initialize SoLoud . 9
3.6 Set up sound sources . 9
3.7 Play sounds . 9
3.8 Take control of the sound . 9
3.9 Cleanup . 9
3.10 Enjoy . 10

4 Premake / GENie 11

5 Concepts 13
5.1 Back end . 13
5.2 Channel . 13
5.3 Voice . 13
5.4 Voice Group . 13
5.5 Clipping . 14
5.6 Sample . 14
5.7 Sample Rate . 15
5.8 Hz . 15
5.9 Play Speed . 15
5.10 Relative Play Speed . 15
5.11 Resampling . 15
5.12 Pan . 16
5.13 Handle . 16
5.14 Sound Source and Instance . 16
5.15 Latency . 16
5.16 Filter . 16
5.17 Mixing Bus . 17

SoLoud Audio Engine - http://soloud-audio.com 1

6 3D Audio Concepts 18
6.1 Custom Colliders . 18
6.2 Attenuation . 19

6.2.1 Inverse Distance . 19
6.2.2 Linear Distance . 20
6.2.3 Exponential Distance . 22

6.3 Doppler . 24
6.4 Distance Delay . 24
6.5 Speaker Output . 24

7 Frequently Asked Questions 26
7.1 What does it play? . 26
7.2 What dependencies does it have? . 26
7.3 Is there a DLL / C-Interface? . 26
7.4 What’s the animal in the logo? . 26
7.5 Is there a mailing list? . 26
7.6 No doxygen docs? . 26
7.7 Why not use this superior fork of libmodplug? 27
7.8 Can SoLoud do HRTF? . 27
7.9 Are these real questions? . 27

8 Examples 28
8.1 simplest . 28
8.2 welcome . 29
8.3 multimusic . 29
8.4 piano . 30
8.5 mixbusses . 31
8.6 env . 31
8.7 pewpew . 32
8.8 space . 33
8.9 3dtest . 34
8.10 monotone . 34
8.11 tedsid . 35

9 Foreign Interfaces 36
9.1 Codegen . 37
9.2 “C” API / DLL . 38

9.2.1 Using the “C” API . 38
9.2.2 “C” API Example . 38

9.3 Python API . 40
9.3.1 Using the Python API . 40
9.3.2 Python API Example . 40

9.4 Ruby API . 42
9.4.1 Using the Ruby API . 42
9.4.2 Ruby API Example . 42

9.5 RPG Maker API . 44
9.5.1 Using the RPG Maker API . 44
9.5.2 RPG Maker API Example . 44

9.6 BlitzMax API . 45
9.6.1 Using the BlitzMax API . 45
9.6.2 BlitzMax API Example . 45

9.7 GameMaker: Studio API . 47
9.7.1 Using the GameMaker: Studio API . 47
9.7.2 GameMaker: Studio API Example . 47

SoLoud Audio Engine - http://soloud-audio.com 2

9.8 C sharp (C#) API . 49
9.8.1 Using the C sharp API . 49
9.8.2 C sharp API Example . 49

9.9 D API . 50
9.9.1 Using the D API . 50
9.9.2 D API Example . 50

10 Core: Basics 51
10.1 SoLoud::Soloud Object . 51
10.2 Soloud.play() . 51
10.3 Soloud.playClocked() . 51
10.4 Soloud.seek() . 52
10.5 Soloud.stop() . 52
10.6 Soloud.stopAll() . 52
10.7 Soloud.stopAudioSource() . 52
10.8 Soloud.setGlobalVolume() / Soloud.getGlobalVolume() 52
10.9 Soloud.setPostClipScaler() / Soloud.getPostClipScaler() 53

11 Core: Attributes 54
11.1 Soloud.getVolume() / Soloud.setVolume() . 54
11.2 Soloud.getPan() / Soloud.setPan() . 54
11.3 Soloud.setPanAbsolute() . 54
11.4 Soloud.getSamplerate() / Soloud.setSamplerate() 54
11.5 Soloud.getRelativePlaySpeed() / Soloud.setRelativePlaySpeed() 55
11.6 Soloud.getProtectVoice() / Soloud.setProtectVoice() 55
11.7 Soloud.getPause() / Soloud.setPause() . 55
11.8 Soloud.setPauseAll() . 55
11.9 Soloud.setFilterParameter() . 56
11.10Soloud.getFilterParameter() . 56

12 Core: Faders 57
12.1 Overview . 57
12.2 Soloud.fadeVolume() . 57
12.3 Soloud.fadePan() . 57
12.4 Soloud.fadeRelativePlaySpeed() . 57
12.5 Soloud.fadeGlobalVolume() . 58
12.6 Soloud.schedulePause() . 58
12.7 Soloud.scheduleStop() . 58
12.8 Soloud.oscillateVolume() . 58
12.9 Soloud.oscillatePan() . 58
12.10Soloud.oscillateRelativePlaySpeed() . 59
12.11Soloud.oscillateGlobalVolume() . 59
12.12Soloud.fadeFilterParameter() . 59
12.13Soloud.oscillateFilterParameter() . 59

13 Core: Voice Groups 60
13.1 Soloud.createVoiceGroup() . 60
13.2 Soloud.destroyVoiceGroup() . 60
13.3 Soloud.addVoiceToGroup() . 61
13.4 Soloud.isVoiceGroup() . 61
13.5 Soloud.isVoiceGroupEmpty() . 61

14 Core: Misc 62
14.1 Soloud.getStreamTime() . 62

SoLoud Audio Engine - http://soloud-audio.com 3

14.2 Soloud.isValidVoiceHandle() . 62
14.3 Soloud.getActiveVoiceCount() . 63
14.4 Soloud.setGlobalFilter() . 63
14.5 Soloud.calcFFT() . 63
14.6 Soloud.getWave() . 63
14.7 Soloud.getVersion() . 64
14.8 Soloud.getErrorString() . 64
14.9 Soloud.setDelaySamples() . 64
14.10Soloud.getLoopCount() . 64
14.11Soloud.getInfo() . 64

15 Core: 3d audio 66
15.1 Soloud.update3dAudio() . 66
15.2 Soloud.play3d() . 66
15.3 Soloud.play3dClocked() . 66
15.4 Soloud.set3dSoundSpeed() / Soloud.get3dSoundSpeed() 67
15.5 Soloud.set3dListenerParameters() . 67
15.6 Soloud.set3dListenerPosition() . 67
15.7 Soloud.set3dListenerAt() . 68
15.8 Soloud.set3dListenerUp() . 68
15.9 Soloud.set3dListenerVelocity() . 68
15.10Soloud.set3dSourceParameters() . 68
15.11Soloud.set3dSourcePosition() . 69
15.12Soloud.set3dSourceVelocity() . 69
15.13Soloud.set3dSourceMinMaxDistance() . 69
15.14Soloud.set3dSourceAttenuation() . 69
15.15Soloud.set3dSourceDopplerFactor() . 70
15.16AudioSource.set3dMinMaxDistance() . 70
15.17AudioSource.set3dAttenuation() . 70
15.18AudioSource.set3dDopplerFactor() . 70
15.19AudioSource.set3dProcessing() . 71
15.20AudioSource.set3dListenerRelative() . 71
15.21AudioSource.set3dDistanceDelay() . 71
15.22AudioSource.set3dCollider() . 71

16 SoLoud::AudioSource 72
16.1 AudioSource.setLooping() . 72
16.2 AudioSource.setFilter() . 72
16.3 AudioSource.setSingleInstance() . 72
16.4 3d audio interfaces . 72

17 SoLoud::Wav 73
17.1 Wav.load() . 73
17.2 Wav.loadMem() . 73
17.3 Wav.loadFile() . 73
17.4 Wav.setLooping() . 74
17.5 Wav.setFilter() . 74
17.6 Wav.stop() . 74
17.7 Wav.getLength() . 74
17.8 Inherited 3d audio interfaces . 74

18 SoLoud::WavStream 75
18.1 WavStream.load() . 75
18.2 WavStream.loadFile() . 75

SoLoud Audio Engine - http://soloud-audio.com 4

18.3 WavStream.loadMem() . 75
18.4 WavStream.loadToMem() . 76
18.5 WavStream.loadFileToMem() . 76
18.6 WavStream.setLooping() . 76
18.7 WavStream.setFilter() . 76
18.8 WavStream.stop() . 76
18.9 WavStream.getLength() . 76
18.10Inherited 3d audio interfaces . 76

19 SoLoud::Speech 78
19.1 Speech.setText() . 78
19.2 Speech.setLooping() . 78
19.3 Speech.setFilter() . 78
19.4 Speech.stop() . 78
19.5 Inherited 3d audio interfaces . 79

20 SoLoud::Sfxr 80
20.1 Sfxr.loadPreset() . 80
20.2 Sfxr.loadParams() . 81
20.3 Sfxr.loadParamsMem() . 81
20.4 Sfxr.loadParamsFile() . 81
20.5 Sfxr.resetParams() . 81
20.6 Sfxr.setLooping() . 81
20.7 Sfxr.setFilter() . 81
20.8 Sfxr.stop() . 81
20.9 Prg.srand() . 82
20.10Prg.rand() . 82
20.11Inherited 3d audio interfaces . 82

21 SoLoud::Modplug 83
21.1 Modplug.load() . 83
21.2 Modplug.loadFile() . 83
21.3 Modplug.loadMem() . 83
21.4 Modplug.setLooping() . 83
21.5 Modplug.setFilter() . 83
21.6 Modplug.stop() . 84
21.7 Inherited 3d audio interfaces . 84

22 SoLoud::Monotone 85
22.1 Monotone.clear() . 85
22.2 Monotone.load() . 85
22.3 Monotone.loadFile() . 85
22.4 Monotone.loadMem() . 85
22.5 Monotone.setParams() . 86
22.6 Monotone.setLooping() . 86
22.7 Monotone.setFilter() . 86
22.8 Monotone.stop() . 86
22.9 Inherited 3d audio interfaces . 86

23 SoLoud::TedSid 87
23.1 TedSid.load() . 87
23.2 TedSid.loadMem() . 87
23.3 TedSid.loadToMem() . 87
23.4 TedSid.loadFileToMem() . 87

SoLoud Audio Engine - http://soloud-audio.com 5

23.5 TedSid.loadFile() . 88
23.6 TedSid.setLooping() . 88
23.7 TedSid.setFilter() . 88
23.8 TedSid.stop() . 88
23.9 tedsid2dump tool . 88
23.10Dump file format . 89

23.10.1Header . 89
23.10.2Timestamp . 89

23.11Inherited 3d audio interfaces . 89

24 Creating New Audio Sources 90
24.1 AudioSource class . 90
24.2 AudioSource.createInstance() . 90
24.3 AudioSourceInstance class . 90
24.4 AudioSourceInstance.getAudio() . 91
24.5 AudioSourceInstance.hasEnded() . 91
24.6 AudioSourceInstance.seek() . 91
24.7 AudioSourceInstance.rewind() . 91
24.8 AudioSourceInstance.getInfo() . 91

25 SoLoud::Bus 92
25.1 Bus.play() . 92
25.2 Bus.playClocked() . 92
25.3 Bus.play3d() . 93
25.4 Bus.play3dClocked() . 93
25.5 Bus.setVisualizationEnable() . 93
25.6 Bus.calcFFT() . 93
25.7 Bus.getWave() . 93
25.8 Bus.setLooping() . 94
25.9 Bus.stop() . 94
25.10Bus.setFilter() . 94
25.11Inherited 3d audio interfaces . 94

26 SoLoud::Filter 95
26.1 Filter class . 95
26.2 FilterInstance class . 95
26.3 FilterInstance.initParams . 96
26.4 FilterInstance.updateParams . 96
26.5 FilterInstance.filter() . 96
26.6 FilterInstance.filterChannel() . 96
26.7 FilterInstance.getFilterParameter() . 96
26.8 FilterInstance.setFilterParameter() . 97
26.9 FilterInstance.fadeFilterParameter() . 97
26.10FilterInstance.oscillateFilterParameter() . 97

27 SoLoud::BiquadResonantFilter 98
27.1 BiquadResonantFilter.setParams() . 98

28 SoLoud::EchoFilter 99
28.1 EchoFilter.setParams() . 99

29 SoLoud::FFTFilter 100

30 SoLoud::LofiFilter 101
30.1 LofiFilter.setParams() . 101

SoLoud Audio Engine - http://soloud-audio.com 6

31 SoLoud::FlangerFilter 102
31.1 FlangerFilter.setParams() . 102

32 SoLoud::DCRemovalFilter 103
32.1 DCRemovalFilter.setParams() . 103

33 SoLoud::AudioCollider 104
33.1 AudioCollider.collide() . 104

34 Back-ends 105
34.1 Soloud.postinit() . 105
34.2 Soloud.mix() . 105
34.3 Soloud.mBackendData . 105
34.4 Soloud.mLockMutexFunc / Soloud.mUnlockMutexFunc 105
34.5 Soloud.mMutex . 106
34.6 Soloud.mBackendCleanupFunc . 106
34.7 Different back-ends . 106

35 SoLoud::File 107
35.1 File class . 107
35.2 File.read8(), File.read16(), File.read32() . 107
35.3 File.getFilePtr() . 107
35.4 File.getMemPtr() . 107
35.5 File.eof() . 108
35.6 File.read() . 108
35.7 File.length() . 108
35.8 File.seek() . 108
35.9 File.pos() . 108
35.10Typical File Interfaces . 108
35.11soloud_file_hack_on.h / soloud_file_hack_off.h 109

SoLoud Audio Engine - http://soloud-audio.com 7

1 Introduction

SoLoud is an easy to use, free, portable c/c++ audio engine for games.

1.1 How Easy?

The engine has been designed to make simple things easy, while not making harder things
impossible. Here’s a code snippet that initializes the library, loads a sample and plays it:

// Declare some var i ab le s
SoLoud : : Soloud soloud ; // Engine core
SoLoud : :Wav sample ; // One sample

// I n i t i a l i z e SoLoud (automatic back−end se lec t i on)
soloud . i n i t () ;

sample . load (”pew_pew.wav”) ; // Load a wave f i l e
soloud . play (sample) ; // Play i t

The primary form of use the interface is designed for is “fire and forget” audio. In many games,
most of the time you don’t need to modify a sound’s parameters on the fly - you just find an
event, like an explosion, and trigger a sound effect. SoLoud handles the rest.

If you need to alter some aspect of the sound after the fact, the “play” function returns a handle
you can use. For example:

in t handle = soloud . play (sample) ; // Play the sound
soloud . setVolume (handle , 0.5 f) ; // Set volume ; 1.0 f i s ”normal”
soloud . setPan (handle , −0.2 f) ; // Set pan ; −1 i s le f t , 1 i s r i g h t
soloud . setRelat ivePlaySpeed (handle , 0.9 f) ; // Play a b i t slower ; 1.0 f i s normal

If the sound doesn’t exist anymore (either it’s ended or you’ve played so many sounds at once
it’s channel has been taken over by some other sound), the handle is still safe to use - it just
doesn’t do anything.

There’s also a pure “C” version of the whole API which can even be used from non-c languages
by using SoLoud as an DLL, such as Python.

1.2 How Free?

SoLoud is released under the ZLib/LibPNG license. That means, among other things, that:

• You can use it in free or commercial applications as much as you want.
• You can modify it. (But you don’t need to).
• You don’t need to give the changes back. (But you can).
• You don’t need to release the source code. (But you can).
• You don’t need to add a splash screen. (But you can).
• You don’t need to mention it in your printed manual. (But you can).

SoLoud Audio Engine - http://soloud-audio.com 8

Basically the only things the license forbids are suing the authors, or claiming that you made
SoLoud. If you redistribute the source code, the license needs to be there. But not with the
binaries.

Parts of the SoLoud package were not made by me, and those either have a similar license, or
more permissive (such as Unlicense, CC0, WTFPL or Public Domain).

1.3 How Powerful?

While SoLoud’s usage has been designed to be very easy, it’s still packed with powerful func-
tionality. Some of the features include:

• Multiple voices, playing different or even the same sound multiple times on top of each
other.

• Adjustable play speed, volume and pan.
• Faders for all of the attributes (fade out for 2 seconds, then stop, for instance).
• Filter interface and ready filters for low/high pass, echo, etc for real-time modification
of audio.

• Mixing busses for grouping of audio into different uses and adjusting their attributes in
one go.

• Gapless looping.
• Playing several ogg streams at once.
• Atomic operations for several sounds.
• “Clocked” playing for rapid sound effects.
• Sound effects synthesizer.
• Modplug library capable of playing various multi-channel music formats (including mod,
s3m, it, xm, mid, abc).

• 3d positional audio.
• Foreign interface support for python, ruby (and RPG maker), blitzmax, c#
• Easy cleanup.

1.4 There’s a Catch, Right?

SoLoud quite probably doesn’t have all the features you’d find in a commercial library like FMOD
or WWISE. There’s no artist tools, and only limited engine integration. Output is, currently,
limited to stereo.

It quite probably isn’t as fast. As of this writing, it has no specialized assembler optimizations,
for any platform.

It definitely doesn’t come with the support you get from a commercial library.

If you’re planning to make a multi-million budgeted console game, this library is (probably) not
for you. Feel free to try it though :-)

SoLoud Audio Engine - http://soloud-audio.com 9

2 Legal

SoLoud, like everything else, stands on the shoulders of giants; however, care has been taken to
only incorporate source code that is under liberal licenses, namely ZLib/LibPNG, CC0 or public
domain, or similar, like WTFPL or Unlicense, where you don’t need to include mention of the
code in your documentation or splash screens or any such nonsense.

Any patches submitted to SoLoud must agree to be under compatible licenses.

2.1 SoLoud Proper

SoLoud proper is licensed under the ZLib/LibPNG license. The code is a clean-room implemen-
tation with no outside sources used.

SoLoud audio engine
Copyright (c) 2013 Ja r i Komppa

This software i s provided ’as-is’, without any express or implied
warranty . In no event w i l l the authors be held l i a b l e for any damages
a r i s i n g from the use of th i s software .

Permiss ion i s granted to anyone to use th i s software for any purpose ,
inc lud ing commercial app l i cat ions , and to a l t e r i t and r ed i s t r i bu te i t
f ree ly , subject to the fo l lowing r e s t r i c t i o n s :

1. The o r i g i n of th i s software must not be misrepresented ; you must not
claim that you wrote the o r i g i n a l software . I f you use th i s software
in a product , an acknowledgment in the product documentation would be
appreciated but i s not required .

2. Altered source ver s ions must be p l a i n l y marked as such , and must
not be misrepresented as being the o r i g i n a l software .

3. This not ice may not be removed or altered from any source
d i s t r i b u t i o n .

2.2 OGG Support

The OGG support in the Wav and WavStream sound sources is based on stb_vorbis by Sean
Barrett, and it’s in the public domain. You can find more information (and latest version) at
http://nothings.org/stb_vorbis/

2.3 Speech Synthesizer

The speech synth is based on rsynth by the late Nick Ing-Simmons (et al). He described the legal
status as:

This i s a text to speech system produced by
in teg ra t i ng var ious pieces of code and tab les
of data , which are a l l (I bel ieve) in the
public domain .

SoLoud Audio Engine - http://soloud-audio.com 10

http://everythingisaremix.info/
http://nothings.org/stb_vorbis/

Since then, the rsynth source code has passed legal checks by several open source organizations,
so it “should” be pretty safe.

The primary copyright claims seem to have to do with text-to-speech dictionary use, which I’ve
removed completely.

I’ve done some serious refactoring, clean-up and feature removal on the source, as all I need is
“a” free, simple speech synth, not a “good” speech synth. Since I’ve removed a bunch of stuff,
this is probably safer public domain release than the original.

I’m placing my changes in public domain as well, or if that’s not acceptable for you, then CC0:
http://creativecommons.org/publicdomain/zero/1.0/.

The SoLoud interface files (soloud_speech.*) are under the same ZLib/LibPNG license as the
other SoLoud bits.

2.4 Fast Fourier Transform (FFT)

FFT calculation is based on fftreal by Laurent de Soras, under WTFPL

2.5 Sfxr

The sfxr sound effects synthesizer is by Tomas Pettersson, re-licensed under zlib/libpng license
by permission.

Copyright (c) 2014 Ja r i Komppa
Based on code (c) by Tomas Pettersson , re−l i censed under z l i b by permiss ion

This software i s provided ’as-is’, without any express or implied
warranty . In no event w i l l the authors be held l i a b l e for any damages
a r i s i n g from the use of th i s software .

Permiss ion i s granted to anyone to use th i s software for any purpose ,
inc lud ing commercial app l i cat ions , and to a l t e r i t and r ed i s t r i bu te i t
f ree ly , subject to the fo l lowing r e s t r i c t i o n s :

1. The o r i g i n of th i s software must not be misrepresented ; you must not
claim that you wrote the o r i g i n a l software . I f you use th i s software
in a product , an acknowledgment in the product documentation would be
appreciated but i s not required .

2. Altered source ver s ions must be p l a i n l y marked as such , and must not be
misrepresented as being the o r i g i n a l software .

3. This not ice may not be removed or altered from any source
d i s t r i b u t i o n .

2.6 Libmodplug

The branch of libmodplug that is used in SoLoud was declared public domain. Authors include:

• Olivier Lapicque - olivierl@jps.net
• Markus Fick - webmaster@mark-f.de
• Adam Goode - adam@evdebs.org

SoLoud Audio Engine - http://soloud-audio.com 11

http://creativecommons.org/publicdomain/zero/1.0/
mailto:olivierl@jps.net
mailto:webmaster@mark-f.de
mailto:adam@evdebs.org

• Jake Stine - air@divent.org
• Peter Grootswagers - pgrootswagers@planet.nl
• Marco Trillo - toad@arsystel.com
• Kenton Varda - temporal@gauge3d.org

with some fixes modifications by Jari Komppa, to work with SoLoud.

2.7 RPGMaker Wrapper Generator

The RPGMaker wrapper generator contains code copied from the Ruby standard library. This is
permitted by the rule 4 of the Ruby license:

Ruby i s copyrighted free software by Yuk ih i ro Matsumoto <matz@netlab . jp >.
You can red i s t r i bu te i t and/or modify i t under e i ther the terms of the
2−clause BSDL (see the f i l e BSDL) , or the cond i t ions below :

1. You may make and give away verbatim copies of the source form of the
software without r e s t r i c t i o n , provided that you dupl icate a l l of the
o r i g i n a l copyr ight not ices and assoc iated d i sc la imers .

2. You may modify your copy of the software in any way, provided that
you do at lea s t ONE of the fo l lowing :

a) place your modi f icat ions in the Publ ic Domain or otherwise
make them Freely Avai lable , such as by post ing sa id

modi f icat ions to Usenet or an equivalent medium, or by al lowing
the author to include your modi f icat ions in the software .

b) use the modified software only within your corporat ion or
organ izat ion .

c) g ive non−standard b ina r i e s non−standard names , with
i n s t r u c t i o n s on where to get the o r i g i n a l software d i s t r i b u t i o n .

d) make other d i s t r i b u t i o n arrangements with the author .

3. You may d i s t r i bu t e the software in object code or binary form ,
provided that you do at l ea s t ONE of the fo l lowing :

a) d i s t r i bu te the b ina r i e s and l i b r a r y f i l e s of the software ,
together with i n s t r u c t i o n s (in the manual page or equivalent)
on where to get the o r i g i n a l d i s t r i b u t i o n .

b) accompany the d i s t r i b u t i o n with the machine−readable source of
the software .

c) g ive non−standard b ina r i e s non−standard names , with
i n s t r u c t i o n s on where to get the o r i g i n a l software d i s t r i b u t i o n .

d) make other d i s t r i b u t i o n arrangements with the author .

4. You may modify and inc lude the part of the software into any other
software (po s s i b l y commercial) . But some f i l e s in the d i s t r i b u t i o n
are not written by the author , so that they are not under these terms .

For the l i s t of those f i l e s and the i r copying condit ions , see the
f i l e LEGAL .

SoLoud Audio Engine - http://soloud-audio.com 12

mailto:air@divent.org
mailto:pgrootswagers@planet.nl
mailto:toad@arsystel.com
mailto:temporal@gauge3d.org

5. The s c r i p t s and l i b r a r y f i l e s suppl ied as input to or produced as
output from the software do not automat ica l ly f a l l under the
copyr ight of the software , but belong to whomever generated them,
and may be so ld commercially , and may be aggregated with th i s
software .

6. THIS SOFTWARE I S PROVIDED ”AS␣IS” AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES , INCLUDING , WITHOUT LIMITATION , THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE .

In any case, the RPGMaker wrapper does not claim to be Ruby or part of Ruby, and the wrapper
generator and the wrapper itself is public and freely available, so that license should be covered
many times over.

2.8 TED and SID support

The TED and SID soundchip emulation as well as tool to generate the register write dumps is
based on tedplay (c) 2012 Attila Grosz, used under Unlicense:

This i s free and unencumbered software released into the public domain .

Anyone i s free to copy , modify , publ ish , use , compile , s e l l , or
d i s t r i bu t e th i s software , e i ther in source code form or as a compiled
binary , for any purpose , commercial or non−commercial , and by any
means .

In j u r i s d i c t i o n s that recognize copyr ight laws , the author or authors
of th i s software dedicate any and a l l copyr ight i n te re s t in the
software to the public domain . We make th i s dedicat ion for the benef i t
of the public at large and to the detriment of our he i r s and
successors . We intend th i s dedicat ion to be an overt act of
rel inquishment in perpetuity of a l l present and future r i g h t s to th i s
software under copyr ight law .

THE SOFTWARE I S PROVIDED ”AS␣IS”, WITHOUT WARRANTY OF ANY KIND ,
EXPRESS OR IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY , FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM , DAMAGES OR
OTHER LIABIL ITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE ,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

For more information , please refer to <http : // unl icense . org/>

SoLoud Audio Engine - http://soloud-audio.com 13

3 Quick Start

This quick start is for c++ developers. If you’re using SoLoud with some other environment
SoLoud supports, you may want to skip this and look at the chapter that covers your environment
(such as Python).

3.1 Download SoLoud

First, you need to download SoLoud sources. You can find the downloads on the http://
soloud-audio.com/download.html page.

3.2 Add SoLoud to your project

There’s a few ways to include SoLoud to your project. Probably the easiest is to use premake4
to create the build files, and build a static library for your compiler / environment.

There may also be a pre-built static library in the SoLoud distribution, which you may be able
to use. Note that the Windows DLL only exports the “C” API, which may not be what you want.

You can go the lazy way and just add all of the sources to your project, or you can copy the
things you need to a single directory and include those. You’ll need the core files, and quite
likely the wav files. If you need the speech synth, include those, too. If you go this route, you’ll
need to enable one or more of the back-ends via preprocessor defines. The current list is:

Preprocessor macro Description

WITH_SDL SDL or SDL2 via runtime dyndll linking

WITH_SDL_NONDYN SDL via normal static linking

WITH_SDL2 SDL or SDL2 via runtime dyndll linking

WITH_SDL2_NONDYN SDL2 via normal static linking

WITH_PORTAUDIO Portaudio via runtime dyndll linking

WITH_OPENAL OpenAL via runtime dyndll linking (high latency)

WITH_XAUDIO2 XAudio2 via normal linking

WITH_WINMM Windows multimedia

WITH_WASAPI WASAPI (experimental)

WITH_OSS Linux OSS

3.3 Include files

In order to use a certain feature of SoLoud, you need to include its include file. You might have,
for instance:

#include ”soloud.h”
#include ”soloud_wav.h”

SoLoud Audio Engine - http://soloud-audio.com 14

http://soloud-audio.com/download.html
http://soloud-audio.com/download.html

3.4 Variables

You need at least the SoLoud engine core, and one or more of the sound source variables. If
you’re using five different sound effect wav files, you need five SoLoud::Wav objects. You can
play one object any number of times, even on top of each other.

Where to place these is up to you. Globals work, as do allocation from heap, including in a class
as members, etc.

SoLoud : : Soloud gSoloud ;
SoLoud : :Wav gWave;

3.5 Initialize SoLoud

In your application, once you have your framework up (for instance after your SDL_Init call),
include a call to initialize SoLoud.

gSoloud . i n i t () ;

The call has a bunch of optional parameters if you’d rather pick the replay back-end and its
parameters yourself; the default should work for most cases.

3.6 Set up sound sources

This step varies from one sound source to another, but basically you’ll load your wave files here.

gWave. load (”pew_pew.wav”) ;

3.7 Play sounds

Now you’re ready to play the sounds. Place playing commands wherever you need sound to be
played.

gSoloud . play (gWave) ;

Note that you can play the same sound several times, and it doesn’t cut itself off.

3.8 Take control of the sound

You can adjust various things about the sound you’re playing if you take the handle.

in t x = gSoloud . play (gWave) ;
gSoloud . setPan (x , −0.2 f) ;

Read the soloud.h header file (or this documentation) for further things you can do.

3.9 Cleanup

After you’ve done, remember to clean up. If you don’t, the audio thread may do stupid things
while the application is shutting down.

gSoloud . de in i t () ;

SoLoud Audio Engine - http://soloud-audio.com 15

3.10 Enjoy

And you’re done!

Note that most calls above also return some kind of return code which may help you diagnose
potential problems. When loading wave files, for instance, you may want to check if the file is
actually found.

SoLoud Audio Engine - http://soloud-audio.com 16

4 Premake / GENie

SoLoud comes with a GENie script. GENie is a fork of premake4, and the script may still be
compatible with the latest premake.

If you want to build SoLoud as static library, instead of including the source files in your project,
this can be handy.

GENie can be downloaded from >https://github.com/bkaradzic/genie>. Premake can be down-
loaded from http://industriousone.com/premake.

Unfortunately, GENie cannot magically figure out where your libraries may be installed, so you
may have to edit the genie.lua file. The lines to edit can be found at the very beginning of the
file, with the following defaults:

l o ca l sd l_ root = ”/libraries/sdl”
l o ca l portmidi_root = ”/libraries/portmidi”
l o ca l dxsdk_root = ”C:/Program␣Files␣(x86)/Microsoft␣...”
l o ca l portaudio_root = ”/libraries/portaudio”
l o ca l openal_root = ”/libraries/openal”

You will most likely want to edit at least the sdl_root variable. After your edits, you can run
premake4 to generate makefiles or the IDE project files of your preference, such as:

genie vs2013

The current version (104) supports codeblocks, codelite, vs2008, vs2010, vs2012, vs2013, vs2015,
xcode3, xcode4 and gnu makefiles (gmake).

You can also use one or more of the optional parameters to change the build behavior.

Option Description

soloud-devel Shorthand for options used while developing SoLoud

with-common-backends Includes common backends in build

with-libmodplug Include libmodplug in build

with-native-only Only native backends (winmm/oss) in build (default)

with-openal Include OpenAL backend in build

with-portaudio Include PortAudio backend in build

with-portmidi Use PortMidi to drive midi keyboard in the piano demo

with-sdl Include SDL backend in build

with-sdl-only Only include sdl in build

with-sdlnondyn-only Only include sdl that doesn’t use dyndll in build

with-sdl2 Include SDL2 backend in build

with-sdl2-only Only include sdl2 in build

SoLoud Audio Engine - http://soloud-audio.com 17

http://industriousone.com/premake

with-sdl2nondyn-only Only include sdl2 that doesn’t use dyndll in build

with-tools Include (optional) tools in build

with-wasapi Include WASAPI backend in build

with-xaudio2 Include XAudio2 backend in build

So for example, in order to build SoLoud with libmodplug and tools on vs2013, use:

genie −−with−l ibmodplug −−with−too l s vs2013

SoLoud Audio Engine - http://soloud-audio.com 18

5 Concepts

5.1 Back end

SoLoud itself “only” performs audio mixing and some resource handling. For it to be useful, it
needs one or more sound source and a back end. Some other audio systems use the term ‘sink’
for the back-ends. Examples of back-ends would be winmm, oss, portaudio, wasapi and SDL
audio. SoLoud comes with several back-ends, and is designed to make back-ends relatively easy
to implement.

Different back-ends have different characteristics, such as how much latency they introduce.

5.2 Channel

One audio stream can contain one or more channels. Typical audio sources are either mono
(containing one channel) or stereo (containing two channels), but surround sound audio sources
may practically have any number of channels.

In module music (such as mod, s3m, xm, it), “channel” means one of the concurrent sounds
played, regardless of speaker configuration. Confusing, yes.

5.3 Voice

SoLoud can play audio from several sound sources at once (or, in fact, several times from the
same sound source at the same time). Each of these sound instances is a “voice”. The number
of concurrent voices is limited, as having unlimited voices would cause performance issues, as
well as lead to unnecessary clipping.

The default number of concurrent voices - maximum number of “streams” - is 64, but this can
be adjusted via a defined constant in the soloud.h file. The hard maximum number is 4095, but
if more are required, SoLoud can be modified to support more. But seriously, if you need more
than 4095 sounds at once, you’re probably going to make some serious changes in any case.

If all channels are already playing and the application requests another sound to play, SoLoud
finds the oldest voice and kills it. Since this may be your background music, you can protect
channels from being killed by using the soloud.setProtect() call.

5.4 Voice Group

Sometimes it is important to be able to command several voices at the same time so that they
are synchronized; for instance, when cross-fading between two versions of the same song.

music1 music1 music1 music1 music1 music1 m

music2 music2 music2 music2 music2 40ms

Figure 5.1: Problem unpausing two voices. Delay may vary, 40ms used as an example.

Even if you try to unpause the two voices at the same time, it’s possible, due to the multi-
threaded nature of audio, that the audio engine interrupts you between these two calls and
your sounds get unpaused to different audio buffers.

SoLoud Audio Engine - http://soloud-audio.com 19

SoLoud’s solution to this are voice groups. Voice groups can be commanded the same way as
single voices, but instead of affecting just one voice, SoLoud performs the command on all of
the voices in the group in one atomic operation.

5.5 Clipping

Audio hardware always has a limited dynamic range. If you think of a signed 16-bit variable, for
instance, you can only store values from -32k to +32k in it; if you try to put values outside this
range in, things tend to break. Same goes for audio.

Figure 5.2: Results of different clippers.

SoLoud handles all audio as floats, but performs clipping before passing the samples out, so
all values are in the -1..1 range. There’s two ways SoLoud can perform the clipping; the most
straightforward is simply to set all values outside this range to the border value, or alternatively
a roundoff calculation can be performed, which “compresses” the loud sounds. The more quiet
sounds are largely unchanged, while the loud end gets less precision. The roundoff clipper is
used by default.

The roundoff clipper does, however, alter the signal and thus “damages” the sound. A more
proper way of doing things would be to use the basic clipper and adjust the global volume to
avoid clipping. The roundoff clipper is, however, easier to use.

5.6 Sample

The real world has continuous signals, which would require infinite amount of storage to store
(unless you can figure out some kind of complicated mathematical formula that represents the
signal). So, we store discrete samples of signals instead. These samples have traditionally been
8, 16 or 24 bit, but high-end audio is tending towards floating point samples.

SoLoud also uses floating point samples internally. First and foremost, it makes everything much
simpler, and second, modern computing devices (even mobile!) have become fast enough that
this is not really a performance issue anymore.

SoLoud Audio Engine - http://soloud-audio.com 20

Floating point samples also take more space than, for instance, 16 bit samples, but memory and
storage sizes have also grown enough to make this a feasible approach. Nothing stops the audio
sources from keeping data in a more “compressed” format and performing on-the-fly conversion
to float, if memory requirements are a concern.

5.7 Sample Rate

The sample rate represents the number of samples used, per second. Typical sample rates are
8000Hz, 22050Hz, 44100Hz and 48000Hz. Higher the sample rates mean clearer sound, but also
bigger files, more memory and higher processing power requirements.

Due to limitations in human hearing, 44100Hz is generally considered sufficient. Some audio-
philes disagree, but then again, some audiophiles buy gold-plated USB cables.

5.8 Hz

Hertz, SI unit of frequency. 0.1Hz means “once per 10 seconds”, 1Hz means “once per second”,
10Hz means “10 times per second”, and 192kHz means “192000 times per second”.

5.9 Play Speed

In addition to a base sample rate, which represents the “normal” playing speed, SoLoud includes
a “relative play speed” option. This simply changes the sample rate. However, if you replace
your sounds with something that has a different “base” sample rate, using the relative play
speed will retain the effect of playing the sound slower (and lower) or faster (and higher).

5.10 Relative Play Speed

SoLoud lets you change the relative play speed of samples. Please note that asking for a higher
relative play speed is always more expensive than a lower one.

5.11 Resampling

SoLoud has to perform resampling when mixing. In an ideal case, all of the sources and the
destination sample rate are the same, and no resampling is needed, but this is often not true.

Figure 5.3: Different resamples (Point / linear / catmull-rom). Red is the ideal signal.

Currently, SoLoud supports “linear interpolation”, which calculates linear interpolation of sam-
ples, as well as “point sample” resampling, which means it simply skips or repeats samples as
needed.

Picking the resampler is done by editing the soloud.h file.

SoLoud Audio Engine - http://soloud-audio.com 21

Higher quality resamplers are planned.

5.12 Pan

Where the sound is coming from in the stereo sound, ranging from left speaker only to right
speaker only. SoLoud uses an algorithm to calculate the left/right channel volume so that the
overall volume is retained across the field. You can also set the left/right volumes directly, if
needed.

5.13 Handle

SoLoud uses throwaway handles to control sounds. The handle is an integer, and internally
tracks the channel and sound id, as well as an “uniqueness” value.

If you try to use a handle after the sound it represents has stopped, the operation is quietly
discarded (or if you’re requesting information, some kind of generic value is returned). You can
also query the validity of a handle.

5.14 Sound Source and Instance

SoLoud uses two kinds of classes for the sounds. Sound sources contain all the information
related to the sound in question, such as wave sample data, while sound instances contain
information about an “instance” of the sound.

As an analogue, if you think of an old vinyl record, the sound source is the record, and you
can put as many playheads - the instances - on the record. All of the playheads can also move
at different speeds, output to a different pan position and volume, as well as different filter
settings.

5.15 Latency

Audio latency generally means the time it takes from triggering a sound to the sound actually
coming out of the speakers. The smaller the latency, the better.

Unfortunately, there’s always some latency. The primary source of latency (that a programmer
can have any control over) is the size of audio buffer. Generally speaking, the smaller the
buffer, the lower the latency, but at the same time, the smaller the buffer, the more likely
the system hits buffer underruns (ie, the play head marches on but there’s no data ready to be
played) and the sound breaks down horribly.

Assuming there’s no other sources of latency (and there quite likely is), with 2048 sample buffer
and 44100Hz playback, the latency is around 46 milliseconds, which is tolerable in most cases.
A 100ms latency is already easily noticeable.

5.16 Filter

Audio streams can also be modified on the fly for various effects. Typical uses are different
environmental effects such as echoes or reverb, or low pass (bassy sound) / high pass (tinny
sound) filters, but basically any kind of modification can be done; the primary limitations are
processor power, imagination, and developer’s skill in digital signal processing.

SoLoud Audio Engine - http://soloud-audio.com 22

SoLoud lets you hook several filters to a single audio stream, as well as to the global audio
output. By default, you can use up to four filters, but this can be easily changed by editing
SoLoud.h file and rebuilding the library.

5.17 Mixing Bus

In addition to mixing audio streams together at the “global” level, SoLoud includes mixing busses
which let you mix together groups of audio streams. These serve several purposes.

The most typical use would be to let the user change the volume of different kinds of audio
sources - music, sound effects, speech. In this case, you would have one mixing bus for each of
these audio source groups, and simply change the volume on the mixing bus, instead of hunting
down every sound separately.

When using environmental effects filters, you most likely won’t want the background music to
get filtered; the easiest way to handle this is to apply the filters to the mixing bus that plays
the sound effects. This will also save on processing power, as you don’t need to apply the
environmental audio filters on every sound effect separately.

It’s also possible that you have some very complex audio sources, such as racing cars. In this
case it makes sense to place all the audio streams that play from one car into a mixing bus, and
then adjust the panning (or, eventually, 3d position) of the mixing bus.

Additional feature of the mixing busses in SoLoud is that you can request visualization data from
a bus, instead of just from the global scope.

SoLoud Audio Engine - http://soloud-audio.com 23

6 3D Audio Concepts

SoLoud can perform 3d audio calculations. If you do not need 3d (or “positional”) audio, you
can skip this chapter.

In practise, all the “3d audio” does is adjust panning and play speed of your audio sources, and
as such can be seamlessly used with any “2d audio” that you may also have. This means that
background music, for instance, does not need to be represented in the “3d world” in any way.

Any audio source can be 3d, including mixing busses. However, true 3d positioning only really
makes sense for mono audio sources.

The doppler and attenuation calculations follow the OpenAL functions.

In order to use the 3d audio, use the 3d versions of the play commands, adjust the positions and
velocities of your audio sources and listener with the set3dSource…() and set3dListener…() calls,
and call update3dAudio() to ask SoLoud to recalculate the proper panning (and play speed, for
doppler).

gSndHandle_orbit = gSoloud . play3d (gSfx_orb i t ,
50 , 0 , 0) ;

// . . .
gSoloud . set3dSourceParameters (gSndHandle_orbit ,

orb itx , 0 , orb i tz ,
orb itxv , 0 , o rb i t zv) ;

// . . .
gSoloud . update3dAudio () ;

6.1 Custom Colliders

Sound sources may have a custom collider applied to them. This can be useful in many cases.
For instance, if you have a river and want a water flow ambience to play when the player is
near the water, you can either have a bunch of audio sources along the river (wasting a lot of
voices) or you could have one audio source with a custom collider that checks if the player is
near the river and adjusts volume accordingly.

Custom colliders are created by extending the AudioCollider class, which only has one function
- collide. The function returns the calculated volume level. Once the custom collider class is
made, you can set the collider to an audio source via set3dCollider() call. The call also takes an
optional aUserData integer, which can be used to differentiate between the sounds. The same
value is provided to the collide() call.

MyCustomCollider cc ;
gSound . se t3dCo l l i de r (&cc) ;
gSoloud . play (gSound) ;

The collide() call is made from update3dAudio() before directional panning is calculated, so
it is possible to update the positions from inside your collide() function. That way you could
figure out the general direction the sound should be coming from (thinking again of the river
example), instead of just having a general volume fade.

SoLoud Audio Engine - http://soloud-audio.com 24

6.2 Attenuation

Attenuation, or how audio volume decreases on distance, can be calculated in several ways.
SoLoud supports three different modes (in addition to “no attenuation”): inverse distance,
linear distance and exponential distance. These are calculated using the “clamped” models of
OpenAL formulas.

All of the formulas take three parameters: rolloff factor, minimum and maximum distance.
How these parameters affect the curves can be seen in the graphs below.

6.2.1 Inverse Distance
distance = CLAMP(distance , min_distance , max_distance)
r e su l t = min_distance / (min_distance +

r o l l o f f _ f a c t o r * (d istance − min_distance))

0

0,2

0,4

0,6

0,8

1

1,2

Inverse distance - Varying rolloff factors

0,1 0,2

0,3 0,5

0,8 1,3

2,1 3,4

5,5 8,9

14,4 23,3

37,7 61

98,7 159,7

The higher the rolloff factor, the more steeply the volume drops. At low enough rolloff factor,
the volume never drops near zero. Values over 1 recommended (unless you have special needs).
Values less than equal to zero result in undefined behavior.

SoLoud Audio Engine - http://soloud-audio.com 25

0

0,2

0,4

0,6

0,8

1

1,2

Inverse distance - varying min distance

0,4 0,8

1,2 1,6

2 2,4

2,8 3,2

3,6 4

4,4 4,8

5,2 5,6

6 6,4

Increasing the minimum distance pushes the start of the attenuation further. It also causes the
curve to change. Note that the minimum distance must be above 0.

0

0,2

0,4

0,6

0,8

1

1,2

Inverse distance - Varying max distance

1 1,4

1,8 2,2

2,6 3

3,4 3,8

4,2 4,6

5 5,4

5,8 6,2

6,6 7

7,4 7,8

The maximum distance simply cuts the attenuation at the volume level it has reached at that
point.

6.2.2 Linear Distance
distance = CLAMP(distance , min_distance , max_distance)
r e su l t = 1 − r o l l o f f _ f a c t o r *

(d istance − min_distance) / (max_distance − min_distance)

SoLoud Audio Engine - http://soloud-audio.com 26

0

0,2

0,4

0,6

0,8

1

1,2

Linear distance - Varying rolloff factors

0,025 0,09

0,155 0,22

0,285 0,35

0,415 0,48

0,545 0,61

0,675 0,74

0,805 0,87

0,935 1

The rolloff factor for linear distance simply sets the maximum volume reduction. Using values
outside the 0..1 range causes undefined behavior.

0

0,2

0,4

0,6

0,8

1

1,2

Linear distance - varying min distance

0,4 0,8

1,2 1,6

2 2,4

2,8 3,2

3,6 4

4,4 4,8

5,2 5,6

6 6,4

The minimum distance works as one might expect. Minimum distance must be less or equal to
maximum distance.

SoLoud Audio Engine - http://soloud-audio.com 27

0

0,2

0,4

0,6

0,8

1

1,2

Linear distance - Varying max distance

1 1,4

1,8 2,2

2,6 3

3,4 3,8

4,2 4,6

5 5,4

5,8 6,2

6,6 7

7,4 7,8

The maximum distance works as one might expect. Minimum distance must be less or equal to
maximum distance.

6.2.3 Exponential Distance
distance = CLAMP(distance , min_distance , max_distance)
r e su l t = pow(distance / min_distance , − r o l l o f f _ f a c t o r)

0

0,2

0,4

0,6

0,8

1

1,2

Exponential distance - varying rolloff factor

0 0,1

0,2 0,3

0,5 0,8

1,3 2,1

3,4 5,5

8,9 14,4

23,3 37,7

61 98,7

The higher the rolloff factor, the more steeply the volume drops. At low enough rolloff factor,

SoLoud Audio Engine - http://soloud-audio.com 28

the volume never drops near zero. Values over 1 recommended (unless you have special needs).
Values less than equal to zero result in really weird behavior.

0

0,2

0,4

0,6

0,8

1

1,2

Exponential distance - varying min distance

0,2 0,4

0,6 0,8

1 1,2

1,4 1,6

1,8 2

2,2 2,4

2,6 2,8

3 3,2

Increasing the minimum distance pushes the start of the attenuation further. It also causes the
curve to change. Note that the minimum distance must be above 0.

0

0,2

0,4

0,6

0,8

1

1,2

Exponential distance - Varying max distance

1 1,4

1,8 2,2

2,6 3

3,4 3,8

4,2 4,6

5 5,4

5,8 6,2

6,6 7

7,4 7,8

The maximum distance simply cuts the attenuation at the volume level it has reached at that
point.

SoLoud Audio Engine - http://soloud-audio.com 29

6.3 Doppler

“Doppler effect” is the physical phenomenon that causes sound sources (like an ambulance) to
sound higher-pitched when they’re coming towards you and lower-pitched when going away.

A stationary sound (with a stationary listener) receives sound waves as you’d expect. When the
sound source (or listener) are moving, the sound waves get “squashed” (for higher-pitch sould)
or “stretched” (for lower-pitch sound) depending on whether the sound is approaching or re-
ceding from the listener.

SoLoud uses the OpenAL 1.1 formula for doppler calculation. The calculation depends on the
listeners’ and sound sources’ velocities being properly calculated on the application’s side. If
you do not wish to use the doppler, simply leave all velocities at zero.

In addition to velocities, the doppler depends on the proper value of speed of sound. The default
value is set at 343, which assumes that your world coordinates are in meters (where 1 unit is 1
meter), and that the environment is dry air at around 20 degrees celsius. If those assumptions
do not match your environment, change the speed with set3dSoundSpeed().

soloud . set3dSoundSpeed (1497) ; // we’ re in water

For a bit of artistic control, you can also set the doppler factor on a per-audio source basis to
increase or decrease the strength of the effect. The default value is 1.0.

6.4 Distance Delay

SoLoud can also delay the start of the effects by their distance. This uses the sound speed
value and the distance between the listener and the sound source. Since this may be seen as a
glitch as most games do not bother simulating this, it is disabled by default. To enable, use the
set3dDistanceDelay() function on your sound sources.

sn ipershot . set3dDistanceDelay (1) ;

6.5 Speaker Output

Speakers are defined as 3d vectors, and the volume at which each speaker plays is calculated
like:

SoLoud Audio Engine - http://soloud-audio.com 30

volume = (dot (speaker_vector , sound_vector) + 1) / 2

In practise this ((dot+1)/2) calculation creates a field where sounds that come from the same
direction as the speaker play at maximum volume, while sounds that come from exact opposite
direction play at zero volume, and anything in between gets a reduced volume.

This algorithm is easily applied to any number of speakers in any positioning in 3d space. It may
not be as clear-sounding as “Vector Base Amplitude Panning (VBAP)”, but it’s really easy to
implement.

SoLoud Audio Engine - http://soloud-audio.com 31

7 Frequently Asked Questions

7.1 What does it play?

Currently, SoLoud includes support for uncompressed 8 and 16 bit RIFF Wav files, as well as
Ogg Vorbis files. Both of these only support a limited feature set of said formats, so you may
experience some issues with strange files.

Additionally, SoLoud comes with a speech synthesizer and a retro sound effect synthesizer Sfxr.

Finally, SoLoud includes libmodplug, through which it can play 669, abc, amf, ams, dbm, dmf,
dsm, far, it, j2b, mdl, med, mid, mod, mt2, mtm, okt, pat, psm, ptm, s3m, stm, ult, umx, xm,
as well as wider support for wav files than the stand-alone wav audio source. (Due to the size
of libmodplug, SoLoud can be compiled without it).

The interface for audio sources is relatively simple, so new formats and noise generators, as
well as audio filters, can be made.

An example sin/saw/triangle/square generator is also available, as part of the “piano” example.

7.2 What dependencies does it have?

There’s no external library dependencies (apart from stdlib). However, to get audio out of
your speakers, a back-end is needed. Back-ends that currently exist include SDL, windows
multimedia, oss and portaudio, and SoLoud has been designed so that making new back-ends
would be as painless as possible.

7.3 Is there a DLL / C-Interface?

Yes! This DLL can be used from non-c++ environments through the “C” interface. SoLoud comes
with wrappers for Python, Ruby, c# and BlitzMax.

7.4 What’s the animal in the logo?

A fennec fox. Google it. They’re cute!

7.5 Is there a mailing list?

There’s a google group, at http://groups.google.com/d/forum/soloud

Main development occurs on GitHub, athttps://github.com/jarikomppa/soloud
and the issue tracker is in use.

Finally, there’s #soloud on ircnet, if you want to pop by.

7.6 No doxygen docs?

No, instead you get documentation written by an actual human being. Granted, some function
descriptions may be a bit terse or repetitive, but that’s what you would have gotten from
doxygen too..

SoLoud Audio Engine - http://soloud-audio.com 32

http://groups.google.com/d/forum/soloud
https://github.com/jarikomppa/soloud

7.7 Why not use this superior fork of libmodplug?

I’m aware there are other forks of libmodplug, which may be in better shape than the one used
in SoLoud by default. However, those forks use more restrictive licenses, which (while still
liberal) would require changes in SoLoud licensing. At the moment, you don’t need to mention
the use of SoLoud anywhere if you don’t want to.

That said, nothing’s stopping you from compiling a version of SoLoud that uses another fork of
libmodplug.

7.8 Can SoLoud do HRTF?

Currently, no. Pull requests are welcome =)

7.9 Are these real questions?

Surprisingly, yes.

SoLoud Audio Engine - http://soloud-audio.com 33

8 Examples

SoLoud package comes with a few simple examples. These can be found under the ‘demos’
directory. Pre-built binaries for Windows can also be found in the ‘bin’ directory.

Along with the examples, the ‘bin’ directory also contains some command-line tools. These are
safe to run without parameters, and will print out help when run.

8.1 simplest

.

The simplest example initializes SoLoud, and uses the speech synthesizer to play some sound.
Once the sound has finished, the application cleans up and quits.

This example also uses SoLoud’s cross-platform thread library to sleep while waiting for the
sound to end.

SoLoud Audio Engine - http://soloud-audio.com 34

8.2 welcome

.

Slightly more complicated console-based example, playing different kinds of sounds.

8.3 multimusic

.

The multimusic example loads two OGG music loops as well as sound effects. Use mouse to
interact with the GUI to fade between songs, fade replay speed of the songs and to trigger
sound effects.

SoLoud Audio Engine - http://soloud-audio.com 35

8.4 piano

.

This example is a simple implementation of a playable instrument. The example also includes
a simple waveform generator (soloud_basicwave.cpp/h), which can produce square, saw, sine
and triangle waves. If compiled to use portmidi, you can also use an external midi keyboard to
drive the example.

Key(s) Effect

1234.. Play notes (“black keys”)

qwer.. Play notes (“white keys”)

Speech synthesizer and on-screen text describe what different keys do when pressed. You can
also adjust some filters and pick waveforms using the GUI.

SoLoud Audio Engine - http://soloud-audio.com 36

8.5 mixbusses

.

The mixbusses example demonstrates the use of mixing busses. You can use the GUI to adjust
volume of different busses.

8.6 env

.

The env demo is a non-interactive demo of how SoLoud could be used to play environmental
audio.

SoLoud Audio Engine - http://soloud-audio.com 37

8.7 pewpew

.

The pewpew demo demonstrates the use of the playClocked commands. Use the GUI buttons to
trigger either single sound effect or repeated sound effect via play() and playClocked() calls.

To exaggarate the effect a bit, the demo requests a very large audio buffer from SoLoud. The
difference between the play and playClocked effects is that with play(), all sounds triggered
between audio buffers begin playing from the start of the next audio buffer, while playClocked
spreads the sounds across the audio buffer, making the sounds more separate.

SoLoud Audio Engine - http://soloud-audio.com 38

8.8 space

.

The space demo is a non-interactive demo showing visualization data captured from different
parts of the audio pipeline. The scope displays the data only from the speech synth while the
FFT data only uses the music as input.

SoLoud Audio Engine - http://soloud-audio.com 39

8.9 3dtest

.

Simple 3d audio test. One audio source orbits the listener, another goes on a crazy orbit, and
third audio source is where the mouse pointer is. The view is from above, with the listener
looking at the top of the screen.

8.10 monotone

.

This demo plays a MONOTONE song and lets you play with some filters on it.

SoLoud Audio Engine - http://soloud-audio.com 40

8.11 tedsid

.

This demo plays a SID song and a TED song, and lets you play with some filters as well as fade
the volume of the two songs.

SoLoud Audio Engine - http://soloud-audio.com 41

9 Foreign Interfaces

SoLoud can be used from various environments through a “C” API DLL.

In order to use SoLoud from a different environment, such as Python or BlitzMax, you need
the SoLoud DLL and a wrapper. The wrappers for SoLoud are not made by hand, but instead
generated through Python scripts. This minimizes hassle when SoLoud gets new features, as the
new wrappers can simply be generated via the scripts.

Some foreign interfaces may be more complex, such as the GameMaker:Studio, which only
supports variable types double and char*. For such, we generate a glue DLL to act as translator
between GameMaker:Studio and the SoLoud “C” API DLL.

All of the glue libraries, and scripts to generate them, can be found under the “glue” directory.
The only exception to this rule is the C api, which is located under “src/c_api”.

SoLoud Audio Engine - http://soloud-audio.com 42

9.1 Codegen

In order for SoLoud to be usable from other languages than C++, glue code needs to be written.
Most environments are able to use “C” DLL:s, and this is one of the things SoLoud has.

For most cases, you won’t need to care about the codegen. Here’s some information, however,
if should you be curious.

Writing and maintaining glue code is, however, tedious and prone to bugs, so the glue code for
SoLoud is generated.

The “C” API is automatically generated from the c++ sources via the codegen tool that is part
of the SoLoud sources. In most cases you won’t need to use the codegen yourself.

SoLoud c++ sources

codegen

.c / .h .def python

gen_python gen_???

soloud.py soloud.???.dll

Figure 9.1: Code generation path

The codegen tool parses the SoLoud headers and generates the needed headers and wrapper
cpp code, as well as the DLL .def file, and a Python file which can be used to generate glue
libraries for other environments (such as Python itself).

The generated Python file also turned out to be useful in writing of this documentation, as it
was pretty easy to write a script that checks whether a function has been documented or not.

SoLoud Audio Engine - http://soloud-audio.com 43

9.2 “C” API / DLL

In order to support non-c++ environments, SoLoud also has a “C” API.

All of the existing interfaces can be used via the “C” API, but features that require extending
SoLoud are not available.

9.2.1 Using the “C” API

The glue file soloud_c.cpp can be found under the “src/c_api” directory.

You can either link to the generated DLL, which exposes the “C” API, or you can include SoLoud
C++ sources (or static library) to your project along with the soloud_c.cpp file.

In your C sources, include soloud_c.h header file.

9.2.2 “C” API Example

The “C” API mirrors the c++ API.

If the c++ API functions have default parameters, two functions are generated: one without the
default parameters, and one with. The one where you can change the default parameters is
post-fixed Ex, such as Soloud_init and Soloud_initEx.

As an example, here’s a simple example in the C++ api:

SoLoud : : Soloud soloud ;
SoLoud : : Speech speech ;

speech . setText (”Hello␣c++␣api”) ;

soloud . i n i t (SoLoud : : Soloud : : CLIP_ROUNDOFF |
SoLoud : : Soloud : : ENABLE_VISUALIZATION)

soloud . setGlobalVolume (4) ;
soloud . play (speech) ;

// . . .

soloud . de in i t () ;

Converted to the “C” API, this becomes:

Soloud * soloud = Soloud_create () ;
Speech * speech = Speech_create () ;

Speech_setText (speech , ”Hello␣c-api”) ;

So loud_ in i tEx (soloud , SOLOUD_CLIP_ROUNDOFF | SOLOUD_ENABLE_VISUALIZATION ,
SOLOUD_AUTO, SOLOUD_AUTO, SOLOUD_AUTO) ;

Soloud_setGlobalVolume (soloud , 4) ;
Soloud_play (soloud , speech) ;

// . . .

So loud_dein i t (soloud) ;

SoLoud Audio Engine - http://soloud-audio.com 44

Speech_destroy (speech) ;
Soloud_destroy (soloud) ;

For a slightly longer example, check out the “c_test” demo.

SoLoud Audio Engine - http://soloud-audio.com 45

9.3 Python API

One of the generated glue interfaces for SoLoud is the Python API.

All of the existing interfaces can be used via the Python API, but features that require extending
SoLoud are not available.

9.3.1 Using the Python API

The glue file soloud.py can be found under the “glue” directory.

Include the SoLoud DLL and soloud.py in the same directory as your python files, and use

import soloud

to include SoLoud to your project.

9.3.2 Python API Example

The Python API mirrors the c++ API.

If the c++ API functions have default parameters, the same function in the python API will also
have default parameters.

As an example, here’s a simple example in the C++ api:

SoLoud : : Soloud soloud ;
SoLoud : : Speech speech ;

speech . setText (”Hello␣c++␣api”) ;

soloud . i n i t (SoLoud : : Soloud : : CLIP_ROUNDOFF |
SoLoud : : Soloud : : ENABLE_VISUALIZATION)

soloud . setGlobalVolume (4) ;
soloud . play (speech) ;

// . . .

soloud . de in i t () ;

Converted to the Python API, this becomes:

import soloud

aud io l i b = soloud . Soloud ()
speech = soloud . Speech ()

speech . set_text (”Hello␣Python␣api”)

aud io l i b . i n i t (aud io l i b .CLIP_ROUNDOFF |
aud io l i b . ENABLE_VISUALIZATION)

aud io l i b . set_global_volume (4)
aud io l i b . play (speech)

. . .

SoLoud Audio Engine - http://soloud-audio.com 46

aud io l i b . de in i t ()

For cleanup, the code generator produces three functions: close, destroy and quit. All of these
perform the exact same function, and it doesn’t matter which you choose.

Alternatively, you can use the SoLoud objects with the “with” syntax, which also handles
cleanup, for example:

with Soloud () as aud io l i b :
aud io l i b . i n i t ()
. . .

Here’s a slightly longer example:

from soloud import *

with Soloud () as aud io l i b :
aud io l i b . i n i t ()
aud io l i b . set_global_volume (10)

speech = Speech ()

f langer = F l ange rF i l t e r ()
speech . s e t _ f i l t e r (0 , f langer)

t = ”Hello␣Python␣(OOP)␣World!”
speech . set_text (t)
p r i n t (t)
aud io l i b . play (speech)

p r i n t ”Enter␣text␣to␣speak␣(empty␣string␣quits)”
while t != ””:

t = raw_input (”:␣”)
speech . set_text (t) ;
aud io l i b . play (speech) ;

speech . c lose ()

p r i n t ”Bye”

SoLoud Audio Engine - http://soloud-audio.com 47

9.4 Ruby API

One of the generated glue interfaces for SoLoud is the Ruby API.

All of the existing interfaces can be used via the Ruby API, but features that require extending
SoLoud are not available.

9.4.1 Using the Ruby API

The glue file soloud.rb can be found under the “glue” directory.

Include the SoLoud DLL and soloud.rb in the same directory as your ruby files, and use

load ’soloud.rb’

to include SoLoud to your project.

9.4.2 Ruby API Example

The Ruby API mirrors the c++ API.

If the c++ API functions have default parameters, the same function in the ruby API will also
have default parameters.

As an example, here’s a simple example in the C++ api:

SoLoud : : Soloud soloud ;
SoLoud : : Speech speech ;

speech . setText (”Hello␣c++␣api”) ;

soloud . i n i t (SoLoud : : Soloud : : CLIP_ROUNDOFF |
SoLoud : : Soloud : : ENABLE_VISUALIZATION)

soloud . setGlobalVolume (4) ;
soloud . play (speech) ;

// . . .

soloud . de in i t () ;

Converted to the Ruby API, this becomes:

load ’soloud.rb’

soloud=Soloud .new(””)
speech=Speech .new(””)

speech . set_text (”Hello␣Ruby␣api”)

soloud . i n i t (soloud : : CLIP_ROUNDOFF |
soloud : : ENABLE_VISUALIZATION)

soloud . set_global_volume (4)
soloud . play (speech)

. . .

SoLoud Audio Engine - http://soloud-audio.com 48

soloud . de in i t ()
speech . destroy ()
soloud . destroy ()

SoLoud Audio Engine - http://soloud-audio.com 49

9.5 RPG Maker API

One of the generated glue interfaces for SoLoud is the RPG Maker API. Since RPG Maker uses
Ruby, this API is equal to the Ruby API.

All of the existing interfaces can be used via the Ruby API, but features that require extending
SoLoud are not available.

9.5.1 Using the RPG Maker API

The glue file rpgmaker_soloud.rb can be found under the “glue” directory.

Copy the contents of rpgmaker_soloud.rb into one RPG Maker script tab, drop the “soloud_x86.dll”
in your project’s System folder and just use it.

9.5.2 RPG Maker API Example

The RPG Maker Ruby API mirrors the c++ API.

If the c++ API functions have default parameters, the same function in the ruby API will also
have default parameters.

As an example, here’s a simple example in the C++ api:

SoLoud : : Soloud soloud ;
SoLoud : : Speech speech ;

speech . setText (”Hello␣c++␣api”) ;

soloud . i n i t (SoLoud : : Soloud : : CLIP_ROUNDOFF |
SoLoud : : Soloud : : ENABLE_VISUALIZATION)

soloud . setGlobalVolume (4) ;
soloud . play (speech) ;

// . . .

soloud . de in i t () ;

Converted to the RPG Maker API, this becomes:

soloud=SoLoud : : Soloud .new
speech=SoLoud : : Speech .new

speech . set_text (”Hello␣Ruby␣api”)

soloud . i n i t (SoLoud : : Soloud : : CLIP_ROUNDOFF |
SoLoud : : Soloud : : ENABLE_VISUALIZATION)

soloud . set_global_volume (4)
soloud . play (speech)

. . .

soloud . de in i t ()
speech . destroy ()
soloud . destroy ()

SoLoud Audio Engine - http://soloud-audio.com 50

9.6 BlitzMax API

Using the BlitzMax wrapper, SoLoud DLL can be used from BlitzMax.

All of the existing interfaces can be used via the BlitzMax API, but features that require extending
SoLoud are not available.

9.6.1 Using the BlitzMax API

The glue file soloud.bmx can be found under the “glue” directory.

To use SoLoud with BlitzMax, you can use the soloud.bmx from the glue directory. Be sure to
have soloud_x86.dll in your project directory.

9.6.2 BlitzMax API Example

The BlitzMax API mirrors the c++ API.

If the c++ API functions have default parameters, two functions are generated: one without the
default parameters, and one with. The one where you can change the default parameters is
post-fixed Ex, such as Soloud_init and Soloud_initEx.

As an example, here’s a simple example in the C++ api:

SoLoud : : Soloud soloud ;
SoLoud : : Speech speech ;

speech . setText (”Hello␣c++␣api”) ;

soloud . i n i t (SoLoud : : Soloud : : CLIP_ROUNDOFF |
SoLoud : : Soloud : : ENABLE_VISUALIZATION)

soloud . setGlobalVolume (4) ;
soloud . play (speech) ;

// . . .

soloud . de in i t () ;

Converted to the BlitzMax API, this becomes:

SuperS t r i c t

Import ”soloud.bmx”

Local soloud : Byte Ptr = Soloud_create ()
Local speech : Byte Ptr = Speech_create ()

Speech_setText speech , ”hello␣from␣blits␣max”. ToCStr ing ()

So loud_ in i tEx soloud , SOLOUD_CLIP_ROUNDOFF | SOLOUD_ENABLE_VISUALIZATION ,
SOLOUD_AUTO, SOLOUD_AUTO, SOLOUD_AUTO

Soloud_setGlobalVolume soloud , 4
Soloud_play soloud , speech

’␣...

SoLoud Audio Engine - http://soloud-audio.com 51

Soloud_deinit␣soloud

Speech_destroy␣speech
Soloud_destroy␣soloud

SoLoud Audio Engine - http://soloud-audio.com 52

9.7 GameMaker: Studio API

Using the GameMaker: Studio extension, SoLoud can be used from GameMaker: Studio.

Most of the existing interfaces can be used via the GameMaker: Studio API. Features that require
extending SoLoud are not available. Additionally, the GameMaker:Studio limits extensions to
only two variable types: doubles and strings. This means that anything more complex, such as
wave and FFT data, cannot be used.

9.7.1 Using the GameMaker: Studio API

The extension soloud.gmez can be found under the “glue” directory.

To use SoLoud with GameMaker: Studio, you can import the soloud.gmez extension to your
project. As of this writing, only windows target is supported.

9.7.2 GameMaker: Studio API Example

The GameMaker: Studio API mirrors the c++ API.

If the c++ API functions have default parameters, two functions are generated: one without the
default parameters, and one with. The one where you can change the default parameters is
post-fixed Ex, such as Soloud_init and Soloud_initEx.

As an example, here’s a simple example in the C++ api:

SoLoud : : Soloud soloud ;
SoLoud : : Speech speech ;

speech . setText (”Hello␣c++␣api”) ;

soloud . i n i t (SoLoud : : Soloud : : CLIP_ROUNDOFF |
SoLoud : : Soloud : : ENABLE_VISUALIZATION)

soloud . setGlobalVolume (4) ;
soloud . play (speech) ;

// . . .

soloud . de in i t () ;

Converted to the GameMaker: Studio API, this becomes:

soloud = Soloud_create () ;
speech = Speech_create () ;

Speech_setText (speech , ”Hello␣from␣GameMaker:␣Studio”) ;

So loud_ in i tEx (soloud , SOLOUD_CLIP_ROUNDOFF + SOLOUD_ENABLE_VISUALIZATION ,
SOLOUD_AUTO, SOLOUD_AUTO, SOLOUD_AUTO) ;

Soloud_setGlobalVolume (soloud , 4) ;
Soloud_play (soloud , speech) ;

// . . .

So loud_dein i t (soloud) ;

SoLoud Audio Engine - http://soloud-audio.com 53

Speech_destroy (speech) ;
Soloud_destroy (soloud) ;

SoLoud Audio Engine - http://soloud-audio.com 54

9.8 C sharp (C#) API

One of the generated glue interfaces for SoLoud is the C sharp API (C#).

All of the existing interfaces can be used via the C sharp API, but features that require extending
SoLoud are not available.

9.8.1 Using the C sharp API

The glue file soloud.cs can be found under the “glue” directory.

Include the soloud.cs from the glue directory in your project, and make sure the SoLoud DLL is
in the same directory as your executable files.

9.8.2 C sharp API Example

The C sharp API mirrors the c++ API.

If the c++ API functions have default parameters, the same function in the C sharp API will also
have default parameters.

As an example, here’s a simple example in the C++ api:

SoLoud : : Soloud soloud ;
SoLoud : : Speech speech ;

speech . setText (”Hello␣c++␣api”) ;

soloud . i n i t (SoLoud : : Soloud : : CLIP_ROUNDOFF |
SoLoud : : Soloud : : ENABLE_VISUALIZATION) ;

soloud . setGlobalVolume (4) ;
soloud . play (speech) ;

// . . .

soloud . de in i t () ;

Converted to the C sharp API, this becomes:

SoLoud . Soloud soloud = new SoLoud . Soloud () ;
SoLoud . Speech speech = new SoLoud . Speech () ;

speech . setText (”Hello␣c␣sharp␣api”) ;

soloud . i n i t (SoLoud . Soloud .CLIP_ROUNDOFF |
SoLoud . Soloud . ENABLE_VISUALIZATION) ;

soloud . setGlobalVolume (4) ;
soloud . play (speech) ;

// . . .

soloud . de in i t () ;

SoLoud Audio Engine - http://soloud-audio.com 55

9.9 D API

One of the generated glue interfaces for SoLoud is the D API.

All of the existing interfaces can be used via the D API, but features that require extending
SoLoud are not available.

9.9.1 Using the D API

The glue file soloud.d can be found under the “glue” directory.

Include the soloud.d from the glue directory in your project, and make sure the SoLoud DLL is
in the same directory as your executable files. You’ll also want to link your executable against
the generated soloud_dll_x86.lib.

9.9.2 D API Example

The D API mirrors the c++ API.

If the c++ API functions have default parameters, the same function in the D API will also have
default parameters.

As an example, here’s a simple example in the C++ api:

SoLoud : : Soloud soloud ;
SoLoud : : Speech speech ;

speech . setText (”Hello␣c++␣api”) ;

soloud . i n i t (SoLoud : : Soloud : : CLIP_ROUNDOFF |
SoLoud : : Soloud : : ENABLE_VISUALIZATION) ;

soloud . setGlobalVolume (4) ;
soloud . play (speech) ;

// . . .

soloud . de in i t () ;

Converted to the D API, this becomes:

Soloud soloud = Soloud . create () ;
Speech speech = Speech . create () ;

speech . setText (”Hello␣D␣api”) ;

soloud . i n i t (Soloud .CLIP_ROUNDOFF |
Soloud . ENABLE_VISUALIZATION) ;

soloud . setGlobalVolume (4) ;
soloud . play (speech) ;

// . . .

soloud . de in i t () ;

SoLoud Audio Engine - http://soloud-audio.com 56

10 Core: Basics

10.1 SoLoud::Soloud Object

In order to use SoLoud, you have to create a SoLoud::Soloud object. The object must be
cleaned up or destroyed before your back-end is shut down; the safest way to do this is to
call soloud.deinit() manually before terminating.

The object may be global, member variable, or even a local variable, it can be allocated from
the heap or the stack, as long as the above demand is met. If the back-end gets destroyed
before the back-end clean-up call is made, the result is undefined. As in, bad. Most likely, a
crash. Blue screens in Windows are not out of the question.

SoLoud : : Soloud * soloud = new SoLoud : : Soloud ; // object created
soloud−> i n i t () ; // back−end i n i t i a l i z a t i o n
. . .
soloud−>de in i t () ; // clean−up
delete soloud ; // t h i s c leans up too

Seriously: remember to call the cleanup function. The SoLoud object destructor also calls the
cleanup function, but if you perform your application’s tear-down in an unpredictable order
(such as having the SoLoud object be a global variable), the back-end may end up trying to use
resources that are no longer available. So, it’s best to call the cleanup function manually.

10.2 Soloud.play()

The play function can be used to start playing a sound source. The function has more than one
parameter, with typical default values set to most of them.

in t play (AudioSource &aSound ,
f l oa t aVolume = 1.0 f , // Fu l l volume
f l oa t aPan = 0.0 f , // Centered
in t aPaused = 0 , // Not paused
in t aBus = 0) ; // Primary bus

Unless you know what you’re doing, leave the aBus parameter to zero.

The play function returns a channel handle which can be used to adjust the parameters of
the sound while it’s playing. The most common parameters can be set with the play function
parameters, but for more complex processing you may want to start the sound paused, adjust
the parameters, and then un-pause it.

in t h = soloud . play (sound , 1 , 0 , 1) ; // s t a r t paused
soloud . setRelat ivePlaySpeed (h , 0.8 f) ; // change a parameter
soloud . setPause (h , 0) ; // unpause

10.3 Soloud.playClocked()

This is a variant of the play function that takes additional parameter, the time offset for the
sound. While the vanilla play() tries to play sounds as soon as possible, the playClocked will

SoLoud Audio Engine - http://soloud-audio.com 57

delay the start of sounds so that rapidly launched sounds don’t all get clumped to the start of the
next outgoing sound buffer. See the “pew pew” example for an intuitive way of understanding
how this function is used, and what problem it solves.

t = time_from_game_engine () ; // Game phys ic s time
in t h = soloud . playClocked (t , pew) ; // Shoot !

Apart from the delayed start, the playClocked() works exactly like the play() function, except
that there’s no way to start them in a paused state.

10.4 Soloud.seek()

You can seek to a specific time in the sound with the seek function. Note that the seek operation
may be rather heavy, and some audio sources will not support seeking backwards at all.

in t h = soloud . play (sound , 1 , 0 , 1) ; // s t a r t paused
soloud . seek (h , 3.8 f) ; // seek to 3.8 seconds
soloud . setPause (h , 0) ; // unpause

10.5 Soloud.stop()

The stop function can be used to stop a sound.

soloud . stop (h) ; // S i lence !

10.6 Soloud.stopAll()

The stop function can be used to stop all sounds. Note that this will also stop the protected
sounds.

soloud . s topA l l () ; // Total s i l ence !

10.7 Soloud.stopAudioSource()

The stop function can be used to stop all sounds that were started through a certain sound
source. Will also stop protected sounds.

soloud . stopAudioSource (duck) ; // s i l ence a l l the ducks

10.8 Soloud.setGlobalVolume() / Soloud.getGlobalVolume()

These functions can be used to get and set the global volume. The volume is applied before
clipping. Lowering the global volume is one way to combat clipping artifacts.

f l oa t v = soloud . getGlobalVolume () ; // get the current g loba l volume
soloud . setGlobalVolume (v * 0.5 f) ; // halve i t

Note that the volume is not limited to 0..1 range. Negative values may result in strange behavior,
while huge values will likely cause distortion.

SoLoud Audio Engine - http://soloud-audio.com 58

10.9 Soloud.setPostClipScaler() / Soloud.getPostClipScaler()

These functions can be used to get and set the post-clip scaler. The scaler is applied after
clipping. Sometimes lowering the post-clip result sound volumemay be beneficial. For instance,
recording video with some video capture software results in distorted sound if the volume is too
high.

f l oa t v = soloud . getPos tC l ipSca le r () ; // get the current post−c l i p sca le r
soloud . se tPo s tC l i pSca le r (v * 0.5 f) ; // halve i t

Note that the scale is not limited to 0..1 range. Negative values may result in strange behavior,
while huge values will likely cause distortion.

SoLoud Audio Engine - http://soloud-audio.com 59

11 Core: Attributes

11.1 Soloud.getVolume() / Soloud.setVolume()

These functions can be used to get and set a sound’s current volume setting.

f l oa t v = soloud . getVolume (h) ; // Get current volume
soloud . setVolume (h , v * 2) ; // Double i t

Note that the volume is the “volume setting”, and the actual volume will depend on the sound
source. Namely, a whisper will most likely be more quiet than a scream, even if both are played
at the same volume setting.

If an invalid handle is given to getVolume, it will return 0.

11.2 Soloud.getPan() / Soloud.setPan()

These functions can be used to get and set a sound’s current pan setting.

f l oa t v = soloud . getPan (h) ; // Get current pan
soloud . setPan (h , v − 0 .1) ; // L i t t l e b i t to the l e f t

The range of the pan values is -1 to 1, where -1 is left, 0 is middle and and 1 is right. Setting
value outside this range may cause undefined behavior.

SoLoud calculates the left/right volumes from the pan to keep a constant volume; to set the
volumes directly, use setPanAbsolute.

If an invalid handle is given to getPan, it will return 0.

11.3 Soloud.setPanAbsolute()

These function can be used to set the left/right volumes directly.

soloud . setPanAbsolute (h , 1 , 1) ; // f u l l b l a s t

Note that this does not affect the value returned by getPan.

If an invalid handle is given to getPan, it will return 0.

11.4 Soloud.getSamplerate() / Soloud.setSamplerate()

These functions can be used to get and set a sound’s base sample rate.

f l oa t v = soloud . getSamplerate (h) ; // Get the base sample rate
soloud . setSamplerate (h , v * 2) ; // Double i t

Setting the value to 0 will cause undefined behavior, likely a crash.

SoLoud Audio Engine - http://soloud-audio.com 60

To adjust the play speed, while leaving the base sample rate alone, use setRelativePlaySpeed
instead.

If an invalid handle is given to getSamplerate, it will return 0.

11.5 Soloud.getRelativePlaySpeed() / Soloud.setRelativePlaySpeed()

These functions can be used to get and set a sound’s relative play speed.

f l oa t v = soloud . getRelat ivePlaySpeed (h) ; // Get r e l a t i v e play speed
soloud . setRelat ivePlaySpeed (h , v * 0.5 f) ; // Halve i t

Setting the value to 0 will cause undefined behavior, likely a crash.

Change the relative play speed of a sample. This changes the effective sample rate while leaving
the base sample rate alone.

Note that playing a sound at a higher sample rate will require SoLoud to request more samples
from the sound source, which will require more memory and more processing power. Playing
at a slower sample rate is cheaper.

If an invalid handle is given to getRelativePlaySpeed, it will return 1.

11.6 Soloud.getProtectVoice() / Soloud.setProtectVoice()

These functions can be used to get and set a sound’s protection state.

in t v = soloud . getProtectVoice (h) ; // Get the protect ion state
i f (v) soloud . setProtectVoice (h , 0) ; // Disab le i f protected

Normally, if you try to play more sounds than there are voices, SoLoud will kill off the oldest
playing sound to make room. This will most likely be your background music. This can be worked
around by protecting the sound.

If all voices are protected, the result will be undefined.

If an invalid handle is given to getProtectChannel, it will return 0.

11.7 Soloud.getPause() / Soloud.setPause()

The setPause function can be used to pause, or unpause, a sound.

i f (soloud . getPause (h)) hum_si lent ly () ;
soloud . setPause (h , 0) ; // resumes playback

Note that even if a sound is paused, its channel may be taken over. Trying to resume a sound
that’s no longer in a channel doesn’t do anything.

If the handle is invalid, the getPause will return 0.

11.8 Soloud.setPauseAll()

The setPauseAll function can be used to pause, or unpause, all sounds.

SoLoud Audio Engine - http://soloud-audio.com 61

soloud . setPauseAl l (h , 0) ; // resumes playback of a l l channels

Note that this function will overwrite the pause state of all channels at once. If your game uses
this to pause/unpause the sound while the game is paused, do note that it will also pause/un-
pause any sounds that you may have paused/unpaused separately.

11.9 Soloud.setFilterParameter()

Sets a parameter for a live instance of a filter. The filter must support changing of live param-
eters; otherwise this call does nothing.

soloud . setF i l terParameter (h , 3 , FILTER : : CUTOFF, 1000);
// set h ’ s 3rd f i l t e r ’ s ” cutof f ” value to 1000

11.10 Soloud.getFilterParameter()

Gets a parameter from a live instance of a filter. The filter must support changing of live
parameters; otherwise this call returns zero.

f l oa t v = soloud . getF i l terParameter (h ,3 , FILTER : : CUTOFF) ;
// get h ’ s 3rd f i l t e r ’ s ” cutof f ” value

SoLoud Audio Engine - http://soloud-audio.com 62

12 Core: Faders

12.1 Overview

Faders are a convenient way of performing some common audio tasks without having to add
complex code into your application.

The most common use for the faders is to fade audio in or out, adding nice touches and polish.

Let’s say you’re exiting a bar and entering the street.

soloud . fadeVolume (bar_ambience , 0 , 2) ; // fade bar out in 2 seconds
soloud . scheduleStop (bar_ambience , 2) ; // stop the bar ambience af ter fadeout
street_ambience = soloud . play (cars , 0) ; // s t a r t s t reet ambience at 0 volume
soloud . setProtectChannel (street_ambience , 1) ; // protect i t
soloud . fadeVolume (street_ambience , 1 , 1.5 f) ; // fade s t reet in in 1.5

Or let’s say you’re quiting your game.

soloud . fadeGlobalVolume (0 , 1) ; // Fade out g loba l volume in 1 second

The faders are only evaluated once per mix function call - in other words, whenever the back
end requests samples from SoLoud, which is likely to be in chunks of 20-100ms, which is smoothly
enough for most uses.

The exception is volume (which includes panning), which gets interpolated on per-sample basis
to avoid artifacts.

The starting value for most faders is the current value.

12.2 Soloud.fadeVolume()

Smoothly change a channel’s volume over specified time.

soloud . fadeVolume (orchestra , 1 , 60) ; // The orchestra creeps in for a minute

The fader is disabled if you change the channel’s volume with setVolume()

12.3 Soloud.fadePan()

Smoothly change a channel’s pan setting over specified time.

soloud . setPan (racecar , −1); // set s t a r t value
soloud . fadePan (racecar , 1 , 0 .5) ; // Swoosh !

The fader is disabled if you change the channel’s panning with setPan() or setPanAbsolute()

12.4 Soloud.fadeRelativePlaySpeed()

Smoothly change a channel’s relative play speed over specified time.

SoLoud Audio Engine - http://soloud-audio.com 63

soloud . fadeRelat ivePlaySpeed (hal , 0.1 , 6) ; // Hal ’ s message slows down

The fader is disabled if you change the channel’s play speed with setRelativePlaySpeed()

12.5 Soloud.fadeGlobalVolume()

Smoothly change the global volume over specified time.

soloud . fadeGlobalVolume (0 , 2) ; // Fade everything out in 2 seconds

The fader is disabled if you change the global volume with setGlobalVolume()

12.6 Soloud.schedulePause()

After specified time, pause the channel

soloud . fadeVolume (jukebox , 0 , 2) ; // Fade out the music in 2 seconds
soloud . schedulePause (jukebox , 2) ; // Pause the music a f ter 2 seconds

The scheduler is disabled if you set the pause state with setPause() or setPauseAll().

12.7 Soloud.scheduleStop()

After specified time, stop the channel

soloud . fadeVolume (applause , 0 , 10) ; // Fade out the cheers for 10 seconds
soloud . scheduleStop (applause , 10) ; // Stop the sound af ter 10 seconds

There’s no way (currently) to disable this scheduler.

12.8 Soloud.oscillateVolume()

Set fader to oscillate the volume at specified frequency.

soloud . osc i l lateVolume (murmur , 0 , 0.2 , 5) ; // murmur comes and goes

The fader is disabled if you change the channel’s volume with setVolume()

12.9 Soloud.oscillatePan()

Set fader to oscillate the panning at specified frequency.

soloud . o sc i l l a tePan (ambulance , −1, 1 , 10) ; // Round and round i t goes

The fader is disabled if you change the channel’s panning with setPan() or setPanAbsolute()

SoLoud Audio Engine - http://soloud-audio.com 64

12.10 Soloud.oscillateRelativePlaySpeed()

Set fader to oscillate the relative play speed at specified frequency.

soloud . osc i l l a teRe la t i veP laySpeed (v iny l , 0.9 , 1.1 , 3) ; // Wobbly record

The fader is disabled if you change the channel’s play speed with setRelativePlaySpeed()

12.11 Soloud.oscillateGlobalVolume()

Set fader to oscillate the global volume at specified frequency.

soloud . osc i l lateGlobalVolume (0.5 , 1.0 , 0 . 2) ; // Go crazy

The fader is disabled if you change the global volume with setGlobalVolume()

12.12 Soloud.fadeFilterParameter()

Fades a parameter on a live instance of a filter. The filter must support changing of live param-
eters; otherwise this call does nothing.

soloud . fadeFi l terParameter (h ,3 , FILTER : : CUTOFF,1000 ,1) ;
// Fades h ’ s 3rd f i l t e r CUTOFF to 1000 in 1 second

12.13 Soloud.oscillateFilterParameter()

Oscillates a parameter on a live instance of a filter. The filter must support changing of live
parameters; otherwise this call does nothing.

soloud . setF i l terParameter (h ,3 , FILTER : : CUTOFF,500 ,1000 ,2);
// O s c i l l a t e s the h ’ s 3rd f i l t e r ’ s CUTOFF between 500 and 1000

SoLoud Audio Engine - http://soloud-audio.com 65

13 Core: Voice Groups

Sometimes you may want to command several voices at the exact same time. Unpausing two
sounds on subsequent lines in code may work most of the time, but it not guaranteed, and in
the worst case one of them will not make it to the same sound buffer as the other.

music1 music1 music1 music1 music1 music1 m

music2 music2 music2 music2 music2 40ms

Figure 13.1: Problem unpausing two voices. Delay may vary, 40ms used as an example.

SoLoud’s solution to this problem are voice groups. You create a voice group handle, add voice
handles to it, and then use the voice group handle just like you’d use a voice handle. The voice
group handles are not, however, “fire and forget” like the normal voice handles, and you have
to destroy them manually. You don’t have to destroy them if you keep reusing them.

Destroying voice group does not destroy the voices attached to it.

You may allocate up to 4095 voice group handles.

Example of use:

// Create group
SoLoud : : handle gh = soloud . createVoiceGroup () ;

// Add voices to group
soloud . addVoiceToGroup (gh , music1) ;
soloud . addVoiceToGroup (gh , music2) ;

// unpause both musics in one atomic op
soloud . setPause (gh , 0) ;

// Clean up , destroy grup . Leaves actual vo ices alone .
soloud . destroyVoiceGroup (gh) ;

13.1 Soloud.createVoiceGroup()

Used to create a new voice group. Returns 0 if not successful (either out of memory or out of
voice groups).

grouphandle = soloud . createVoiceGroup () ;
i f (grouphandle == 0) panic () ;

13.2 Soloud.destroyVoiceGroup()

Deallocates the voice group. Does not stop the voices attached to the voice group.

soloud . destroyVoiceGroup (grouphandle) ;

SoLoud Audio Engine - http://soloud-audio.com 66

13.3 Soloud.addVoiceToGroup()

Adds voice handle to the voice group. The voice handles can still be used separate from the
group.

soloud . addVoiceToGroup (grouphandle , music1) ;
soloud . addVoiceToGroup (grouphandle , music2) ;
soloud . setPause (grouphandle , 0) ; // play both musics
soloud . fadeVolume (music1 , 1 , 5) ; // fade music 1 up
soloud . fadeVolume (music2 , 0 , 5) ; // fade music 2 down

13.4 Soloud.isVoiceGroup()

Checks if the handle is a valid voice group. Does not care if the voice group is empty.

i f (soloud . isVoiceGroup (grouphandle))
probably_some_debug_thing () ;

13.5 Soloud.isVoiceGroupEmpty()

Checks whether a voice group is empty. SoLoud automatically trims the voice groups of voices
that have ended, so the group may be empty even though you’ve added valid voice handles to
it.

while (! soloud . isVoiceGroupEmpty (voicegroup))
{

party_on () ;
}

SoLoud Audio Engine - http://soloud-audio.com 67

14 Core: Misc

14.1 Soloud.getStreamTime()

The getStreamTime function can be used to get the current play position, in seconds.

double t = soloud . getStreamTime (h) ; // get time
i f (t == hammertime) hammer () ;

Note that time is a double instead of float because float will cause precision problems within
24 hours of playing, and eventually, in about 6 days, will cause the “time” to stop.

Also note that the granularity is likely to be rather high (possibly around 45ms), so using this as
the sole clock source for animation will lead to rather low framerate (possibly around 20Hz).
To fix this, either use some other clock source and only sync with the stream time occasionally,
or use some kind of low-pass filter, such as..

mytime = (mytime * 9 + soloud . getStreamTime (h)) / 10;

While not perfect, that’s way better than using the stream time directly.

0

0,5

1

1,5

2

2,5

3

3,5

Real

Streamtime

Filtered

Figure 14.1: Low-pass filtered time values

14.2 Soloud.isValidVoiceHandle()

The isValidVoiceHandle function can be used to check if a handle is still valid.

i f (! soloud . i sVal idVoiceHandle (h)) delete foobar ;

SoLoud Audio Engine - http://soloud-audio.com 68

If the handle is invalid, the isValidVoiceHandle will return 0.

14.3 Soloud.getActiveVoiceCount()

Returns the number of concurrent sounds that are playing at the moment.

i f (soloud . getActiveVoiceCount () == 0) enjoy_the_s i lence () ;

If the handle is invalid, the getActiveVoiceCount will return 0.

14.4 Soloud.setGlobalFilter()

Sets, or clears, the global filter.

soloud . s e tG l oba l F i l t e r (0 , &echochamber) ; // set f i r s t f i l t e r

Setting the global filter to NULL will clear the global filter. The default maximum number of
global filters active is 4, but this can be changed in a global constant in soloud.h (and rebuilding
SoLoud).

14.5 Soloud.calcFFT()

Calculates FFT of the currently playing sound (post-clipping) and returns a pointer to the result.

f l oa t * f f t = soloud . calcFFT () ;
in t i ;
for (i = 0; i < 256; i ++)

drawline (0 , i , f f t [i] * 32 , i) ;

The FFT data has 256 floats, from low to high frequencies.

SoLoud performs a mono mix of the audio, passes it to FFT, and then calculates the magnitude of
the complex numbers for application to use. For more advanced FFT use, SoLoud code changes
are needed.

The returned pointer points at a buffer that’s always around, but the data is only updated when
calcFFT() is called.

For the FFT to work, you also need to initialize SoLoud with the Soloud::ENABLE_VISUALIZATION
flag, or by enabling visualization with the Soloud.setVisualizationEnable() call. Otherwise the
source data for the FFT calculation will not be gathered.

14.6 Soloud.getWave()

Gets 256 samples of the currently playing sound (post-clipping) and returns a pointer to the
result.

f l oa t * wav = soloud . getWave () ;
in t i ;
for (i = 0; i < 256; i ++)

drawline (0 , i , wav[i] * 32 , i) ;

SoLoud Audio Engine - http://soloud-audio.com 69

The returned pointer points at a buffer that’s always around, but the data is only updated when
getWave() is called. The data is the same that is used to generate visualization FFT data.

For this function to work properly, you also need to initialize SoLoud with the Soloud::ENABLE_VISUALIZATION
flag or by enabling visualization with the Soloud.setVisualizationEnable() call. Otherwise the
source data will not be gathered, and the result is undefined (probably zero).

14.7 Soloud.getVersion()

Returns the version of the SoLoud library. Same as SOLOUD_VERSION macro. Mostly useful when
using the DLL, to check the DLL’s library version.

i f (soloud . getVers ion () != SOLOUD_VERSION)
panic () ;

14.8 Soloud.getErrorString()

Converts SoLoud’s error values to printable zero-terminated ascii strings.

in t err = mod. load (”foo.mod”)
p r i n t f (”Mod␣load:%s”, soloud . ge tE r ro r S t r i ng (err)) ;

14.9 Soloud.setDelaySamples()

Sets number of samples to delay before starting to play a sound. This is used internally by
the playClocked() function. In the unlikely event that you may want to use it manually, it’s
available in the public API.

h = soloud . play (snd , 1 , 0 , 1) ; // s t a r t paused
soloud . setDelaySamples (h , 44100); // delay for a second
soloud . setPause (h , 0) ; // go

Calling this on a “live” voice will cause silence to be inserted at the start of the next audio buffer.
Since this is rather unpredictable (as audio buffer sizes may vary), it’s not recommended, even
if it may be a rather funky effect..

14.10 Soloud.getLoopCount()

Some sound sources that support looping also keep count of the loop count. This can be useful
at least to detect when some sound loops.

in t c = soloud . getLoopCount (h) ;
i f (c != old_c)

p r i n t f (”Looped!);
old_c␣=␣c;

Invalid handles and unsupported sound sources will cause the function to return 0.

14.11 Soloud.getInfo()

Some sound sources let you get real-time information from the active voice.

SoLoud Audio Engine - http://soloud-audio.com 70

f l oa t reg10 = soloud . get In fo (c64song , 10) ;

If the call is not supported, or the handle is invalid, the function returns 0.

SoLoud Audio Engine - http://soloud-audio.com 71

15 Core: 3d audio

15.1 Soloud.update3dAudio()

Update the 3d parameters for the 3d voices. No positional effect occurs unless this function is
called periodically.

gSoloud . set3dSourceVeloc ity (h , −1, 0 , 0) ; // go west
gSoloud . update3dAudio () ; // apply change to vo ices

15.2 Soloud.play3d()

play3d() is the 3d version of the play() call.

handle play3d (AudioSource &aSound ,
f l oa t aPosX ,
f l oa t aPosY ,
f l oa t aPosZ ,
f l oa t aVelX = 0.0 f ,
f l oa t aVelY = 0.0 f ,
f l oa t aVelZ = 0.0 f ,
f l oa t aVolume = 1.0 f ,
bool aPaused = 0 ,
unsigned int aBus = 0) ;

Instead of panning like with the “2d” version of the call, the 3d version requires 3d position
and optionally velocity vector. Like its 2d version, this one tries to launch the sound as soon as
possible, which means the start of the next audio buffer.

The play3d can also add the “distance delay” to the sound, if enabled.

in t h = gSoloud . play3d (west , −10, 0 , 0) ;
gSoloud . set3dSourceVeloc ity (h , −1, 0 , 0) ; // go west

15.3 Soloud.play3dClocked()

play3dClocked() is the 3d version of the playClocked() call.

handle play3d (time aSoundTime ,
AudioSource &aSound ,
f l oa t aPosX ,
f l oa t aPosY ,
f l oa t aPosZ ,
f l oa t aVelX = 0.0 f ,
f l oa t aVelY = 0.0 f ,
f l oa t aVelZ = 0.0 f ,
f l oa t aVolume = 1.0 f ,
unsigned int aBus = 0) ;

Instead of panning like with the “2d” version of the call, the 3d version requires 3d position and
optionally velocity vector. Like its 2d version, this one delays the start of the sound based on

SoLoud Audio Engine - http://soloud-audio.com 72

the aSoundTime parameter, so that firing off sounds rapidly won’t cause the sounds to “clump”
together at the start of the next sound buffer.

The play3dClocked can also add the “distance delay” to the sound, if enabled.

gSoloud . play3dClocked (physicst ime , boom, bx , by , bz) ; // t r i g ge r boom at spec i f i c coords

15.4 Soloud.set3dSoundSpeed() / Soloud.get3dSoundSpeed()

You can set and get the current value of the speed of sound witht the get3dSoundSpeed() and
set3dSoundSpeed() functions. The speed of sound is used to calculate doppler effects in addition
to the distance delay.

Since SoLoud has no knowledge of the scale of your coordinates, you may need to adjust the
speed of sound for these effects to work correctly. The default value is 343, which assumes
that your world coordinates are in meters (where 1 unit is 1 meter), and that the environment
is dry air at around 20 degrees celsius.

in t speed = gSoloud . get3dSoundSpeed () ; // Get the current speed of sound
gSoloud . set3dSoundSpeed (speed / 2) ; // Halve i t

15.5 Soloud.set3dListenerParameters()

You can set the position, at-vector, up-vector and velocity parameters of the 3d audio listener
with one call using the set3dListenerParameters.

void set3dListenerParameters (f l oa t aPosX ,
f l oa t aPosY ,
f l oa t aPosZ ,
f l oa t aAtX ,
f l oa t aAtY ,
f l oa t aAtZ ,
f l oa t aUpX ,
f l oa t aUpY ,
f l oa t aUpZ ,
f l oa t aVelocityX ,
f l oa t aVelocityY ,
f l oa t aVeloc ityZ)

The changes to these parameters are only evaluated when the update3dAudio() function is
called.

15.6 Soloud.set3dListenerPosition()

You can set the position parameter of the 3d audio listener via set3dListenerPosition()

void se t3dL i s tenerPos i t i on (f l oa t aPosX ,
f l oa t aPosY ,
f l oa t aPosZ)

The changes to these parameters are only evaluated when the update3dAudio() function is
called.

SoLoud Audio Engine - http://soloud-audio.com 73

15.7 Soloud.set3dListenerAt()

You can set the “at” vector parameter of the 3d audio listener via set3dListenerAt()

void set3dL i s tenerAt (f l oa t aAtX ,
f l oa t aAtY ,
f l oa t aAtZ)

The “at” vector means the direction the listener is facing. The vector does not need to be
normalized.

The changes to these parameters are only evaluated when the update3dAudio() function is
called.

15.8 Soloud.set3dListenerUp()

You can set the “up” vector parameter of the 3d audio listener via set3dListenerUp()

void set3dListenerUp (f l oa t aUpX ,
f l oa t aUpY ,
f l oa t aUpZ)

The “up” vector means the direction upwards from the listener. The vector does not need to
be normalized. Typically this is always set to 0,1,0.

The changes to these parameters are only evaluated when the update3dAudio() function is
called.

15.9 Soloud.set3dListenerVelocity()

You can set the listener’s velocity vector parameter via set3dListenerVelocity()

void se t3dL i s tenerVe loc i t y (f l oa t aVelocityX ,
f l oa t aVelocityY ,
f l oa t aVeloc ityZ)

The changes to these parameters are only evaluated when the update3dAudio() function is
called.

15.10 Soloud.set3dSourceParameters()

You can set the position and velocity parameters of a live 3d audio source with one call using
the set3dSourceParameters().

void set3dSourceParameters (handle aVoiceHandle ,
f l oa t aPosX ,
f l oa t aPosY ,
f l oa t aPosZ ,
f l oa t aVelocityX ,
f l oa t aVelocityY ,
f l oa t aVeloc ityZ)

The changes to these parameters are only evaluated when the update3dAudio() function is
called.

SoLoud Audio Engine - http://soloud-audio.com 74

15.11 Soloud.set3dSourcePosition()

You can set the position parameters of a live 3d audio source with the set3dSourcePosition()
function.

void set3dSourcePos i t ion (handle aVoiceHandle ,
f l oa t aPosX ,
f l oa t aPosY ,
f l oa t aPosZ)

The changes to these parameters are only evaluated when the update3dAudio() function is
called.

15.12 Soloud.set3dSourceVelocity()

You can set the velocity parameters of a live 3d audio source with the set3dSourceVelocity()
function.

void set3dSourceVeloc ity (handle aVoiceHandle ,
f l oa t aVelocityX ,
f l oa t aVelocityY ,
f l oa t aVeloc ityZ)

The changes to these parameters are only evaluated when the update3dAudio() function is
called.

15.13 Soloud.set3dSourceMinMaxDistance()

You can set the minimum and maximum distance parameters of a live 3d audio source with
set3dSourceMinMaxDistance().

void set3dSourceMinMaxDistance (handle aVoiceHandle ,
f l oa t aMinDistance ,
f l oa t aMaxDistance)

The changes to these parameters are only evaluated when the update3dAudio() function is
called.

15.14 Soloud.set3dSourceAttenuation()

You can change the attenuation model and rolloff factor parameters of a live 3d audio source
with set3dSourceAttenuation().

void set3dSourceAttenuation (handle aVoiceHandle ,
unsigned int aAttenuationModel ,
f l oa t aAttenuat ionRo l lo f fFactor)

See AudioSource.set3dAttenuation() below for a list of attenuation models.

The changes to these parameters are only evaluated when the update3dAudio() function is
called.

SoLoud Audio Engine - http://soloud-audio.com 75

15.15 Soloud.set3dSourceDopplerFactor()

You can change the doppler factor of a live 3d audio source with set3dSourceDopplerFactor().

void set3dSourceDopplerFactor (handle aVoiceHandle ,
f l oa t aDopplerFactor)

The changes to these parameters are only evaluated when the update3dAudio() function is
called.

15.16 AudioSource.set3dMinMaxDistance()

Set the minimum and maximum distances for the audio source with set3dMinMaxDistance()

void set3dMinMaxDistance (f l oa t aMinDistance ,
f l oa t aMaxDistance)

Default values are 1 and 1000000.

See the 3d audio concepts chapter for the meaning of these parameters.

15.17 AudioSource.set3dAttenuation()

Set the attenuation model and rolloff factor with set3dAttenuation()

void set3dAttenuation (unsigned int aAttenuationModel ,
f l oa t aAttenuat ionRo l lo f fFactor)

The default values are NO_ATTENUATION and 1.

Constant Model

NO_ATTENUATION No attenuation

INVERSE_DISTANCE Inverse distance attenuation model

LINEAR_DISTANCE Linear distance attenuation model

EXPONENTIAL_DISTANCE Exponential distance attenuation model

See the 3d audio concepts chapter for the meaning of the models and the rolloff parameter.

15.18 AudioSource.set3dDopplerFactor()

Set the doppler factor with set3dDopplerFactor().

void set3dDopplerFactor (f l oa t aDopplerFactor)

The default value is 1.

SoLoud Audio Engine - http://soloud-audio.com 76

15.19 AudioSource.set3dProcessing()

Enable or disable 3d processing of an audio source. If play3d() or play3dClocked() are used, this
call is not required, and the sounds are marked as 3d.

void set3dProcess ing (bool aDo3dProcessing)

Default is disabled.

snd . set3dProcess ing (1) ;
gSoloud . play (snd) ; // plays as 3d sound

It is preferable to use the play3d() calls, as that lets you set the 3d position of the sound at
startup.

15.20 AudioSource.set3dListenerRelative()

Enable or disable listener relativity for a 3d audio source. If a sound is listener-relative, the
listener’s coordinates are assumed to be (0,0,0) in calculations.

void se t3dL i s tenerRe la t i ve (bool aL i s tenerRe la t i ve)

Default is disabled. Some custom colliders will depend on this flag to be enabled.

15.21 AudioSource.set3dDistanceDelay()

Enable or disable the distance delay effect for a 3d audio source. Since speed of sound is way
slower than speed of light, in reality we might see an explosion before we hear it.

void set3dDistanceDelay (bool aDistanceDelay)

Default is disabled, as this may be seen as a glitch since most games do not bother simulating
this.

Note that this will only affect the start time of the sound.

15.22 AudioSource.set3dCollider()

Set or clear the custom audio collider and collider’s user data for a 3d audio source.

void se t3dCo l l i de r (Aud ioCo l l ider * aCo l l ider ,
in t aUserData)

SoLoud expects the collider to be there until all instances of the sound have stopped. Application
is responsible for cleaning up the collider. Several sound sources may use the same collider.

SoLoud Audio Engine - http://soloud-audio.com 77

16 SoLoud::AudioSource

All audio sources share some common functions. Some of the functionality depends on the audio
source itself; it may be that some parameter does not make sense for a certain audio source,
or it may be that it has not been implemented for other reasons.

For example, if you stream a live radio station, looping does not make much sense.

16.1 AudioSource.setLooping()

This function can be used to set a sample to play on repeat, instead of just playing once.

amenbreak . setLooping (1) ; // le t the beat play on

Note that some audio sources may not implement this behavior.

16.2 AudioSource.setFilter()

This function can be used to set or clear the filters that should be applied to the sounds gener-
ated via this audio source.

speech . s e t F i l t e r (0 , blackmai ler) ; // D i sgu i se the speech

Setting the filter to NULL will clear the filter. This will not affect already playing sounds. By
default, up to four filters can be applied. This value can be changed through a constant in the
soloud.h file.

16.3 AudioSource.setSingleInstance()

This function can be used to tell SoLoud that only one instance of this sound may be played at
the same time.

menuselect . se tS ing le In s tance (1) ; // Only play i t once , Sam

16.4 3d audio interfaces

All audio sources also have the 3d audio interfaces. Please refer to the 3d audio chapter for
details on:

• AudioSource.set3dMinMaxDistance()
• AudioSource.set3dAttenuation()
• AudioSource.set3dDopplerFactor()
• AudioSource.set3dProcessing()
• AudioSource.set3dListenerRelative()
• AudioSource.set3dDistanceDelay()
• AudioSource.set3dCollider()

SoLoud Audio Engine - http://soloud-audio.com 78

17 SoLoud::Wav

The SoLoud::Wav class represents a wave sound effect. The source files may be in 8 or 16 bit
raw RIFF WAV files, or compressed Ogg Vorbis files.

The sounds are loaded and converted to float samples, which means that every second of a
44100Hz stereo sound takes about 350kB of memory. The good side is, after loading, these
samples are very lightweight, as their processing is mostly just a memory copy.

For lengthy samples like background music, you may want to use SoLoud::WavStream instead.
The Wav is all about speed, and always decodes the whole sample into memory at load time.

17.1 Wav.load()

The wav loader takes just one parameter, the file name:

void load (const char * aFilename) ; // F i l e to load

If loading fails, the sample will be silent.

SoLoud : :Wav boom;
boom. load (”boom.wav”) ;

If the loading function is called while there are instances playing, the result is undefined (most
likely a crash).

17.2 Wav.loadMem()

Alternate way of loading samples is to read from a memory buffer.

r e su l t loadMem(unsigned char *aMem, in t aLength ,
bool aCopy , bool aTakeOwnership) ;

If loading fails, the sample will be silent.

SoLoud : :Wav boom;
boom. loadMem(boomMemoryResource , boomMemoryResourceLength) ;

SoLoud function assumes that the pointer and the data pointed will be valid as long as SoLoud
needs them. You can use the aCopy parameter to tell SoLoud to take a copy of the data instead
of using the pointers directly, and the aTakeOwnership parameter to tell SoLoud to free the
pointer when the object is being destroyed.

17.3 Wav.loadFile()

The loadFile() can be used to load audio from a SoLoud::File object. This is useful for integrating
with virtual filesystems / packfiles, such as PhysFS.

SoLoud Audio Engine - http://soloud-audio.com 79

17.4 Wav.setLooping()

This function can be used to set the wave to loop.

gDrumloop . setLooping (1) ;

Calling this function will not affect “live” sound sources.

17.5 Wav.setFilter()

As with any other audio source, you can attach filters to wave audio sources.

gHipster . s e t F i l t e r (0 , &gLof i) ;

17.6 Wav.stop()

You can stop all instances of a wave sound source with stop(). This is equivalent of calling
soloud.stopAudioSource() with the sound source.

gHammertime. stop () ;

17.7 Wav.getLength()

The length, in seconds, of this wave can be queried with this function.

double t = gRecord . getLength () ;

17.8 Inherited 3d audio interfaces

Like all other audio sources, Wav inherits the 3d audio interfaces. Please refer to the 3d audio
chapter for details on:

• Wav.set3dMinMaxDistance()
• Wav.set3dAttenuation()
• Wav.set3dDopplerFactor()
• Wav.set3dProcessing()
• Wav.set3dListenerRelative()
• Wav.set3dDistanceDelay()
• Wav.set3dCollider()

SoLoud Audio Engine - http://soloud-audio.com 80

18 SoLoud::WavStream

The SoLoud::WavStream class represents a wave sound effect that is streamed off disk while
it’s playing. The source files may be in 8 or 16 bit raw RIFF WAV files, or compressed Ogg Vorbis
files.

The sounds are loaded in pieces while they are playing, which takes more processing power than
playing samples from memory, but they require much less memory.

For short or often used samples, you may want to use SoLoud::Wav instead.

18.1 WavStream.load()

The wav loader takes just one parameter, the file name:

r e su l t load (const char * aFilename) ; // F i l e to load

If loading fails, the function will return an error code.

SoLoud : : WavStream muzak ;
muzak . load (”elevator.ogg”) ;

If the loading function is called while there are instances playing, the result is undefined (most
likely a crash).

18.2 WavStream.loadFile()

The loadFile() can be used to load audio from a SoLoud::File object. This is useful for integrating
with virtual filesystems / packfiles, such as PhysFS.

18.3 WavStream.loadMem()

Alternate way of loading samples is to read from a memory buffer.

r e su l t loadMem(unsigned char *aMem, in t aLength ,
bool aCopy , bool aTakeOwnership) ;

If loading fails, the sample will be silent.

SoLoud : : WavStream boom;
boom. loadMem(boomMemoryResource , boomMemoryResourceLength) ;

SoLoud function assumes that the pointer and the data pointed will be valid as long as SoLoud
needs them. You can use the aCopy parameter to tell SoLoud to take a copy of the data instead
of using the pointers directly, and the aTakeOwnership parameter to tell SoLoud to free the
pointer when the object is being destroyed.

SoLoud Audio Engine - http://soloud-audio.com 81

18.4 WavStream.loadToMem()

The loadToMem() tells SoLoud to load the whole file to a memory buffer and stream it from
there. This is similar as to using the Wav object, except that the data is not decoded to raw
samples on load.

This can be useful if you expect the media the data resides on to be slow or busy, but don’t
want to spend the memory for the completely decoded audio data.

18.5 WavStream.loadFileToMem()

The loadFileToMem() function performs the memory loading of loadToMem() using SoLoud::File
objects, same way as loadFile() does.

18.6 WavStream.setLooping()

This function can be used to set the wav stream to loop.

soundtrack . setLooping (1) ;

Calling this function will not affect “live” sound sources.

18.7 WavStream.setFilter()

As with any other audio source, you can attach filters to wav stream audio sources.

gHipster . s e t F i l t e r (0 , &gLof i) ;

18.8 WavStream.stop()

You can stop all instances of a wav stream sound source with stop(). This is equivalent of calling
soloud.stopAudioSource() with the sound source.

gHammertime. stop () ;

18.9 WavStream.getLength()

The length, in seconds, of this wav stream can be queried with this function.

double t = gRecord . getLength () ;

18.10 Inherited 3d audio interfaces

Like all other audio sources, WavStream inherits the 3d audio interfaces. Please refer to the 3d
audio chapter for details on:

• WavStream.set3dMinMaxDistance()
• WavStream.set3dAttenuation()
• WavStream.set3dDopplerFactor()

SoLoud Audio Engine - http://soloud-audio.com 82

• WavStream.set3dProcessing()
• WavStream.set3dListenerRelative()
• WavStream.set3dDistanceDelay()
• WavStream.set3dCollider()

SoLoud Audio Engine - http://soloud-audio.com 83

19 SoLoud::Speech

The SoLoud::Speech class implements a simple Klatt-style formant speech synthesizer. It’s
barely legible, not really human-like, but it’s free, and it’s here.

Adjusting the speech synthesizer’s output with audio filters should allow for various voices,
which, along with subtitles, will let you add voice to your games cheaply.

For more serious use, feel free to study the source code and play with the various internal
parameters, as well as apply various filters to the sound.

For legal notes, please see the license page.

19.1 Speech.setText()

The setText function can be used to set the text to be spoken.

SoLoud : : Speech sp ;
sp . setText (”Hello␣world.␣␣You␣will␣be␣assimilated.”) ;

If the setText function is called while speech is playing, SoLoud stops any playing instances to
avoid crashing.

Trying to set the text to NULL will return an error code.

19.2 Speech.setLooping()

This function can be used to set the speech to loop.

gHeyListen . setLooping (1) ;

Calling this function will not affect “live” sound sources.

19.3 Speech.setFilter()

As with any other audio source, you can attach filters to speech audio sources.

gRobot . s e t F i l t e r (0 , &gRobotize) ;

19.4 Speech.stop()

You can stop all instances of a speech sound source with stop(). This is equivalent of calling
soloud.stopAudioSource() with the sound source.

gHeyListen . stop () ; // shut up already !

SoLoud Audio Engine - http://soloud-audio.com 84

19.5 Inherited 3d audio interfaces

Like all other audio sources, Speech inherits the 3d audio interfaces. Please refer to the 3d
audio chapter for details on:

• Speech.set3dMinMaxDistance()
• Speech.set3dAttenuation()
• Speech.set3dDopplerFactor()
• Speech.set3dProcessing()
• Speech.set3dListenerRelative()
• Speech.set3dDistanceDelay()
• Speech.set3dCollider()

SoLoud Audio Engine - http://soloud-audio.com 85

20 SoLoud::Sfxr

The SoLoud::Sfxr is a “retro” sound effect synthesizer based on the original Sfxr by Tomas
Pettersson.

Figure 20.1: Sfxr interface

The original sfxr tool was designed to easily generate sound effects for Ludum Dare 48h games.
SoLoud includes the same engine built in, so you can (should you wish) make every coin, explo-
sion etc. sound different.

The Sfxr sound sources also include a pseudo-random number generator which should probably
be moved to more general use at some point.

20.1 Sfxr.loadPreset()

You can simply tell Sfxr to use one of the presets (COIN, LASER, EXPLOSION, POWERUP, HURT,
JUMP, BLIP). Each of the presets has several random components, so you can get virtually un-
limited variations of each. (Not all variants sound good, though).

void loadPreset (in t aPresetNo , in t aRandSeed) ; // Preset to load

If loading fails, the function returns an error code.

SoLoud : : S fx r coin ;
coin . loadPreset (S fx r : : COIN , 3247);

SoLoud Audio Engine - http://soloud-audio.com 86

20.2 Sfxr.loadParams()

Effect parameters can also be loaded from a configuration file saved from the sfxr tool.

r e su l t loadParams (const char * aFilename) ; // F i l e to load

If loading fails, the function returns an error code.

SoLoud : : S fx r boom;
boom. loadParams (”boom.sfx”) ;

20.3 Sfxr.loadParamsMem()

Alternate way of loading the parameters is to read from a memory buffer.

r e su l t loadParamsMem(unsigned char *aMem, in t aLength ,
bool aCopy , bool aTakeOwnership) ;

The aTakeOwnership parameter can be used to tell SoLoud to free the pointer once it’s done
with it. The aCopy parameter is here for compatibility with the other loadMem functions.

20.4 Sfxr.loadParamsFile()

The loadFile() can be used to load parameters from a SoLoud::File object. This is useful for
integrating with virtual filesystems / packfiles, such as PhysFS.

20.5 Sfxr.resetParams()

This function resets all of the Sfxr parameters to a “sensible” default. Used by loadPreset(),
which then only adjusts a few parameters over the defaults.

20.6 Sfxr.setLooping()

Adjusting the looping of a sfxr sound does not currently have any effect. The sounds do not
loop.

20.7 Sfxr.setFilter()

As with any other audio source, you can attach filters to Sfxr audio sources.

gMusic . s e t F i l t e r (0 , &gLof i) ;

20.8 Sfxr.stop()

You can stop all instances of a Sfxr sound source with stop(). This is equivalent of calling
soloud.stopAudioSource() with the sound source.

gBoom. stop () ;

SoLoud Audio Engine - http://soloud-audio.com 87

20.9 Prg.srand()

Initializes the pseudo-random number generator to a seed number.

rnd.srand(7);

20.10 Prg.rand()

Returns the next 32bit pseudo-random number.

if (rnd.rand() & 1) printf(“Heads”); else printf(“Tails”);

20.11 Inherited 3d audio interfaces

Like all other audio sources, Sfxr inherits the 3d audio interfaces. Please refer to the 3d audio
chapter for details on:

• Sfxr.set3dMinMaxDistance()
• Sfxr.set3dAttenuation()
• Sfxr.set3dDopplerFactor()
• Sfxr.set3dProcessing()
• Sfxr.set3dListenerRelative()
• Sfxr.set3dDistanceDelay()
• Sfxr.set3dCollider()

SoLoud Audio Engine - http://soloud-audio.com 88

21 SoLoud::Modplug

The SoLoud::Modplug is a module-playing engine, capable of replaying wide variety of multi-
channel music (669, abc, amf, ams, dbm, dmf, dsm, far, it, j2b, mdl, med, mid, mod, mt2,
mtm, okt, pat, psm, ptm, s3m, stm, ult, umx, xm). It also loads wav files, and may support
wider support for wav files than the stand-alone wav audio source.

Due to its size, it’s possible to compile SoLoud without the modplug support.

The midi formats (.mid and .abc) require a library of instruments (patches) to be available.
One free set can be downloaded from the SoLoud downloads page. By default, the patches are
loaded from pat/ directory.

21.1 Modplug.load()

You tell modplug to load a file with the load function:

r e su l t load (const char * aFilename) ; // F i l e to load

If loading fails, the function returns an error code.

SoLoud : : Modplug spacedeb ;
spacedeb . load (”spacedeb.mod”) ;

21.2 Modplug.loadFile()

The loadFile() can be used to load audio from a SoLoud::File object. This is useful for integrating
with virtual filesystems / packfiles, such as PhysFS.

21.3 Modplug.loadMem()

Alternate way of loading the file is to read from a memory buffer.

r e su l t loadMem(unsigned char *aMem, in t aLength ,
bool aCopy , bool aTakeOwnership) ;

The aTakeOwnership parameter can be used to tell SoLoud to free the pointer once it’s done
with it. The aCopy parameter is here for compatibility with the other loadMem functions.

21.4 Modplug.setLooping()

Adjusting the looping of a modplug sound does not currently have any effect. All music is set
to loop by default.

21.5 Modplug.setFilter()

As with any other audio source, you can attach filters to Modplug audio sources.

gMusic . s e t F i l t e r (0 , &gLof i) ;

SoLoud Audio Engine - http://soloud-audio.com 89

21.6 Modplug.stop()

You can stop all instances of a modplug sound source with stop(). This is equivalent of calling
soloud.stopAudioSource() with the sound source.

gMusic . stop () ;

21.7 Inherited 3d audio interfaces

Like all other audio sources, Modplug inherits the 3d audio interfaces. Please refer to the 3d
audio chapter for details on:

• Modplug.set3dMinMaxDistance()
• Modplug.set3dAttenuation()
• Modplug.set3dDopplerFactor()
• Modplug.set3dProcessing()
• Modplug.set3dListenerRelative()
• Modplug.set3dDistanceDelay()
• Modplug.set3dCollider()

SoLoud Audio Engine - http://soloud-audio.com 90

22 SoLoud::Monotone

The SoLoud::Monotone is a replayer for MONOTONE tracker songs. MONOTONE is a pc-speaker
tracker, available on GitHub at

https://github.com/MobyGamer/MONOTONE/

The SoLoud MONOTONE replayer can play MONOTONE v1 songs (only format available at the
time of this writing). You can pick the number of “hardware” voices used - typically the songs
are composed for a single voice (PC beeper).

The waveform used is square wave. Other waveforms can be used bymodifying the soloud_monotone.cpp.

22.1 Monotone.clear()

You can clear all data from the Monotone object using clear:

void c lear () ;

This is primarily used internally.

22.2 Monotone.load()

You tell monotone to load a file with the load function:

r e su l t load (const char * aFilename) ;

If loading fails, the function returns an error code.

SoLoud : : Monotone swingin1 ;
swingin1 . load (”swingin1.mon”) ;

22.3 Monotone.loadFile()

The loadFile() can be used to load audio from a SoLoud::File object. This is useful for integrating
with virtual filesystems / packfiles, such as PhysFS.

22.4 Monotone.loadMem()

Alternate way of loading the file is to read from a memory buffer.

r e su l t loadMem(unsigned char *aMem, in t aLength ,
bool aCopy , bool aTakeOwnership) ;

The aTakeOwnership parameter can be used to tell SoLoud to free the pointer once it’s done
with it. The aCopy parameter is here for compatibility with the other loadMem functions.

SoLoud Audio Engine - http://soloud-audio.com 91

22.5 Monotone.setParams()

The setParams() function can be used to adjust the way SoLoud plays the MONOTONE file.

r e su l t setParams (in t aHardwareChannels , in t aWaveform) ;

Most songs are composed for a single hardware channel. SoLoud supports up to 12 hardware
channels (more can be easily added by editing soloud_monotone.cpp)

For waveform, along with the default SQUARE, the SAW, SIN and SAWSIN waveforms are sup-
ported. The SAWSIN is simply saw(t)*sin(t).

22.6 Monotone.setLooping()

Adjusting the looping of a monotone sound does not currently have any effect. All music is set
to loop by default.

22.7 Monotone.setFilter()

As with any other audio source, you can attach filters to monotone audio sources.

gMusic . s e t F i l t e r (0 , &gLof i) ;

22.8 Monotone.stop()

You can stop all instances of a monotone sound source with stop(). This is equivalent of calling
soloud.stopAudioSource() with the sound source.

gMusic . stop () ;

22.9 Inherited 3d audio interfaces

Like all other audio sources, monotone inherits the 3d audio interfaces. Please refer to the 3d
audio chapter for details on:

• Monotone.set3dMinMaxDistance()
• Monotone.set3dAttenuation()
• Monotone.set3dDopplerFactor()
• Monotone.set3dProcessing()
• Monotone.set3dListenerRelative()
• Monotone.set3dDistanceDelay()
• Monotone.set3dCollider()

SoLoud Audio Engine - http://soloud-audio.com 92

23 SoLoud::TedSid

The SoLoud::TedSid is a replayer for TED and SID soundchip register write dumps, based on
tedplay (c) 2012 Attila Grosz, used under Unlicense http://unlicense.org/.

TED is the soundchip of the commodore plus/4, and SID is the soundchip of the commodore 64.

The TED and SID songs are actually complete c64 or plus/4 programs, so in order to avoid running
a complete c64 emulator in an audio engine, we only simulate the soundchips at real time. To
generate the dumps, you can use the tedsid2dump.exe tool.

You can use the Soloud.getInfo() interface to query TED and SID register values while the song
is playing. The SID registers are mapped to values 0-31 and the TED registers to 64-69.

23.1 TedSid.load()

You tell TedSid to load a file with the load function:

r e su l t load (const char * aFilename) ;

If loading fails, the function returns an error code.

SoLoud : : TedSid galway ;
galway . load (”galway.sid.dump”) ;

23.2 TedSid.loadMem()

Alternate way of loading the file is to read from a memory buffer.

r e su l t loadMem(unsigned char *aMem, in t aLength ,
bool aCopy , bool aTakeOwnership) ;

SoLoud function assumes that the pointer and the data pointed will be valid as long as SoLoud
needs them. You can use the aCopy parameter to tell SoLoud to take a copy of the data instead
of using the pointers directly, and the aTakeOwnership parameter to tell SoLoud to free the
pointer when the object is being destroyed.

23.3 TedSid.loadToMem()

The loadToMem() tells SoLoud to load the whole file to a memory buffer and stream it from
there.

23.4 TedSid.loadFileToMem()

The loadFileToMem() function performs the memory loading of loadToMem() using SoLoud::File
objects, same way as loadFile() does.

SoLoud Audio Engine - http://soloud-audio.com 93

23.5 TedSid.loadFile()

The loadFile() can be used to load audio from a SoLoud::File object. This is useful for integrating
with virtual filesystems / packfiles, such as PhysFS.

23.6 TedSid.setLooping()

Adjusting the looping of a TedSid sound does not currently have any effect. All music is set to
loop by default.

23.7 TedSid.setFilter()

As with any other audio source, you can attach filters to monotone audio sources.

gMusic . s e t F i l t e r (0 , &gLof i) ;

23.8 TedSid.stop()

You can stop all instances of a monotone sound source with stop(). This is equivalent of calling
soloud.stopAudioSource() with the sound source.

gMusic . stop () ;

23.9 tedsid2dump tool

The tedsid2dump tool can be used to dump audio chip register writes from plus/4 and c64
tunes. The tool actually runs the program code inside a limited commodore plus/4 emulator,
and records the audio chip register writes as they happen, along with timestamp so they can be
played back within SoLoud.

Usage :
tedsid2dump filename msecs [− s speed] [−m s id model] [− t tune number] [− i]

Where :
−s 1−5, song speed . 3 = s ing le , 5 = double . Default 3
−m model 0:6581 1:8580 2:8580DB 3:6581R1 . Default 1
−t the number of sub−tune to play . Default 1
− i Show information and qui t
−q Quantize timestamps by 1000 t i c k s

Example :
tedsid2dump foobar . s i d 60000 −s 5 −m 0 −t 1

Songs may require different replay speeds. If your song sounds wrong, you may want to try a
different song speed.

If the tempo is right but some instrument sounds wrong, it’s possible you’re playing with a wrong
SID revision. 6581 and 8580 are the most common.

It is also possible to quantize the timestamps. This may affect the way the song sounds, as
the register writes won’t be even close to cycle-accurate anymore, but it will also dramatically
shrink the dump file sizes.

SoLoud Audio Engine - http://soloud-audio.com 94

23.10 Dump file format

23.10.1 Header

Offset Size Information

0 5 ‘D’ ‘u’ ‘m’ ‘p’ and 0 bytes signature.

5 1 SID model

6 2 2 reserved bytes (set to 0)

23.10.2 Timestamp

Pattern Information

1 aaaaaaa aaaaaaaa Timestamp. Highest bit always on, rest (a) is timestamp delta.

0 bbbbbbb cccccccc Reg write. Highest bit always off, b is register, c is value.

Since the data is stored in x86 big-endian format, the bytes are actually swapped.

To decode, read two bytes; if the highest bit of the second byte is on, this is a timestamp,
otherwise it’s a register write. The timestamp delta value says how many clocks to wait until
the write should be executed.

23.11 Inherited 3d audio interfaces

Like all other audio sources, monotone inherits the 3d audio interfaces. Please refer to the 3d
audio chapter for details on:

• TedSid.set3dMinMaxDistance()
• TedSid.set3dAttenuation()
• TedSid.set3dDopplerFactor()
• TedSid.set3dProcessing()
• TedSid.set3dListenerRelative()
• TedSid.set3dDistanceDelay()
• TedSid.set3dCollider()

SoLoud Audio Engine - http://soloud-audio.com 95

24 Creating New Audio Sources

SoLoud is relatively easy to extend by creating new sound sources. Each sound source consists
of two parts: an audio source class, and an audio instance class.

Studying the existing audio sources’ source code, in addition to this chapter, will be helpful in
creating new ones.

24.1 AudioSource class

c las s Example : public AudioSource
{
public :

v i r tua l AudioInstance * create Instance () ;
} ;

The only mandatory member of an audio source is the createInstance function.

The audio source class is meant to contain all and any data that represents the sound in general
and can be reused by the instances; for instance, with wave files, the wave data is stored with
the audio source, while audio instances just read the data.

Note that there’s no setLooping() function - that’s inherited from AudioSource, and sets the
SHOULD_LOOP flag.

The audio source is also responsible for setting the mChannels and mBaseSamplerate values.
These values get copied to all of the instances of this audio source.

24.2 AudioSource.createInstance()

The createInstance function typically creates and returns its counterpart, the audio instance.
Usually it also gives a pointer to itself to the audio instance.

24.3 AudioSourceInstance class

c las s ExampleInstance : public AudioSourceInstance
{
public :

v i r tua l void getAudio (f l oa t * aBuffer , in t aSamples) ;
v i r tua l int hasEnded () ;
v i r tua l void seek (f l oa t aSeconds , f l oa t * mScratch , in t mScratchSize) ;
v i r tua l int rewind () ;

} ;

The getAudio and hasEnded methods are mandatory. Seek and rewind are optional.

The audio instance is meant as the “play head” for a sound source. Most of the data should be
in the audio source, while audio instance may contain more logic.

SoLoud Audio Engine - http://soloud-audio.com 96

24.4 AudioSourceInstance.getAudio()

SoLoud requests samples from the sound instance using the getAudio function. If the instance
generates more than one channel (i.e, stereo sound), the expected sample data first has the
first channel samples, then second channel samples, etc.

So, if 1024 samples are requested from a stereo audio source, the first 1024 floats should be for
the first channel, and the next 1024 samples should be for the second channel.

The getAudio function is also responsible for handling looping, if the audio source supports it.
See the implementations of existing sound sources for more details.

If the audio source runs out of data, the rest of the buffer should be set to zero.

24.5 AudioSourceInstance.hasEnded()

After mixing, SoLoud asks all audio instances whether they have ended, and if they have, it will
free the object and free the channel. Supporting looping will likely affect the implementation
of this function.

24.6 AudioSourceInstance.seek()

Optionally, you can implement a seek function. The base implementation will simply request
(and discard) samples from the sound source until the desired position has been reached; for
many sound sources, a smarter way exists.

24.7 AudioSourceInstance.rewind()

To enable the base implementation of seek to seek backwards from the current play position,
sound source may implement the rewind function. In most cases the rewind is easier to imple-
ment than actual smart seeking.

24.8 AudioSourceInstance.getInfo()

Optionally, you can provide the getInfo() interface to let the application query real-time infor-
mation about your audio source. This information may be channel volumes, register values, or
some other information of interest.

SoLoud Audio Engine - http://soloud-audio.com 97

25 SoLoud::Bus

The mixing busses are a special case of an audio stream. They are a kind of audio stream that
plays other audio streams. Mixing bus can also play other mixing busses. Like any other audio
stream, mixing bus has volume, panning and filters.

Only one instance of a mixing bus can play at the same time, however; trying to play the same
bus several times stops the earlier instance.

Speech

Bus

Music

Bus

Bus

Sfx Global Out

Figure 25.1: Mix busses concept

While a mixing bus doesn’t generate audio by itself, playing it counts against the maximum
number of concurrent streams.

Mixing busses are protected by default (i.e, won’t stop playing if maximum number of concurrent
streams is reached).

To play a stream through the mixing bus, use the bus play() command.

in t bushandle = gSoloud . play (gBus) ; // Play the bus
gSoloud . setVolume (bushandle , 0.5 f) ; // Set bus volume

in t fxhandle = gBus . play (gSoundEffect) ; // Play sound ef fect through bus
gSoloud . setVolume (fxhandle , 0.5 f) ; // set sound ef fect volume

25.1 Bus.play()

Equivalent of soloud.play(), but plays the sound source through the bus instead of at “global”
scope.

25.2 Bus.playClocked()

Equivalent of soloud.playClocked(), but plays the sound sounce through the bus instead of at
“global” scope.

SoLoud Audio Engine - http://soloud-audio.com 98

25.3 Bus.play3d()

Equivalent of soloud.play3d(), but plays the sound source through the bus instead of at “global”
scope.

25.4 Bus.play3dClocked()

Equivalent of soloud.play3dClocked(), but plays the sound sounce through the bus instead of at
“global” scope.

25.5 Bus.setVisualizationEnable()

Enable (or disable) gathering of visualization wave data from this bus.

25.6 Bus.calcFFT()

Calculates FFT of the sound currently playing through this bus, and returns a pointer to the
result.

f l oa t * f f t = fxbus . calcFFT () ;
in t i ;
for (i = 0; i < 256; i ++)

drawline (0 , i , f f t [i] * 32 , i) ;

The FFT data has 256 floats, from low to high frequencies.

SoLoud performs a mono mix of the audio, passes it to FFT, and then calculates the magnitude of
the complex numbers for application to use. For more advanced FFT use, SoLoud code changes
are needed.

The returned pointer points at a buffer that’s around as long as the bus object exists, but the
data is only updated when calcFFT() is called.

For the FFT to work, you also need to enable visualization with the Bus.setVisualizationEnable()
call. Otherwise the source data for the FFT calculation will not be gathered.

25.7 Bus.getWave()

Gets 256 samples of the sound currently playing through this bus, and returns a pointer to the
result.

f l oa t * wav = speechbus . getWave () ;
in t i ;
for (i = 0; i < 256; i ++)

drawline (0 , i , wav[i] * 32 , i) ;

The returned pointer points at a buffer that’s around as long as the bus object exists, but the
data is only updated when getWave() is called. The data is the same that is used to generate
visualization FFT data.

For this function to work properly, you also need enable visualization with the Bus.setVisualizationEnable()
call. Otherwise the source data will not be gathered, and the result is undefined (probably zero).

SoLoud Audio Engine - http://soloud-audio.com 99

25.8 Bus.setLooping()

Trying to change the looping state of a bus has no effect.

25.9 Bus.stop()

This is equivalent of calling soloud.stopAudioSource() with the sound source.

25.10 Bus.setFilter()

As with any other audio source, you can attach filters to busses.

gSfxBus . s e t F i l t e r (0 , &gEnvironment) ;

25.11 Inherited 3d audio interfaces

Like all other audio sources, the bus inherits the 3d audio interfaces. Please refer to the 3d
audio chapter for details on:

• Bus.set3dMinMaxDistance()
• Bus.set3dAttenuation()
• Bus.set3dDopplerFactor()
• Bus.set3dProcessing()
• Bus.set3dListenerRelative()
• Bus.set3dDistanceDelay()
• Bus.set3dCollider()

SoLoud Audio Engine - http://soloud-audio.com 100

26 SoLoud::Filter

Filters can be used to modify the sound some way. Typical uses for a filter are to create
environmental effects, like echo, or to modify the way the speech synthesizer sounds like.

Like audio sources, filters are implemented with two classes; Filter and FilterInstance. These
are, however, typically much simpler than those derived from the AudioSource and AudioIn-
stance classes.

26.1 Filter class
c las s Example : public F i l t e r
{
public :

v i r tua l F i l t e r I n s t ance * create Instance () ;
} ;

As with audio sources, the only required function is the createInstance().

26.2 FilterInstance class
c las s ExampleInstance : public F i l t e r I n s t ance
{
public :

v i r tua l void in i tParams (in t aNumParams) ;

v i r tua l void updateParams (f l oa t aTime) ;

v i r tua l void f i l t e r (
f l oa t * aBuffer , in t aSamples ,
in t aChannels , f l oa t aSamplerate ,
f l oa t aTime) ;

v i r tua l void f i l t e rChanne l (
f l oa t * aBuffer , in t aSamples ,
f l oa t aSamplerate , f l oa t aTime ,
in t aChannel , in t aChannels) ;

v i r tua l f l oa t getF i l terParameter (
in t aAt t r ibute Id) ;

v i r tua l void setF i l terParameter (
in t aAtt r ibute Id , f l oa t aValue) ;

v i r tua l void fadeFi l terParameter (
in t aAtt r ibute Id , f l oa t aTo ,
f l oa t aTime , f l oa t aStartTime) ;

v i r tua l void osc i l l a teF i l t e rPa ramete r (
in t aAtt r ibute Id , f l oa t aFrom ,
f l oa t aTo , f l oa t aTime ,
f l oa t aStartTime) ;

} ;

SoLoud Audio Engine - http://soloud-audio.com 101

The filter instance has no mandatory functions, but you may want to implement either filter()
or filterChannel() to do some actual work.

26.3 FilterInstance.initParams

You should call this in the constructor of your filter instance, with the number of parameters
your filter has. By convention, the first parameter should be the wet/dry parameter, where
value 1 outputs fully filtered and 0 completely original sound.

26.4 FilterInstance.updateParams

You should call this function in your filter or filterChannel functions to update fader values.

The mNumParams member contains the parameter count.

The mParamChanged member is bit-encoded field showing which parameters have changed. If
you want to know whether parameter 3 has changed, for instance, you could do:

mParamChanged = 0;
updateParams (aTime) ;
i f (mParamChanged & (1 << 3)) // param 3 changed

Finally, mParam array contains the parameter values, and mParamFader array contains the
faders for the parameters.

26.5 FilterInstance.filter()

The filter() function is the main workhorse of a filter. It gets a buffer of samples, channel
count, samplerate and current stream time, and is expected to overwrite the samples with
filtered ones.

If channel count is not one, the layout of the buffer is such that the first channel’s samples
come first, followed by the second channel’s samples, etc.

So if dealing with stereo samples, aBuffer first has aSamples floats for the first channel, followed
by aSamples floats for the second channel.

The default implementation calls filterChannel for every channel in the buffer.

26.6 FilterInstance.filterChannel()

Most filters are simpler to write on a channel-by-channel basis, so that they only deal with mono
samples. In this case, you may want to use the filterChannel() function instead. The default
implementation of filter() calls the filterChannel() for every channel in the source.

26.7 FilterInstance.getFilterParameter()

This function is needed to support the changing of live filter parameters. The default imple-
mentation uses the mParam array.

Unless you do something unexpected, you shouldn’t need to touch this function.

SoLoud Audio Engine - http://soloud-audio.com 102

26.8 FilterInstance.setFilterParameter()

This function is needed to support the changing of live filter parameters. The default imple-
mentation uses the mParam array.

Unless you do something unexpected, you shouldn’t need to touch this function.

26.9 FilterInstance.fadeFilterParameter()

This function is needed to support the changing of live filter parameters. The default imple-
mentation uses the mParamFader array.

Unless you do something unexpected, you shouldn’t need to touch this function.

26.10 FilterInstance.oscillateFilterParameter()

This function is needed to support the changing of live filter parameters. The default imple-
mentation uses the mParamFader array.

Unless you do something unexpected, you shouldn’t need to touch this function.

SoLoud Audio Engine - http://soloud-audio.com 103

27 SoLoud::BiquadResonantFilter

The biquad resonant filter is a surprisingly cheap way to implement low and high pass filters,
as well as some kind of band bass filter.

The implementation in SoLoud is based on “Using the Biquad Resonant Filter”, Phil Burk, Game
Programming Gems 3, p. 606.

The filter has three parameters - sample rate, cutoff frequency and resonance. These can also
be adjusted on live streams, for instance to fade the low pass filter cutoff frequency for a
outdoors/indoors transition effect.

The resonance parameter adjusts the sharpness (or bandwidth) of the cutoff.

// Set up low−pass f i l t e r
gBQRFi lter . setParams (SoLoud : : BiquadResonantFi l ter : : LOWPASS, 44100 , 500 , 2) ;
// Set the f i l t e r as the second f i l t e r of the bus
gBus . s e t F i l t e r (1 , &gBQRFi lter) ;

It’s also possible to set, fade or oscillate the parameters of a “live” filter

gSoloud . fadeFi l terParameter (
gMusicHandle , // Sound handle
0 , // F i r s t f i l t e r
SoLoud : : BiquadResonantFi l ter : : FREQUENCY, // What to adjust
2000 , // Target value
3) ; // Time in seconds

Currently, four parameters can be adjusted:

Parameter Description

WET Filter’s wet signal; 1.0f for fully filtered, 0.0f for original, 0.5f for half and half.

SAMPLERATE Filter’s samplerate parameter

FREQUENCY Filter’s cutoff frequency

RESONANCE Filter’s resonance - higher means sharper cutoff

27.1 BiquadResonantFilter.setParams()

Set the parameters of the filter.

gBQRFi lter . setParams (SoLoud : : BiquadResonantFi l ter : : LOWPASS, 44100 , 500 , 2) ;

Changing the parameters does not affect “live” sounds. If invalid pameters are given, the
function will return error.

SoLoud Audio Engine - http://soloud-audio.com 104

28 SoLoud::EchoFilter

The echo filter in SoLoud is a very simple one. When the sound starts to play, the echo filter
allocates a buffer to contain the echo samples, and loops through this until the sound ends.

The filter does not support changing of parameters on the fly, nor does it take changing of
relative play speed into account.

There are two parameters - delay and decay. Delay is the time in seconds until the echo, and
decay is multiplier for the echo. If the multiplier is outside the [0..1[range, the results are
unpredictable.

// Set up echo f i l t e r
gEchoF i l te r . setParams (0.5 f , 0.5 f) ;
// Set the f i l t e r as the f i r s t f i l t e r of the bus
gBus . s e t F i l t e r (0 , &gEchoF i l te r) ;

28.1 EchoFilter.setParams()

Set the parameters of the filter.

gEchoF i l te r . setParams (0.5 f , 0.5 f) ;

Changing the parameters does not affect “live” sounds. If invalid pameters are given, the
function will return error.

SoLoud Audio Engine - http://soloud-audio.com 105

29 SoLoud::FFTFilter

The FFT filter is a short-time fourier transform filter which can be used as basis for FFT-based
effects. The base implementation does a simple tone downshifting.

The filter exists mainly to adjust the speech synthesizer’s voice in strange ways. It can also be
used as basis for other FFT-based filters.

The filter does not support changing of parameters on the fly, nor does it take changing of
relative play speed into account.

SoLoud Audio Engine - http://soloud-audio.com 106

30 SoLoud::LofiFilter

The lofi filter is a signal degrading filter. You can adjust both the bit depth and the sample rate
of the output, and these parameters can also be adjusted (and even faded) on the fly.

// Set up low−pass f i l t e r
g L o f i F i l t e r . setParams (8000 , 5) ;
// Set the f i l t e r as the f i r s t f i l t e r of the bus
gBus . s e t F i l t e r (0 , &g L o f i F i l t e r) ;

It’s also possible to set, fade or oscillate the parameters of a “live” filter

gSoloud . fadeFi l terParameter (
gMusicHandle , // Sound handle
0 , // F i r s t f i l t e r
SoLoud : : L o f i F i l t e r : : BITDEPTH , // What to adjust
2 , // Target value
3) ; // Time in seconds

Currently, four parameters can be adjusted:

Parameter Description

WET Filter’s wet signal; 1.0f for fully filtered, 0.0f for original, 0.5f for half and half.

SAMPLERATE Filter’s samplerate parameter

BITDEPTH Filter’s bit-depth parameter

30.1 LofiFilter.setParams()

Set the parameters of the filter.

g L o f i F i l t e r . setParams (8000 , 5) ;

Changing the parameters does not affect “live” sounds. If invalid pameters are given, the
function will return error.

SoLoud Audio Engine - http://soloud-audio.com 107

31 SoLoud::FlangerFilter

The flanger filter can be used to create a “flanger” effect on the signal. Applying this on a
human voice may sound more “robotic”, for instance.

// Set up f langer f i l t e r
gF l ange rF i l t e r . setParams (0.005 f , 10) ;
// Set the f i l t e r as the f i r s t f i l t e r of the bus
gBus . s e t F i l t e r (0 , &gF l ange rF i l t e r) ;

It’s also possible to set, fade or oscillate the parameters of a “live” filter

gSoloud . fadeFi l terParameter (
gMusicHandle , // Sound handle
0 , // F i r s t f i l t e r
SoLoud : : L o f i F i l t e r : :WET, // What to adjust
0 , // Target value
3) ; // Time in seconds

Currently, four parameters can be adjusted:

Parameter Description

WET Filter’s wet signal; 1.0f for fully filtered, 0.0f for original, 0.5f for half and half.

FREQ Filter’s frequency

DELAY Filter’s delay

31.1 FlangerFilter.setParams()

Set the parameters of the filter.

gF l ange rF i l t e r . setParams (0.005 f , 10) ;

Changing the parameters does not affect “live” sounds. If invalid pameters are given, the
function will return error.

SoLoud Audio Engine - http://soloud-audio.com 108

32 SoLoud::DCRemovalFilter

This filter tried to remove DC signal from the audio. In other words, it tries to center the
waveform around 0. This can be useful if some of the input waveforms gets stuck on non-zero
values for a long time.

The filter does not support changing of parameters on the fly, nor does it take changing of
relative play speed into account.

The DC removal is performed by calculating the average sample value over a relatively long
period of time, and subtracting this from the output.

There is one parameter - how long the averaging buffer should be. The time is in seconds.

// Set up DC removal f i l t e r
gDCRemovalFilter . setParams (0.1 f) ;
// Set the f i l t e r as the f i r s t f i l t e r of the bus
gBus . s e t F i l t e r (0 , &gDCRemovalFilter) ;

32.1 DCRemovalFilter.setParams()

Set the parameters of the filter.

gDCRemovalFilter . setParams (0.1 f) ;

Changing the parameters does not affect “live” sounds. If invalid pameters are given, the
function will return error.

SoLoud Audio Engine - http://soloud-audio.com 109

33 SoLoud::AudioCollider

3d sound sources may have custom audio colliders attached to them. By default, audio sources
are only defined by their position and maximum range, which makes the sound sources “point
sources” and omnidirectional.

With custom colliders, audio sources may be made to be bound to some area, as well as be
directional.

Custom colliders are used by creating the object and passing it to an audio source via set3dCollider
call:

MyCustomCollider cc ;
gSound . se t3dCo l l i de r (&cc) ;
gSoloud . play (gSound) ;

The set3dCollider call also takes an optional aUserData parameter. The user data as well as the
collider pointer are copied to audio instances, so if you wish to launch several instances of a
sound source with different collider (or just different user data), simply call the set3dCollider()
before any play() calls. Disabling the collider can be done by giving the call a NULL pointer.

33.1 AudioCollider.collide()

To create a custom collider, extend the AudioCollider class. The class defines only one function:

v i r tua l f l oa t co l l i d e (Soloud * aSoloud ,
AudioSourceInstance * aAudioInstance ,
in t aUserData)

The return value is expected to be in the 0..1 range, and gives the general volume level. Soloud
object and current audio instance pointers are given for convenience. Additionally, when setting
the collider, the application may also set a user data integer value which is also provided to the
custom collider through this call.

The custom colliders are called while processing the 3d audio in the update3dAudio() call, be-
fore any panning or attenuation is calculated. Thus, if the collide() function adjusts the audio
instance’s 3d position, the changes will take effect.

For example, if a “river” collider was to be created, the collider would check the player’s
distance to the river, and adjust the sound source’s 3d position to the point closest to the
player so that if the player runs along the river, the sound would be heard from the direction
of the river (instead of, for instance, from just the middle of the river).

Note that calling any SoLoud functions (even to set the position of a 3d audio source) from the
collide function will most likely cause the application - or at least the audio thread - to freeze
due to mutex locks.

SoLoud Audio Engine - http://soloud-audio.com 110

34 Back-ends

SoLoud needs a back-end to play audio out. SoLoud ships with a bunch of back-ends with various
levels of stability and latency. Creating new back-ends is relatively simple.

SoLoud speaks with the back-end with only a couple of functions, in addition to the optional
mutex function pointers.

Studying the existing back-end implementations’ source code, in addition to this page, will help
creating new ones.

34.1 Soloud.postinit()

The back-end should call Soloud.postinit() once it knows what it can do.

void po s t i n i t (in t aSamplerate , // Sample rate , in Hz
in t aBufferS ize , // Buffer s ize , in samples
in t aFlags) ; // F lags

The channels and flags most likely come directly from the application, while sample rate and
buffer size may depend on how the back-end does things. The buffer size should be themaximum
number of samples the back-end requests on one call. Making it bigger doesn’t affect latency,
but causes SoLoud to create larger than necessary internal mixing buffers.

34.2 Soloud.mix()

The back-end can call the mix function to request a number of stereo samples from SoLoud.
The samples will be in float format, and the back-end is responsible for converting them to the
desired output format.

void mix (f l oa t * aBuffer , // Dest inat ion buffer
in t aSamples) ; // Number of requested stereo samples

If the number of samples exceeds the buffer size set at init, the result is undefined (most likely
a crash).

34.3 Soloud.mBackendData

This void pointer is free for the back-end to use in any way it wants. It may be a convenient
place to store any buffers and other information it needs to keep around.

34.4 Soloud.mLockMutexFunc / Soloud.mUnlockMutexFunc

These function pointers point to functions which should lock and unlock a mutex. If they are
left as NULL, they will not be called.

If they’re not implemented, SoLoud will not be thread safe. This means that some shared
resources, such as the channel data, may be accessed by several threads at the same time. In
the worst case one thread may delete an object while another is accessing it.

SoLoud Audio Engine - http://soloud-audio.com 111

34.5 Soloud.mMutex

Pointer to mutex data. The pointer is also passed to the lock/unlock mutex functions as a
parameter.

34.6 Soloud.mBackendCleanupFunc

This function pointer is used by SoLoud to signal the back-end to perform cleanup; stop any
threads, free any resources, etc. If NULL, not called, but may result in resource leaks and quite
possibly crashes.

34.7 Different back-ends

This is a non-exhaustive list of back-ends and notes regarding them.

• SDL

– Most tested, primary development platform
– Cross-platform
– Low latency

• PortAudio

– Cross-platform
– Low latency

• Windows multimedia

– Simplest back-end for Windows-only programs

• oss (/dev/dsp)

– Simplest back-end for Linux-only programs
– Experimental

• OpenAL

– Experimental
– High latency; if this is your only option, you’re probably better off using OpenAL
directly.

• WASAPI

– Experimental

• XAudio2

– Experimental

SoLoud Audio Engine - http://soloud-audio.com 112

35 SoLoud::File

SoLoud has a unified file i/o interface. All of the audio sources in SoLoud that require files use
the File class internally and support loading through a File class.

This enables SoLoud to load frommemory pointers, stream data frommemory, as well as support
virtual filesystems such as PhysFS by extending the File class.

SoLoud has two File-extended classes, DiskFile which uses stdio FILE* interfaces internally, and
MemoryFile which uses an in-memory buffer.

The File class only supports loading.

35.1 File class

The File class is abstract, and provides some helper functions.

c las s F i l e
{
public :

unsigned int read8 () ;
unsigned int read16 () ;
unsigned int read32 () ;
v i r tua l int eof () = 0;
v i r tua l unsigned int read (unsigned char * aDst , unsigned int aBytes) = 0;
v i r tua l unsigned int length () = 0;
v i r tua l void seek (in t aOffset) = 0;
v i r tua l unsigned int pos () = 0;
v i r tua l FILE * ge tF i l eP t r () { return 0; }
v i r tua l unsigned char * getMemPtr () { return 0; }

} ;

35.2 File.read8(), File.read16(), File.read32()

Helper functions reading 8, 16 and 32 bits from the file stream.

unsigned char foo = myfi le . read8 () ;
unsigned short bar = myfi le . read16 () ;
unsigned int baz = myfi le . read32 () ;

35.3 File.getFilePtr()

Returns FILE pointer if avaiable, 0 if not. Useful to check if we’re using DiskFile (or compatible),
and avoids casting between File class subtypes if access to the FILE pointer is needed.

35.4 File.getMemPtr()

Returns memory pointer if avaiable, 0 if not. Useful to check if we’re using MemoryFile (or
compatible), and avoids casting between File class subtypes if access to the memory pointer is
needed.

SoLoud Audio Engine - http://soloud-audio.com 113

35.5 File.eof()

Returns non-zero if the stream is at end of file, zero otherwise.

35.6 File.read()

Read up to aBytes worth of bytes from stream. Return number of bytes actually read.

35.7 File.length()

Return length of the file in bytes.

35.8 File.seek()

Seek to byte offset from beginning of stream.

35.9 File.pos()

Return current byte position in stream.

35.10 Typical File Interfaces

Using the File interface we easily support the following kind of interfaces:

load (const char * aFilename) ;

Load file from disk.

loadMem(unsigned char * aData , unsigned int aDataLength ,
bool aCopy= fa lse , bool aTakeOwnership= true) ;

Load file from a memory pointer, optionally taking a copy of the data, and also optionally taking
ownership and calling delete[] on the data when closing the file.

LoadFi le (F i l e * aF i l e) ;

Load file through File class, useful if you have custom File-extended class.

LoadToMem(const char * aFilename) ;

Load file from disk to a memory buffer, and then use it as a memory file.

LoadFileToMem (F i l e * aF i l e) ;

Combination of LoadToMem and LoadFile.

Some interfaces don’t supply all of the above, because they either don’t need to keep the file
data around, or if they are always storing the data in a memory buffer.

SoLoud Audio Engine - http://soloud-audio.com 114

35.11 soloud_file_hack_on.h / soloud_file_hack_off.h

SoLoud comes with a pair of headers you can use to fool code which uses the FILE interface to
use File instead.

The files use preprocessor macros to turn FILE* calls into SoLoud’s wrapper function calls which
in turn use the File class interfaces. Since it’s a preprocessor hack, the soloud_file_hack_on.h
must be included after stdio.h, or it will break stdio.h.

To switch the hack off again, you can include the soloud_file_hack_off.h, which will undefine
the preprocessor macros.

Current version of the hack overrides fgetc, fread, fseek, ftell, fclose and fopen. The wrapper
functions can be found in soloud_file.cpp.

SoLoud Audio Engine - http://soloud-audio.com 115

	Introduction
	How Easy?
	How Free?
	How Powerful?
	There's a Catch, Right?

	Legal
	SoLoud Proper
	OGG Support
	Speech Synthesizer
	Fast Fourier Transform (FFT)
	Sfxr
	Libmodplug
	RPGMaker Wrapper Generator
	TED and SID support

	Quick Start
	Download SoLoud
	Add SoLoud to your project
	Include files
	Variables
	Initialize SoLoud
	Set up sound sources
	Play sounds
	Take control of the sound
	Cleanup
	Enjoy

	Premake / GENie
	Concepts
	Back end
	Channel
	Voice
	Voice Group
	Clipping
	Sample
	Sample Rate
	Hz
	Play Speed
	Relative Play Speed
	Resampling
	Pan
	Handle
	Sound Source and Instance
	Latency
	Filter
	Mixing Bus

	3D Audio Concepts
	Custom Colliders
	Attenuation
	Inverse Distance
	Linear Distance
	Exponential Distance

	Doppler
	Distance Delay
	Speaker Output

	Frequently Asked Questions
	What does it play?
	What dependencies does it have?
	Is there a DLL / C-Interface?
	What's the animal in the logo?
	Is there a mailing list?
	No doxygen docs?
	Why not use this superior fork of libmodplug?
	Can SoLoud do HRTF?
	Are these real questions?

	Examples
	simplest
	welcome
	multimusic
	piano
	mixbusses
	env
	pewpew
	space
	3dtest
	monotone
	tedsid

	Foreign Interfaces
	Codegen
	``C'' API / DLL
	Using the ``C'' API
	``C'' API Example

	Python API
	Using the Python API
	Python API Example

	Ruby API
	Using the Ruby API
	Ruby API Example

	RPG Maker API
	Using the RPG Maker API
	RPG Maker API Example

	BlitzMax API
	Using the BlitzMax API
	BlitzMax API Example

	GameMaker: Studio API
	Using the GameMaker: Studio API
	GameMaker: Studio API Example

	C sharp (C#) API
	Using the C sharp API
	C sharp API Example

	D API
	Using the D API
	D API Example

	Core: Basics
	SoLoud::Soloud Object
	Soloud.play()
	Soloud.playClocked()
	Soloud.seek()
	Soloud.stop()
	Soloud.stopAll()
	Soloud.stopAudioSource()
	Soloud.setGlobalVolume() / Soloud.getGlobalVolume()
	Soloud.setPostClipScaler() / Soloud.getPostClipScaler()

	Core: Attributes
	Soloud.getVolume() / Soloud.setVolume()
	Soloud.getPan() / Soloud.setPan()
	Soloud.setPanAbsolute()
	Soloud.getSamplerate() / Soloud.setSamplerate()
	Soloud.getRelativePlaySpeed() / Soloud.setRelativePlaySpeed()
	Soloud.getProtectVoice() / Soloud.setProtectVoice()
	Soloud.getPause() / Soloud.setPause()
	Soloud.setPauseAll()
	Soloud.setFilterParameter()
	Soloud.getFilterParameter()

	Core: Faders
	Overview
	Soloud.fadeVolume()
	Soloud.fadePan()
	Soloud.fadeRelativePlaySpeed()
	Soloud.fadeGlobalVolume()
	Soloud.schedulePause()
	Soloud.scheduleStop()
	Soloud.oscillateVolume()
	Soloud.oscillatePan()
	Soloud.oscillateRelativePlaySpeed()
	Soloud.oscillateGlobalVolume()
	Soloud.fadeFilterParameter()
	Soloud.oscillateFilterParameter()

	Core: Voice Groups
	Soloud.createVoiceGroup()
	Soloud.destroyVoiceGroup()
	Soloud.addVoiceToGroup()
	Soloud.isVoiceGroup()
	Soloud.isVoiceGroupEmpty()

	Core: Misc
	Soloud.getStreamTime()
	Soloud.isValidVoiceHandle()
	Soloud.getActiveVoiceCount()
	Soloud.setGlobalFilter()
	Soloud.calcFFT()
	Soloud.getWave()
	Soloud.getVersion()
	Soloud.getErrorString()
	Soloud.setDelaySamples()
	Soloud.getLoopCount()
	Soloud.getInfo()

	Core: 3d audio
	Soloud.update3dAudio()
	Soloud.play3d()
	Soloud.play3dClocked()
	Soloud.set3dSoundSpeed() / Soloud.get3dSoundSpeed()
	Soloud.set3dListenerParameters()
	Soloud.set3dListenerPosition()
	Soloud.set3dListenerAt()
	Soloud.set3dListenerUp()
	Soloud.set3dListenerVelocity()
	Soloud.set3dSourceParameters()
	Soloud.set3dSourcePosition()
	Soloud.set3dSourceVelocity()
	Soloud.set3dSourceMinMaxDistance()
	Soloud.set3dSourceAttenuation()
	Soloud.set3dSourceDopplerFactor()
	AudioSource.set3dMinMaxDistance()
	AudioSource.set3dAttenuation()
	AudioSource.set3dDopplerFactor()
	AudioSource.set3dProcessing()
	AudioSource.set3dListenerRelative()
	AudioSource.set3dDistanceDelay()
	AudioSource.set3dCollider()

	SoLoud::AudioSource
	AudioSource.setLooping()
	AudioSource.setFilter()
	AudioSource.setSingleInstance()
	3d audio interfaces

	SoLoud::Wav
	Wav.load()
	Wav.loadMem()
	Wav.loadFile()
	Wav.setLooping()
	Wav.setFilter()
	Wav.stop()
	Wav.getLength()
	Inherited 3d audio interfaces

	SoLoud::WavStream
	WavStream.load()
	WavStream.loadFile()
	WavStream.loadMem()
	WavStream.loadToMem()
	WavStream.loadFileToMem()
	WavStream.setLooping()
	WavStream.setFilter()
	WavStream.stop()
	WavStream.getLength()
	Inherited 3d audio interfaces

	SoLoud::Speech
	Speech.setText()
	Speech.setLooping()
	Speech.setFilter()
	Speech.stop()
	Inherited 3d audio interfaces

	SoLoud::Sfxr
	Sfxr.loadPreset()
	Sfxr.loadParams()
	Sfxr.loadParamsMem()
	Sfxr.loadParamsFile()
	Sfxr.resetParams()
	Sfxr.setLooping()
	Sfxr.setFilter()
	Sfxr.stop()
	Prg.srand()
	Prg.rand()
	Inherited 3d audio interfaces

	SoLoud::Modplug
	Modplug.load()
	Modplug.loadFile()
	Modplug.loadMem()
	Modplug.setLooping()
	Modplug.setFilter()
	Modplug.stop()
	Inherited 3d audio interfaces

	SoLoud::Monotone
	Monotone.clear()
	Monotone.load()
	Monotone.loadFile()
	Monotone.loadMem()
	Monotone.setParams()
	Monotone.setLooping()
	Monotone.setFilter()
	Monotone.stop()
	Inherited 3d audio interfaces

	SoLoud::TedSid
	TedSid.load()
	TedSid.loadMem()
	TedSid.loadToMem()
	TedSid.loadFileToMem()
	TedSid.loadFile()
	TedSid.setLooping()
	TedSid.setFilter()
	TedSid.stop()
	tedsid2dump tool
	Dump file format
	Header
	Timestamp

	Inherited 3d audio interfaces

	Creating New Audio Sources
	AudioSource class
	AudioSource.createInstance()
	AudioSourceInstance class
	AudioSourceInstance.getAudio()
	AudioSourceInstance.hasEnded()
	AudioSourceInstance.seek()
	AudioSourceInstance.rewind()
	AudioSourceInstance.getInfo()

	SoLoud::Bus
	Bus.play()
	Bus.playClocked()
	Bus.play3d()
	Bus.play3dClocked()
	Bus.setVisualizationEnable()
	Bus.calcFFT()
	Bus.getWave()
	Bus.setLooping()
	Bus.stop()
	Bus.setFilter()
	Inherited 3d audio interfaces

	SoLoud::Filter
	Filter class
	FilterInstance class
	FilterInstance.initParams
	FilterInstance.updateParams
	FilterInstance.filter()
	FilterInstance.filterChannel()
	FilterInstance.getFilterParameter()
	FilterInstance.setFilterParameter()
	FilterInstance.fadeFilterParameter()
	FilterInstance.oscillateFilterParameter()

	SoLoud::BiquadResonantFilter
	BiquadResonantFilter.setParams()

	SoLoud::EchoFilter
	EchoFilter.setParams()

	SoLoud::FFTFilter
	SoLoud::LofiFilter
	LofiFilter.setParams()

	SoLoud::FlangerFilter
	FlangerFilter.setParams()

	SoLoud::DCRemovalFilter
	DCRemovalFilter.setParams()

	SoLoud::AudioCollider
	AudioCollider.collide()

	Back-ends
	Soloud.postinit()
	Soloud.mix()
	Soloud.mBackendData
	Soloud.mLockMutexFunc / Soloud.mUnlockMutexFunc
	Soloud.mMutex
	Soloud.mBackendCleanupFunc
	Different back-ends

	SoLoud::File
	File class
	File.read8(), File.read16(), File.read32()
	File.getFilePtr()
	File.getMemPtr()
	File.eof()
	File.read()
	File.length()
	File.seek()
	File.pos()
	Typical File Interfaces
	soloud_file_hack_on.h / soloud_file_hack_off.h

