

Practical Game Programming

Copyright 2010 Jari Komppa - http://iki.fi/sol/

● Physics in games.
● All games have "physics".
● No game has "real physics".

● Different basic physics implementations.
● Frame-synced.
● Variable timestep.
● Fixed timestep.

● Physics engines.

All games have ”physics”

Copyright 2010 Jari Komppa - http://iki.fi/sol/

All games have ”physics”

Copyright 2010 Jari Komppa - http://iki.fi/sol/

● All games have simplified physics.
● Input, time, output.
● Input causes reaction in game state.
● Game state is represented in some way.

● All games are, deep down, turn-based.
● Some turns just happen to take 10ms..

No game has ”real physics”

Copyright 2010 Jari Komppa - http://iki.fi/sol/

● All game-physics simulations are limited.
● The more sophisticated physics you have, the

more development issues you will face.
● Exploding physics etc.

● On the other hand, some degree of "realistic"
physics makes things more intuitive.

● The most important thing:
 fun > realism

On physics vs representation

Copyright 2010 Jari Komppa - http://iki.fi/sol/

● Games have internal "physics" state.
● This is what's "real".

● Player is shown (visual, aural, force feedback)
some kind of representation of this.
● This should, but never is, what the actual state is.

On physics vs representation

Copyright 2010 Jari Komppa - http://iki.fi/sol/

On physics vs representation

Copyright 2010 Jari Komppa - http://iki.fi/sol/

On physics vs representation

Copyright 2010 Jari Komppa - http://iki.fi/sol/

Frame-synched physics

Copyright 2010 Jari Komppa - http://iki.fi/sol/

● Physics is synchronized to display update rate.
● Used in old, limited, and sometimes in modern

systems "pushing the limits".
● May have issues with NTSC vs PAL refresh

rates, etc.
● Mostly a curiosity (for you, anyway).
● In practise, physics has a fixed amount of ms to

be calculated.

Non-frame-synched physics

Copyright 2010 Jari Komppa - http://iki.fi/sol/

● Physics is calculated 0-n times per rendered
frame.

● Basically how all games are made.
● No fixed time limit for physics.

● Physics may (and in many cases will) affect
framerate.

Variable timestep

Copyright 2010 Jari Komppa - http://iki.fi/sol/

● Calculate time since last physics update.
● Use time as a multiplier in physics calculations.
● Pros:

● Physics updated once per render cycle.
● May be light, function well in low FPS scenarios.

● Cons:
● Non-deterministic.
● Very complex calculations (integration).
● Bug-prone.

Fixed timestep

Copyright 2010 Jari Komppa - http://iki.fi/sol/

● Run physics simulation at steady n Hz.
● In practise: run physics several times per render

cycle, as needed.
● Pros:

● Deterministic.
● Stable.
● Simplified math (dt=1).

● Cons:
● May be heavier, issues in low-FPS situations.

Fixed timestep

Copyright 2010 Jari Komppa - http://iki.fi/sol/

Physics
iteration

Caught
up?

Render
Yes

N
o

Physics engines

Copyright 2010 Jari Komppa - http://iki.fi/sol/

● For more sophisticated physics, many engines
are available.
● Even for free, except..

– Learning a physics engine takes time.
– Learning to fix issues with physics engines takes time.

● If you consider using a physics engine,
remember:
 fun > realism

Physics as the game

Copyright 2010 Jari Komppa - http://iki.fi/sol/

● Creating simple physics simulation may result
in a game:
● Rope physics.
● Spring physics.
● "Sand" physics.
● etc.

homework

Copyright 2010 Jari Komppa - http://iki.fi/sol/

● Grab your physics book.
● Pick at least three equations.
● Write a short description how you could use it in

a game (or as a game).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

