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Automaattista puheentunnistusta voidaan jo käyttää joihinkin kuluttajasovelluksiin. In-
tensiivistä tutkimusta tarvitaan kuitenkin vielä esimerkiksi monikielituen kehittämisessä.
Tämä työ käsittelee monikielistä akustista mallinnusta, erityisesti monikielisten akustisten
mallien määräämistä. Eräs menetelmä monikielisen puheentunnistusjärjestelmän toteut-
tamiseksi pohjautuu valmiiksi koulutettuun joukkoon kieliriippuvia tunnistusjärjestelmiä.
Näiden järjestelmien akustisten mallien välinen erilaisuus mitataan käyttäen tiettyä erilai-
suusmittaa, ja sitä hyväksikäyttäen ryhmitellään akustiset mallit. Tarkoituksena on saada
aikaiseksi pieni, mutta kattava joukko akustisia malleja, jotka jaetaan eri kielten kesken.

Tässä työssä käydään läpi erilaisuusmittoja piilo-Markov -malleille (HMM). Mittoihin,
joita voidaan käyttää akustisten mallien ryhmittelyyn, kiinnitetään erityistä huomiota.
Kaikki työssä esitetyt mitat pohjautuvat joko sekaannusmatriisiestimaattiin tai Kullback-
Leibler (KL) -divergenssin estimaattiin tai sen approksimaatioon. Työssä luodaan katsaus
edellä mainittuihin mittoihin, ja esitetään muunnettuja menetelmiä estimaattien tarkenta-
miseksi. Työssä esitellään lisäksi kaksi approksimaatiota KL -divergenssistä, jotka voidaan
esittää suljetussa muodossa. Näiden approksimaatioiden laskennalliset kustannukset ovat
erittäin alhaiset, mutta niitä voidaan soveltaa ainoastaan HMM:iin, joilla on multinormaa-
lit havaintojakaumat, sekä tietynlainen mallirakenne.

Koejärjestelyssä erilaisuusmittoja tarkasteltiin monikielisten akustisten mallien määrittä-
misessä. Kokeissa monikieliset tunnistimet rakennettiin viidelle kielelle, jotka olivat englan-
ti, espanja, italia, saksa ja suomi. Monikielinen puheentunnistusjärjestelmä, jossa on 64
akustista mallia, opetettiin jokaisen erilaisuusmitan tuottaman akustisten mallien ryhmit-
telyn perusteella. Näitä tunnistusjärjestelmiä verrattiin sekä keskenään, että monikielisiin
järjestelmiin, joissa akustisten mallien ryhmittely ja määrittely oli suoritettu foneettisen
tiedon pohjalta. Monikielisten tunnistusjärjestelmien tunnistustarkkuus arvioitiin puhuja-
riippumattomassa irrallisten sanojen tunnistuksessa. Kieliriippuvilla järjestelmillä keski-
määräinen tunnistusprosentti sanoille oli noin 89%. Monikielisten järjestelmien tunnistus-
prosentti vaihteli välillä 82–84%. Erot monikielisten järjestelmien välillä olivat siten pieniä.
Monikielisiä järjestelmiä kokeiltiin myös kahden uuden kielen, ranskan ja ruotsin, tunnis-
tamisessa. Näiden kielten kieliriippuville järjestelmille keskimääräinen tunnistusprosentti
oli noin 84%. Vastaava prosentti monikielisille järjestelmille vaihteli välillä 60–64%.
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Although automatic speech recognition (ASR) technology is mature enough for some con-
sumer products, intensive research is still needed to obtain e.g. the support for multiple
languages. This thesis contributes to multilingual (ML) acoustic modeling, especially to
the techniques that can be used for defining a set of ML acoustic models for ML ASR
system. One starting point for the development of such a system is first to train a set of
language dependent (LD) ASR systems. Based on some measure of dissimilarity between
the obtained LD acoustic models, the objective is to reduce the acoustic model set into a
compact set of models that are shared across the languages.

In this thesis, the dissimilarity measures for hidden Markov models (HMMs), especially
those that are applicable for the clustering of acoustic HMMs, are covered. All the measures
are based either on a confusion matrix estimate, or on an estimate or an approximation
of the Kullback-Leibler (KL) divergence. This thesis reviews a number of such methods,
and also proposes some modifications to get more accurate KL divergence and confusion
matrix estimates. In addition, two closed-form approximations of the KL divergence are
proposed. These closed-form approximations have very low computational cost, but they
are restricted for HMMs with Gaussian emission densities and employ assumptions of the
HMM topology.

The dissimilarity measures were experimented in the definition of the set of ML phone
models. One ML ASR system having 64 phone models was trained for each phone clus-
ter definition obtained from the corresponding dissimilarity measure. The systems were
trained for five languages: English, Finnish, German, Italian and Spanish. The obtained
ASR systems were compared both against each other, and to the alternative ML ASR sys-
tems having phone clusters determined solely by expert knowledge. The performances of
these multilingual recognizers were evaluated in the task of speaker independent isolated
word recognition. The average word recognition rate (WRR) of the baseline LD recogni-
tion systems was approximately 89%, while the average WRRs of the ML systems varied
between 82–84%. Small differences were observed in the recognition accuracies of the dif-
ferent ML recognition systems. The ML systems were tested also with two new languages,
French and Swedish. In the experiments, the average WRR was 84% for the baseline LD
systems, while the average WRR of the ML ASR system dropped to 60–64%.



List of Acronyms

ASR Automatic speech recognition
BW Baum-Welch
DCT Discrete cosine transform
DFT Discrete Fourier transform
EM Expectation-maximization
GMM Gaussian mixture model
HMM Hidden Markov model
HTK Hidden Markov Model Toolkit
IPA International Phonetic Association
KL Kullback-Leibler
LD Language dependent
LID Language identification
MAP Maximum a posteriori
MC Monte-Carlo
MFCC Mel-frequency cepstral coefficient
ML Multilingual
MLE Maximum likelihood estimate
MLLR Maximum likelihood linear regression
PDF Probability density function
SAMPA Speech Assessment Methods Phonetic Alphabet
SD Speaker dependent
SI Speaker independent
SIL Silence model
SP Short pause model
WRR Word recognition rate

vii



List of Symbols

General notations

A,B,C . . . Matrices
a, b, c . . . Vectors
a, b, c . . . Scalars
A,B, C . . . Sets
aij Element of matrix A
A−1 Inverse of matrix A
|A| Determinant of matrix A
bT Transpose of vector b
cardA Cardinality, i.e. number of elements in the set A
dim b Dimension of vector b
E

{
f(Oλ)

}
Expectation of function f of a random variable Oλ with distribution
λ

fD(·; θ) The PDF of distribution D with parameters θ
t(x,y) Tanimoto similarity ratio of vectors x and y
trA Trace of matrix A
x[n] n:th sample of a discrete-time signal x
µ Mean vector of a random distribution
Σ Covariance matrix of a random distribution
{x : cond(x)} A set of all such elements x that fulfill the condition cond(·)
[c, d]T A vector consisting of elements c and d
(a, b) Ordered set containing the elements a and b

Mel-frequency cepstral coefficients

Ci The ith cepstral coefficient of a frame
D Dimension of an observation feature vector o
E The energy estimate of a frame
O Observation vector sequence
ot Observation vector occurring at time instant t
∆C First time derivative coefficient corresponding C
∆2C Second time derivative coefficient corresponding C

Hidden Markov models

A The transition matrix of a HMM
bj(o) The likelihood of emission distribution of state j of a HMM

viii



LIST OF SYMBOLS

P (O) Likelihood of observation sequence O
P (λ) A priori probability of model λ
P (O | λ) Conditional likelihood of O given λ
P ∗(O | λ) The likelihood of the most likely state sequence of O given λ
q State sequence vector
qt State at time instant t
q∗ The most likely state sequence
Q(T ) Set of state sequences of length T

Q(λ, λ̂) Baum’s auxiliary function
wjk The weight of the kth mixture component of a GMM of the state j

of a HMM
αt(j) Forward variable of state j at time instant t
βt(i) Backward variable of state i at time instant t
γt(j, k) The a posteriori probability of an observation at time instant t origi-

nating from the kth mixture component of the state j of a HMM
δt(i) The accumulated likelihood of the most likely state sequence up to

state i at time instant t
δ∗m(κ) The accumulated likelihood of the most likely state sequence of model

κ
Θ Parameter set of all emission densities of a HMM
θjk Parameters of a mixture density component k of the state j of a HMM
κ The parameter set of a HMM
λ The parameter set of a HMM
λ⊕ κ The concatenated HMM consisting of λ and κ
ξt(i, j) The probability of being in state i at time t and state j at time t+ 1
π Initial state distribution of a HMM
ψt(i) The previous state of the partial most likely state sequence up to state

i at time instant t

Dissimilarity measures

C Confusion matrix
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Chapter 1

Introduction

An infant mimics speech sounds at a very young age, and learns to speak without ex-
plicit teaching quickly. A recent reasearch has proved an interesing result: even a new-
born child (1-7 days old) can distinguish between different vowel sounds, while being fast
asleep [Cheour et al. 2002]. If speech is such a built-in communication method for humans,
why cannot machines be operated by voice commands?

Automatic speech recognition (ASR), i.e. recognition of human speech with a machine, has
been researched since the 1950s [Gold and Morgan 2000]. Such a natural thing for humans
as speech recognition has showed to be a very challenging task for machines. Despite the
difficulties, the persistent research in the area ever since the 1950s has yielded marks of
progress. Today, ASR technology has been applied to consumer products, e.g. name dialers
in mobile handsets, telephone number queries and train timetable retreival systems. Some
very fundamental issues have risen in employing ASR for the purposes of such applications.
These include e.g. robustness, espcially for noise and changing acoustic conditions, and
support for multiple languages. The speech interface is natural and convenient to use only
when it is robust, and can be operated with the native language of the user. Therefore,
a comprehensive support for languages is one of the key characteristics that the speech-
driven applications need to fulfill before a true widespread acceptance can be achieved.

The spoken languages apparently share common acoustic features. This is evident as the
source of the speech signal is always the human speech production system, regardless of
the language. Different sounds that are produced by this system while speaking are known
as phonemes. Phonemes are the atomic units of speech, or language, meaning that by
changing a phoneme in a word, the meaning of the word can change. For example, by
changing the first phoneme in the word “pet”, we get the word “set”1. The phonemes can
be classified by their articulatory characteristics, e.g. to resonants and obstruents (whether
the vocal tract is blocked or not), consonants and vowels, and so on2. Speech recognition
systems are often built using the phonemes as modeling units. One phoneme, or allophone3,
is represented with one acoustic model, most often a hidden Markov model (HMM).

This thesis concerns finding the phonemes, or allophones, that are similar to each other
over a set of languages. This information has been employed previously in the definition

1. Interestingly, in English, the change of the written form of a word doesn’t necessarily affect the pro-
nunciation, i.e. the phonemic representation. For example, the phonemic content of the word “sea”, /si�/,
is identical to the word “see”. Conversely, the phonemic content of the written word “read” depends on the
tense, either /ri�d/ or /red/.
2. Such categorization of phonemes is shown in Figure A.2 in Appendix A.
3. Allophone is a phoneme in a certain context. For example, the two allophones of the phoneme /l/ in
the words “feeling” and “alarm” sound rather different.

1
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Figure 1.1: (a) Spectrogram of the English word “pause” /p��z/ and (b) the Finnish word
“poista” /poist�/.

of a set of multilingual (ML) phone HMMs [Köhler 2000]. This means in practice that the
phonemes of a set of languages are grouped, or clustered, such that the number of clusters
is smaller than the original number of language dependent phonemes. The Figure 1.1
shows spectrograms of two uttered words, English “pause” and Finnish “poista” (“remove”
in English). In this example, the English /p/ and Finnish /p/ could be represented with a
common ML phone4 model /p/. In addition, two pairs of similar phonemes can be found:
English /��/ and Finnish /o/; and English /z/ and Finnish /s/. The number of the ML
phone models could be reduced from nine to six in this example, if the above tying of the
phonemes were applied.

The search for these similar phonemes has been previously performed by comparing the
acoustic models, HMMs, that are used in the speech recognition system [Andersen et al.
1994, Köhler 2001]. The proximity of the HMMs has been measured by employing some

4. In this thesis, “phone” refers to a ML acoustic model that represents a set of LD phoneme models.

2



CHAPTER 1. INTRODUCTION

dissimilarity measure, which measures how discriminating two HMMs are. This thesis
reviews the measures introduced for this task. In addition, four modified measures are
proposed to give an increased accuracy for the previously proposed measures, and two
measures having low computational cost are introduced. The behavior of the measures is
compared, when they are applied in the task of phoneme model clustering.

This thesis consists of the following chapters. In Chapter 2, the methods used in modern
speech recognition are discussed. This discussion covers the methods often used for the pre-
processing of the speech signal and statistical pattern recognition, which are Mel-frequency
cepstral coefficients (MFCCs) and HMMs, respectively. In Chapter 3, an overview of the
issues covered by the research in the field of multilingual speech recognition is given. The
main topic of the thesis, the dissimilarity measures for HMMs, is discussed in Chapter 4.
The previously proposed methods are reviewed, and some novel techniques are proposed.
Chapter 5 covers the experiments before the concluding remarks given in Chapter 6.

3



Chapter 2

Automatic Speech Recognition

Machine recognition of human speech, often referred to as automatic speech recognition
(ASR), has been investigated from the early 1950s [Gold and Morgan 2000]. The research
in the area has been rather intense since the late 1970s. During 1980s, statistical model-
ing, namely the hidden Markov models (HMMs), started to replace the earlier template-
matching-based methods in ASR [Rabiner 1993]. Today, the most successful ASR systems
are based on these statistical models, of course flavored with lots of adjustments and
improvements.

In this chapter, a brief overview of the modern ASR systems is given. First of all, the
categorization of the speech recognition tasks is discussed in Section 2.1. After that, Sec-
tion 2.2 outlines the structure of a typical ASR system. This system can be roughly divided
into two main units which are the feature extraction unit, and the pattern classifier unit.
These two units are often also referred as the front-end and the back-end, respectively.
The derivation of the typical Mel-frequency cepstral coefficient (MFCC) features produced
by the front-end unit is covered in Section 2.3. After that, the techniques involved in the
pattern classifier unit are reviewed briefly in Section 2.4. These include the concept of
HMMs and some essential training and decoding algorithms. Finally, the speaker adap-
tation techniques, especially maximum likelihood linear regression (MLLR), are discussed
in Section 2.5.

2.1 Classification of Speech Recognition Tasks

Speech recognition systems are nowadays implemented in a very application dependent
manner. This is mainly due to limited resources and the many obstacles still faced in the
field of speech recognition. The obvious consequence of application oriented implementa-
tions is that they may not work well in some other application domain. In the following,
some characteristics are explained that discriminate the different ASR tasks [Adda-Decker
2001, Kiss 2001, Laurila 2000, Viikki 1999, Waibel et al. 2000].

Vocabulary size: Today, the systems with small vocabulary can distinguish some tens
of words. The medium vocabulary size ranges from hundred to thousand words and
the large vocabulary systems range up to 100000 words [Viikki 1999]. The number
of words in the vocabulary affects both the recognition accuracy and the speed of
the recognition process. In addition, the choice of the acoustic units depends on
the size of the vocabulary. The whole word models can be used as acoustic units in
a small vocabulary ASR task, while these units are replaced with subword models
as the vocabulary becomes larger. The typical subword units represent phonemes,

4



CHAPTER 2. AUTOMATIC SPEECH RECOGNITION

allophones or syllables. Furthermore, the type of the vocabulary can be fixed, such
as in a digit recognition, or dynamic, such as in a name dialer in a mobile handset.

Continuous, connected or isolated word recognition: In an isolated word recogni-
tion task, the recognition system forms a hypothesis of the uttered word or phrase
as a single entity. Connected word recognition can be considered a step forward,
since the user is allowed to speak several words at a time, but a short pause has
to be left between the words. However, the word boundaries are hard to find in
natural speech due to coarticulation, which makes the task of continuous speech
recognition challenging. Coarticulation of words means that they are articulated
consecutively after each other with no inter-word pause. A language model is not
necessarily needed in isolated word recognition, but in continous ASR, language
modeling is an important issue.

Speaker dependent or independent systems: The speaker independency of an ASR
system is a desired feature in general. A speaker independent (SI) system can cope
with different speakers, speaking styles and even dialects. However, the speaker
dependent (SD) ASR systems outperform the SI systems in recognition accuracy
because the acoustic models of the SD system have to cope with smaller variability
of acoustic features in speech [Viikki 1999]. The direct training of SD recognition
system is unfeasible in most cases, as hours of speech material may be needed
from the target speaker1. Speaker dependent speech recognition system can be
obtained by adapting SI recognition system either continuously, i.e. performing the
adaptation online, or with relatively small adaptation data set. Such adaptation
techniques are discussed more in detail in Section 2.5.1.

Language dependent or multilingual systems: Typically the ASR systems are lim-
ited to only a single language. The support for multiple languages in ASR systems
has emerged as the first widely spread applications have been introduced [Waibel
et al. 2000]. The multilinguality of an ASR system can be viewed somehow analo-
gous to speaker independency. The multilingual speech recognition is discussed in
Chapter 3 in more detail.

Environmental robustness: Many speech recognition applications work well in labo-
ratory, but they have difficulties in realistic environments. Their applicability can
collapse very quickly instead of graceful deterioration when the signal is corrupted
e.g. with background noise or microphone distortion. In general, the ASR systems
work well in conditions similar to the conditions of the acoustic material used dur-
ing training. The real world ASR applications demand the recognition system to
be robust for various acoustic and noise conditions. The techniques that are used
in noise robust speech recognition can be grouped into the following categories:
noise robust feature vectors, techniques compensating noise from feature vectors
and model parameter adaptation and compensation techniques [Furui 1995, Junqua
2000].

The field of the speech recognition research can be stated extensive. Isolated word rec-
ognition task with a small vocabulary is a rather straightforward pattern classification
task. However, considering the recognition of continuous conversational speech with large
vocabulary, the semantics and pragmatics involved in the discussion must be included to
achieve accurate recognition performance. The scope of this thesis covers pattern classi-
fication and acoustic modeling of speech. Language modeling and understanding are not
discussed.

1. Practically, the SD system is feasible to build for a small vocabulary ASR task.

5
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Figure 2.1: Block diagram of a typical speech recognition system.

2.2 Typical Structure of a Modern Speech Recognition System

Most of the modern speech recognition systems can be divided into front-end and back-
end processing units [Rabiner 1993]. They are referred also according to their function
as feature extraction and pattern classifier units. The structure of a typical speech rec-
ognition system is depicted in Figure 2.1. The front-end and back-end processing units
are usually very independent of each other, and can thus be implemented separately. The
front-end unit can be viewed as “ears” of the speech recognition system. In the human
ear, the changes in the air pressure are converted into a stream of properly coded neu-
ral impulses [Rossing 1990]. These impulses contain all the information from the acoustic
signal that is received by ears. The information is processed further in the auditory cor-
tex. Similarly, the front-end signal processing unit of a speech recognition system converts
the input speech waveform into a stream of feature vectors. These vectors contain the
information that is relevant to the speech recognition process. Usually, each feature vector
describes the spectral content of the speech signal at a particular time instant. The pat-
tern classifier unit forms a recognition hypothesis based on the sequence of feature vectors
O = (o1,o2, . . . ,oT ) produced by the front-end unit. The items in the vocabulary are
compared against the acoustic evidence O, and the best matching item is chosen as the
recognition hypothesis.

2.3 Feature Extraction Unit

Mel-frequency cepstral coefficients (MFCCs) are the most commonly used acoustic features
in speech recognition. They are computationally efficient and found good in practice [Kar-
jalainen 1999]. A block diagram of the derivation of MFCCs is depicted in Figure 2.2. The
functionality of each of these blocks is reviewed below.

First of all, the digitized2 input speech waveform x[n] is fed into a digital finite impulse
response (FIR) filter of the form

y[n] = x[n] − ηx[n− 1] (2.1)

where 0 < η < 1 is a constant. The value of η is usually chosen between 0.90 and 1.00
in ASR applications. This pre-emphasis filter is high-pass type, and is used to flatten the

2. The sampling frequency of the signal is usually 8kHz or 16kHz in speech recognition applications.
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Figure 2.2: Block diagram of MFCC feature extraction. The graphs beside of DFT and
DCT blocks represent the form of the signal at the current phase. The other
graphs visualize the transforms carried out to the signal in the corresponding
block. The symbols f , t and M correspond to frequency, time, and magnitude,
respectively. The figure at the bottom left shows the resulting MFCCs Ci for
a particular time instant.

input speech spectrum and discard the low-frequency components before the frequency
analysis [Deller et al. 2000]. These low-frequency components refers to the frequency band
0 < f < 90Hz not containing speech information.

The next block in Figure 2.2, i.e. windowing, has essentially two functions. Firstly, the input
waveform is blocked into fixed length frames of length around 25ms. These frames usually
overlap, and a typical interval between the successive frames is 10ms. After frame blocking,
a window function and the following signal processing steps are applied to each frame. The
window function weights the samples of the frame such that the effect of discontinuities
is minimized and the spectral estimate is smoothed [Stoica and Moses 1997]. The typical
weighting scheme used is the Hamming window function

z[n] = w[n]y[n] =
[
0.54 − 0.46 cos

(
2πn
N − 1

)]
y[n] (2.2)

where N is the length of the window. Next block in Figure 2.2 performs a discrete Fourier
transform (DFT) to the windowed piece of a signal derived from the previous block. This
results in a short-time energy spectrum estimate in the particular time instant. To reduce
the amount of data, only the energies of Mel-scaled frequency bands are preserved. The
Mel-scale is one of the psychoacoustical frequency mappings that are supposed to match
the nonlinear frequency selectivity of the basilar membrane in human ear. This mapping
from Hz into Mel-scale can be given as [Davis and Mermelstein 1980]

fMel = 2595 log10

(
1 +

f

700

)
(2.3)

where fMel is frequency in Mel-scale and f frequency in Hz. In ASR applications, the
number of the Mel-scaled frequency bands is usually around 20. The energies of these
bands are calculated from the magnitude spectrum using triangular window functions
such as shown in Figure 2.2. The human ear works nonlinear not only with respect to

7
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frequencies, but also with the signal power. The perceived power of the audio signal,
i.e. loudness, is roughly logarithmic compared to the power of the signal [Rossing 1990].
This is why a logarithm of each of the bandwise energies is taken.

In order to obtain MFCCs, the last block in Figure 2.2 performs the discrete cosine trans-
form (DCT) to the logarithmic energy estimates of the Mel-scaled frequency bands [Deller
et al. 2000]. Typically only the first 13 DCT coefficients are preserved to form the basis of
a feature vector. The DCT reduces correlation between the elements of the feature vector,
which is useful in the back-end processing3. Usually the zeroth MFCC, C0, is replaced
with an energy estimate E of the frame. This energy estimate is considered less noisy than
C0. An inter-frame context-dependency is also often supplemented to the feature vector by
calculating the first and second time derivative coefficients of the consecutive MFCC-based
feature vectors [Furui 1986]. Finally, the resulting feature vector has the form

o =
[
E,C1, · · ·CL,∆E,∆C1, · · ·∆CL,∆2E,∆2C1, · · ·∆2CL

]T (2.4)

where E is the energy and Ci the ith cepstral coefficient of the frame. In addition, the
number of cepstral coefficients in the feature vector is denoted with L and the first and
second derivative coefficients are denoted with ∆ and ∆2, respectively. The dimension of
this type of feature vector is D = 3(L+ 1). Most often D = 39 which means that L = 12,
i.e. the feature vector contains 12 static cepstral coefficients and an energy estimate. To
enhance the recognition rates and robustness against different acoustic conditions, various
feature vector normalization techniques have been presented [Hariharan 2001, Viikki and
Laurila 1998].

2.4 Hidden Markov Models

The purpose of the back-end unit is to form a recognition hypothesis based on the acoustic
evidence O derived from the front-end unit. The statistical formulation of the problem can
be written as follows [Jelinek 1998]

Ŵ = arg max
W

P (W | O) (2.5)

where Ŵ is the recognition hypothesis, i.e. the chosen vocabulary item4. The HMMs
provide an efficient means to compute the Equation (2.5). According to the Bayes’ formula,
the Equation (2.5) can be written as follows

Ŵ = arg max
W

P (O |W )P (W )
P (O)

= arg max
W

P (O |W )P (W ) (2.6)

The likelihood P (O |W ) is obtained by evaluating P (O | λW ) where λW is the word HMM
corresponding to vocabulary word W . The probability of the word P (W ) is determined by
the language model. If the recognition system consists of subword acoustic modeling units,
the combined word HMMs λW corresponding the vocabulary itemsW are constructed from
the subword HMMs according the phonetic transcriptions determined in the lexicon.

The application of HMMs in speech recognition is based on two assumptions of the speech
signal [Rabiner 1993]

3. This is because the observation densities are often modeled as Gaussian mixture models with diagonal
covariance matrices.
4. The vocabulary item can be e.g. word or sentence.
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Figure 2.3: Graph of a HMM with three emitting states and an example feature vector
sequence of this generative model. The gray circles denote non-emitting states.
The type of this model is feedforward meaning that the only transitions allowed
from each state are either self-transition or transition to the successor state.
The symbols used in the figure are explained in Section 2.4.1.

� Speech signal is piecewise stationary, i.e. it can be segmented such that the stochas-
tic characteristics of the signal do not change during each segment.

� The adjacent samples of the process, i.e. adjacent feature vectors, are independent
of each other. This suggests that no inter-frame correlation exists.

These assumptions mean that the feature vectors are assumed to originate from a process
exemplified in Figure 2.3. The assumptions are quite restrictive, and cannot be stated
to hold in general. Anyhow, since HMMs provide computationally efficient training and
decoding algorithms, and seem to work rather well in practise, they are used extensively
in ASR [Rosti and Gales 2001].

2.4.1 HMM Representation

An example of a HMM with three emitting states is depicted in Figure 2.3. It is made up
of states and transitions between these states. Each state is associated with an emission
probability density function (PDF) bj(o) except the first and last state of the model, which
are non-emitting. The non-emitting states do not generate outputs, and are used in the
word model composition described in Figure 2.4. The probability of the current state of
the model at a particular time instant depends only on the state at the preceeding time
instant. Therefore, the HMMs consist of a Markov chain and state-dependent emission
PDFs.

The HMMs contain essentially three parameters of which the two parameters π and A
define the Markov process in a HMM. Firstly, the vector π contains the initial state
distributions for each state. In other words, πi is the probability of initially being in state
i, i.e. πi = P (q1 = i). The state-transition matrix A contains the transition probabilities
from state i to state j, P (qt = j | qt−1 = i), as its elements aij . Therefore matrix A defines
the structure of the HMM. For example, the transition matrix of the HMM in Figure 2.3
has non-zero values only near the diagonal.

The third parameter in a HMM are the state-dependent emission PDFs bj(o), which define
the likelihood that a feature vector o was generated by the state j. The most common
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case is that these emission PDFs are continuous and of mixture type, i.e.

bj(o) =
Mj∑
k=1

wjkfD(o; θjk) (2.7)

where Mj is the number of mixture components, and wjk the weight of the k:th mix-
ture component density of the state j. The mixture component weights must satisfy the
condition

Mj∑
i=1

wji = 1 with wjk ≥ 0 ∀j, k (2.8)

in order bj(o) to fulfill the properties of a PDF [Bishop 1998]. The component densi-
ties fD(o; θjk) are density functions of some known distributions D with parameters θjk.
Most often fD(o; θ) is the multivariate Gaussian density function defined as [Johnson and
Wichern 1998]

fN (o;µ,Σ) =
1

(2π)D/2
√|Σ| exp

[
(o − µ)TΣ−1(o − µ)

]
(2.9)

where θ consists of µ, the mean, and Σ, the covariance matrix of the distribution. In that
case, the density in Equation (2.7) is also known as Gaussian mixture model (GMM).
Furthermore, the covariance matrices of the Gaussian distributions are often constrained
diagonal. Diagonality of the covariance matrices reduces the total number of parameters in
the model significantly, especially when the dimension of the feature vector is large. Even
though the diagonality of the covariance matrix of a component density suggests that the
elements of the modeled random vector are independent5, the mixture of these densities
bj(o) can model correlation characteristics as well [Reynolds et al. 2000]. In addition,
different parameter tying schemes have been proposed for covariance matrix modeling in
HMMs, e.g. semi-tied covariance matrices [Gales 1999].

Alternative types of observation emission densities than the usual GMMs have been
proposed for ASR applications, e.g. Richter, power exponential and Laplacian distribu-
tions [Gales and Olsen 1999]. However, no significant advantages have been achieved by
using these different observation densities. The parameters of all the state-dependent emis-
sion densities in a HMM are denoted with Θ. For the clarity of notation, we use a single
symbol λ = (π,A,Θ) to denote the whole parameter set of a single HMM. In Chapter 4,
both symbols λ and κ are used to denote this parameter set.

2.4.2 Speech Recognition Using HMMs

In order to solve the classification task defined in Equation (2.6), the likelihood P (O | λW )
and prior probability P (λW ) need to be determined for each word model λW .

The usual case is that the acoustic units, that are modeled as single HMMs, represent
phonemes. In this case, the word models λW must be constructed before recognition. This
word model composition is depicted in Figure 2.4. First of all, the phonetic transcription
of the current word is obtained from the lexicon. Then, the corresponding phoneme models
are concatenated after each other to form a single word model. This procedure is applied
to all the vocabulary items. In the following, the evaluation of P (O | λW ) is determined

10
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/s/ /t/

/�//p/

Figure 2.4: Concatenation of HMMs. The phonetic transcription of the english word“stop”
written using IPA symbols is /st�p/. The word consists of four phonemes,
which are modeled using separate phoneme models. These monophone HMMs
corresponding to the phonemes are concatenated using the non-emitting states
in the beginning and at the end of the models. By defining the symbol “⊕” to
indicate the model concatenation, the model for the word“stop”can be written
as /s/⊕/t/⊕/�/⊕/p/.

for only one HMM. The evaluation of P (O | λW ) for concatenated HMMs can be found
e.g. in [Jelinek 1998].

The likelihood of a feature vector sequence O given a HMM with parameters λ can be
calculated as follows [Rabiner 1993]

P (O | λ) =
∑

�∈Q(T )

P (O,q | λ) =
∑

�∈Q(T )

πq1

T−1∏
t=1

bqt(ot)aqtqt+1 (2.10)

where Q(T ) is the set of all state sequences of length T . Usually, when the last observation
vector is encountered, the state is restricted to be the last non-emitting state of the model,
in which case

Q(T ) =
{
q ∈ �T : qT = N

}
(2.11)

where N is the number of states in the model. The Equation (2.10) can be evaluated
recursively using the forward or backward procedure explained in Algorithms 2.1 and 2.2,
respectively [Rabiner 1993]. The forward and backward variables αt(j) and βt(j) are de-
fined as [Rabiner 1993]

αt(j) = P (o1,o2, · · · ,ot, qt = j | λ) (2.12)
βt(j) = P (ot+1,ot+2, · · · ,oT | qt = j, λ) (2.13)

The constraint qT = N results in the termination rule in Algorithm 2.1. In the literature,
the termination rule is determined without this constraint, i.e. P (O | λ) =

∑N
i=1 αT (i) [Ra-

biner 1993]. Similarly, the initialization rule in Algorithm 2.2 can be given as βT (i) = 1, 1 ≤
i ≤ N without the constraint qT = N .

Often, instead of using the likelihood in Equation (2.10), the likelihood of the most likely

5. In the case of Gaussian distributions, uncorrelatedness of the elements is equivalent with their inde-
pendence [Johnson and Wichern 1998].
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Initialization α1(i) = πibi(o1) 1 ≤ i ≤ N

Recursion αt(j) =

[
N∑

i=1

αt−1(i)aij

]
bj(ot)

2 ≤ t ≤ T
1 ≤ j ≤ N

Termination P (O | λ) = αT (N)

Algorithm 2.1: The Forward procedure [Rabiner 1993].

Initialization βT (i) = 0 1 ≤ i ≤ N − 1
βT (N) = 1

Recursion βt(i) =
N∑

j=1

aijbj(ot+1)βt+1(j)
T − 1 ≥ t ≥ 1

1 ≤ i ≤ N

Termination P (O | λ) =
N∑

j=1

πjbj(o1)β1(j)

Algorithm 2.2: The Backward procedure [Rabiner 1993].

state sequence is employed in the decoding phase [Rabiner 1989]. It can be given as

P ∗(O | λ) = P (O,q∗ | λ) = πq∗1

T−1∏
t=1

bq∗t (ot)aq∗t q∗t+1
(2.14)

q∗ = [q∗1, . . . , q
∗
T ]T = arg max

�∈Q(T )

P (O,q | λ) (2.15)

where P ∗ is the likelihood of the most likely state sequence q∗. This likelihood P ∗(O | λ),
as well as the most likely state sequence q∗, can be obtained using the Viterbi decoding
procedure described in Algorithm 2.3. The algorithm is presented for the case when the
state sequence is constrained as given in Equation 2.11. The termination rules without this
constraint are P ∗ = max1≤i≤N δT (i) and q∗T = arg max1≤i≤N δT (i). The reason of using of
this kind of a sub-optimal score instead of likelihood in the decoding phase is the com-
putational efficiency. This score, often referred to as Viterbi-score, is usually computed in
logarithmic domain, which increases the dynamic range and prevents possible underflows.
Furthermore, the search of the most likely state sequence is often implemented using the
so called token passing scheme [Young et al. 2000; 1989]. In that case, when performing
e.g. connected-word recognition with loop grammars, the tracking of the most likely state
sequence in decoding is efficient [Young et al. 1989].

2.4.3 Training of HMMs

The structure and the type of the HMMs to be used in an application must be assigned
by expert knowledge. The typical structure of a phoneme model HMM is depicted in
Figure 2.3. The structure of a HMM is defined by constraining the probability of some
transitions in the transition matrix A to zero. The other model parameters to be configured
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Initialization δ1(j) = πjbj(o1) 1 ≤ j ≤ N

ψ1(j)
Recursion δt(j) = max

1≤i≤N
[δt−1(i)aij ]bj(ot) 2 ≤ t ≤ T

ψt(j) = arg max
1≤i≤N

δt−1(i)aij 1 ≤ j ≤ N

Termination P ∗ = δT (N)
q∗T = N

Path backtracking q∗t = ψt+1(q∗t+1) t = T − 1, T − 2, . . . , 1

Algorithm 2.3: The Viterbi decoding algorithm [Viterbi 1967]. Temporary variables ψt(i)
and δt(i) contain the information of the most likely state sequence up to
the state i at time instant t. The index of the previous state is stored in
ψt(i) while δt(i) contains the accumulated likelihood.

include the type of mixture densities, the number of the mixture component densities in the
state-dependent emission denisities and the number of states in one HMM. Furthermore,
the acoustic units to be modeled with a single HMM must be fixed.

After defining the configuration of HMMs, the parameters should be estimated using some
method. Typically, these parameters are estimated using a labeled speech corpus contain-
ing a huge amount of training utterances. Assuming that monophone models are used,
i.e. every phoneme is modeled with a single HMM, a combined word model is created to
correspond to the phonetic transcription of each train utterance. The model concatenation
scheme used in word model composition is shown in Figure 2.4. The training procedure
using the combined word models is also referred to as the embedded re-estimation of the
parameters [Young et al. 2000].

Most often the parameters are estimated according to the maximum-likelihood criterion.
The expectation-maximization (EM) algorithm provides an iterative procedure for esti-
mating the maximum likelihood estimates (MLEs) of the parameters λ of a HMM. At
each iteration of the EM algorithm, the value of the likelihood function increases, converg-
ing to a local MLE of λ [Dempster et al. 1977]. For the sake of clarity, this algorithm is
presented in the following for a single observation sequence. The generalization of the al-
gorithm to multiple observation sequences as well as detailed description of the derivation
of the following re-estimation equations can be found e.g. in [Rabiner 1993].

At each iteration of the EM algorithm for HMMs, the Baum’s auxiliary function given
as [Baum 1972]

Q(λ, λ̂) =
∑
�∈Q

P (q | O, λ) log P (O,q | λ̂) (2.16)

is maximized with respect to the new HMM parameter estimates λ̂. The detailed descrip-
tion of this maximization procedure can be found e.g. in [Rabiner 1993]. The maximization
of Q results in an increased value of the likelihood function,

λ̂ = arg max
�λ

Q(λ, λ̃) =⇒ P (O | λ̂) ≥ P (O | λ) (2.17)
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The new estimates of the parameters λ̂ are given in the following Baum-Welch re-estimation
formulae [Rabiner 1993]. The given formulae apply for HMMs with GMM emission densi-
ties.

π̂i = γ1(i) (2.18)

âij =
∑T−1

t=1 ξt(i, j)∑T−1
t=1

∑M
l=1 γt(j, l)

(2.19)

ŵjk =
∑T

t=1 γt(j, k)∑T
t=1

∑M
l=1 γt(j, l)

(2.20)

µ̂jk =
∑T

t=1 γt(j, k) · ot∑T
t=1 γt(j, k)

(2.21)

Σ̂jk =

∑T
t=1 γt(j, k) · (ot − µjk)(ot − µjk)T∑T

t=1 γt(j, k)
(2.22)

The symbols on the left hand side of the Equations (2.18)–(2.22) are the new estimates
of the parameters λ explained in Section 2.4.1. The auxiliary variables used in Equations
(2.18)–(2.22) are defined as ξt(i, j) = P (qt = i, qt+1 = j | O, λ) and γt(j, k) = P (qt =
j,mixture component = k | O, λ). The latter is often referred as the a posteriori probability
of the tth observation being emitted from the kth mixture of state j. They can be obtained
as follows [Rabiner 1993]

ξt(i, j) =
αt(i)aijbj(ot+1)βt+1(j)∑N

i=1

∑N
j=1 αt(i)aijbj(ot+1)βt+1(j)

(2.23)

γt(j, k) =

[
αt(j)βt(j)∑N

j=1 αt(j)βt(j)

][
wjkfN (ot;µjk,Σjk)

bj(ot)

]
(2.24)

where fN (·;µ,Σ) denotes the multivariate Gaussian density function. The forward and
backward variables, αt(j) and βt(j), respectively, used in the formulae are obtained from
the procedures in Algortihms 2.1 and 2.2.

2.5 Speaker Adaptation

The estimation of the parameters of the statistical models used in a speech recognition
system demands large amounts (hours) of speech material. Training a speaker independent
(SI) speech recognition system is straightforward due to large annotated speech databases
available. The SI recognition systems perform rather well in most cases, but the error
rate is two to three times higher than with speaker dependent (SD) systems [Leggetter
and Woodland 1994]. The SD recognition system provides better modeling of the speech
characteristics for the target speaker. However, it is unfeasible to gather such a large
amount of speech material for every speaker. Model adaptation techniques provide methods
for adapting a SI recognition system for the target speaker using only small amount of
acoustic adaptation material. A notable gain in recognition accuracy is achieved by the
use of such techniques [Leggetter and Woodland 1994].

Often, speaker adaptation is performed using maximum a posteriori (MAP) or maximum
likelihood linear regression (MLLR) methods, which both are model adaptation techniques.
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The maximum a posteriori (MAP) technique provides a method for adapting the param-
eters of the HMMs with a relatively small amount of adaptation data per model [Gau-
vain and Lee 1994]. HMMs without adaptation data are left unchanged. Alternatively,
the maximum likelihood linear regression (MLLR) can be employed for speaker adapta-
tion [Leggetter and Woodland 1994]. This method is useful particularly when context-
dependent models6, are used in the speech recognition system. In the MLLR framework,
all the HMMs are adapted, even such HMMs that do not have any adaptation data. This
is achieved such that the mixture density components of the HMM states are allocated
to so called transformation classes, which share the adaptation data of all the densities in
such class. The transformation classes are formed using the acoustic similarities between
the models. The MLLR technique is presented in brief in the following for HMMs with
GMM emission densities.

2.5.1 Maximum Likelihood Linear Regression

The MLLR technique is based on an affine transformation of the mean vectors µ ∈ �
D

for each mixture component. The transformation is defined as [Leggetter and Woodland
1994]

µ̂ = Wν = W
[
ω
µ

]
(2.25)

where µ̂ is the new (transformed) mean vector, W ∈ �
D×(D+1) is the transformation

matrix and ω is the offset term for the regression.

The transformation matrix W is derived via similar optimization scheme as in the Baum-
Welch training procedure described in Section 2.4.3. The optimization scheme results in
that the transformation matrix WΓ can be obtained for the mixture components in trans-
formation class Γ by solving [Leggetter and Woodland 1994]

∑
(j,k)∈Γ

T∑
t=1

γt(j, k)Σ−1
jk otν

T
jk =

∑
(j,k)∈Γ

T∑
t=1

γt(j, k)Σ−1
jk WΓνjkν

T
jk (2.26)

where the a posteriori probabilities γt(j, k) are described in Section 2.4.3. The outer sums in
Equation (2.26) go through all the mixture density components i.e. corresponding (state,
mixture) pairs. The matrix WΓ can be solved from Equation (2.26) with the essential
cost of D matrix inversions of dimension D + 1, where D is the dimension of the feature
vector [Leggetter and Woodland 1994]. The determination of the transformation classes
Γ is discussed in Appendix A. These classes can be determined using the dissimilarity
measures explained in Chapter 4, but the topic is beyond the scope of this thesis.

6. The widely used context-dependent phone models in ASR are the so called triphone models. They
have explicit left and right context phones. The number of unique triphone models is p3, where p is the
number of unique phonemes in the language. Typically p is around 40.
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Chapter 3

Multilingual Speech Recognition

The research in the field of speech recognition has been rather intense on few major lan-
guages, namely on the American English [Adda-Decker 2001, Young et al. 1997]. Many
potential applications, however, require support for multiple languages. These include
e.g. voice dialing applications in mobile handsets, which are typically aimed for wide
geographic areas covering numerous languages [Kiss 2001]. Even the support for minor
languages can be considered a necessity in these kind of applications. The flight reserva-
tion systems are another area of applications which benefit from the support of multiple
languages, non-native speakers and speakers with strong dialects. The benefits of a mul-
tilingual ASR system include also reduced development costs, as no different language
dependent versions of the system need to be developed [Viikki et al. 2001].

The main topics in the field of multilingual speech recognition are the porting of existing
recognition systems for new languages and the multilingual acoustic modeling. The latter
concerns the development of a multilingual recognition system without separate acoustic
models for each language. The porting covers development of a speech recognition system
for new language using existing speech recognition systems and corpora. The issue of
multilinguality in speech recognition is still fairly new. The first publications concerning
multilinguality in speech technology are from the late 1980s. However, from the middle of
the 1990s, this research are has started to gain increasing attention [Adda-Decker 2001,
Andersen et al. 1994, Byrne et al. 2000, Fung et al. 1999, Imperl and Horvat 1999, Kiss
2001, Köhler 2001, Navrátil 2001, Uebler 2001, Van Compernolle 2001, Waibel et al. 2000,
Young et al. 1997].

This chapter covers the issues of multilingual ASR discussed above. The Section 3.1 re-
views the most basic resources, speech corpora needed for the development purposes of
multilingual speech recognition. Next, in Section 3.2, the portability of ASR technology is
discussed. The Section 3.3 covers the issues of multilingual acoustic modeling.

3.1 Multilingual Speech Corpora

The labeled speech corpora are the basic resources needed in the development of speech
recognition systems. Considering multilingual speech recognition systems, extra require-
ments are set on the speech corpora. The corpora must include several language dependent
speech corpora compatible to each other. This means that the acoustic conditions, such as
background noise and microphone distortions, should be similar. Furthermore, the content
of speech, i.e. the vocabulary and the type of speech should be similar. The training and
test sets should also be similar to achieve comparable results across the languages.
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As the research in multilingual ASR has gained momentum, a number of multilingual
speech corpora have been introduced [Adda-Decker 2001]. These include SpeechDat, OGI,
LDC CallHome1 and GlobalPhone [Muthusamy et al. 1992, Schultz et al. 1997, Winski
1997].

3.2 Portability of Speech Technology

Since most of the technology used in modern ASR applications is developed for a single
language we can ask what are the parts of the speech recognition systems2 that can
be considered language independent. Furthermore, can the same development methods
explained in Section 2.4 be used for training a speech recognition system for any language
provided that a suitable speech corpus exists? For many minor languages, such corpus
does not exists, and the collection of such a large database is unfeasible. In such a case,
is it possible to obtain a speech recognition system for a new language with no acoustic
data, or very little acoustic data available? The following sections cover these issues.

3.2.1 Language-dependency of Speech Recognition Systems

The typical MFCC feature extraction unit explained in Section 2.3 can be considered rela-
tively language-independent, because only low-level signal processing is performed at that
level [Adda-Decker 2001, Kiss 2001]. The acoustic features commonly used in recognition
of the English language can be used also in recognition of e.g. most of the other European
languages. These acoustic features do not include information of pitch, which is vital when
recognizing tonal languages, e.g. Mandarin Chinese. In such languages, the whole meaning
of a phrase can change due to different pitch pattern [Lee 1997]. A modified front-end
can be formed where the feature vector is augmented to comprise also information of
pitch [Chang et al. 2000].

The acoustic models used in modern speech recognition systems are HMMs, as explained
in Section 2.4.1. The training as well as the decoding algorithms of HMMs are general, and
independent of the language [Adda-Decker 2001]. However, the topology of the HMMs and
the decision of the acoustic units3 to be modeled with a single HMM can demand language
dependent research. Therefore, the framework of acoustic modeling is applicable in general
without modifications, regardless of the language.

The lexicon and the language model are obviously the most language dependent parts
of the system. The languages are very different in both written and spoken form. The
segmentation into words, morphology and the used character set differs greatly between
languages. The morphology and prosody reflect to the spoken form of the language [Waibel
et al. 2000]. Most European languages seem to share many common features, but when
comparing e.g. Asian languages to European languages, the differences are tremendous.

The porting of the existing speech recognition systems was researched in the European
SQALE project [Young et al. 1997]. Four recognition systems designed originally for Amer-
ican English were compared in recognition of three European languages: British English,
French and German. The systems were trained using a common predefined training data

1. See Linguistic Data Consortium (LDC), University of Pennsylvania web page for details:
http://www.ldc.upenn.edu.
2. The structure of modern ASR system is depicted in Figure 2.1.
3. The acoustic unit refers here to phoneme, allophone or syllable.
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set and evaluated with corresponding test data set. The development time of the systems
was rather limited, since the purpose of the project was to evaluate how easily the recog-
nition systems can be modified for new languages. The results showed that the porting of
the basic systems was quite straigthforward, although the last system refinements affecting
performance were quite language dependent. It must be noted though, that the languages
used in the SQALE project were quite similar in structure, and the common front-end was
also suitable for the new languages.

3.2.2 Cross-language Transfer

The speech corpora containing hours of labeled speech samples are laborious and expen-
sive to gather. Text material, however, can be obtained rather easily for most languages
of interest [Adda-Decker 2001]. Usually, the material available covers such information
as text-to-phoneme rules and lexicon, and possibly a language model. This introduces a
question that how well the target language can be modeled by using a recognition system
trained for one source language different to the target language. This procedure is referred
to as cross-language transfer.

Schultz et.al. have addressed this problem and concluded that the choise of the source
language is crucial for the resulting recognition accuracy after the cross-language trans-
fer [Schultz and Waibel 2001]. Moreover, expert phonetic knowledge is needed in the trans-
fer, since the phonemes of the target language need to be mapped to the phonemes of the
source language. Considering the cross-language transfer, a better recognition accuracy
can be obtained by training a recognition system with multiple source languages [Köhler
1998, Leppänen et al. 2001, Žgank et al. 2001]. This method, usually referred to as multi-
lingual acoustic modeling, is discussed in Section 3.3. If the source languages used in the
transfer are properly selected, the recognition accuracy of the unseen language4 can be
rather good as well [Viikki et al. 2001].

3.2.3 Language Adaptation

Language adaptation is a method placed between a full language dependent training pro-
cedure with a complete speech corpus and the cross-language transfer discussed above.
A relatively small amount of labeled acoustic adaptation utterances is needed from the
target language compared to a full speech corpus. This amount of data is insufficient for
full training of a new speech recognition system, but can be used well for adapting a
fully trained speech recognition system. The recognition accuracy has been observed to
improve rapidly as the number of adaptation utterances increases. Even a hundred sen-
tences is enough to gain about 25% reduction in word error rate from the results achieved
with baseline systems [Fung et al. 1999, Harju et al. 2001, Köhler 1998, Leppänen et al.
2001, Schultz and Waibel 2000]. The baseline systems used as a starting point of language
adaptation are either cross-language or multilingual systems. The language adaptation
is typically performed using methods originally developed for speaker adaptation. These
include MAP and MLLR adaptation techniques explained in Section 2.5.1.

Ordinary speaker adaptation of a multilingual system can be also viewed as language
adaptation. The native language of the speaker is considered as one of the speaker-specific
features when performing the speaker adaptation. The native language is, in fact, greater
acoustic difference compared to variation between speakers. Therefore, the adaptation of

4. The new language is referred to as “unseen”, when no training data is available for that language.
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language-specific features is a big part of the speaker adaptation that is performed for
multilingual ASR systems [Viikki et al. 2001].

3.3 Multilingual Acoustic Modeling

The concept of a phonetic typewriter issued in the 1950s was based on the idea of a machine
capable of transcribing auditory speech signals [Gold and Morgan 2000]. The sound units in
spoken languages, phonemes, were supposed to be distinguishable from spoken utterances,
which could be then transferred e.g. to a written form. This showed to be inapplicable
since the variation of the phonemes differs greatly according to context, speaking style,
age, and the language used. Even a human listener cannot transcribe spoken utterances
reliably if the linguistic content is unclear. This is also the situation when the listener is
unfamiliar with the language.

All the spoken languages still do seem to share common acoustic features. The source of
speech, i.e. the human speech production system, is the same regardless of the language
used. This implies that the speech signals share common acoustic features, originating
from the physical properties of the human speech production system. In all the spoken
languages, the content of speech is determined by a stream of phonemes articulated after
each other. Thus the use of left-to-right proceeding HMMs as acoustic models can be
considered a language independent strategy for acoustic modeling in speech recognition
applications. The multilingual acoustic modeling can be stated applicable based on these
facts.

The Figure 3.1 shows how the sharing of acoustic models across languages effects the
structure of a speech recognition system. Instead of using a separate set of acoustic models
for each language, a common set of models is utilized in multilingual acoustic modeling.
This results in the following benefits. The development costs are reduced as there is no
need developing separate language dependent systems [Viikki et al. 2001]. In addition, the
multilingual systems can cope with non-native speakers, accents, dialects and multilingual
vocabulary items [Viikki et al. 2001].

Even when constructing a language dependent speech recognition system, the model pa-
rameters can be shared5 [Woodland and Young 1993]. The reasons for this are twofold.
Firstly, such units that are unseen in the training phase can share the parameters of other
units. Secondly, the number of free parameters in a speech recognition system can be re-
duced without notable drop in recognition accuracy [Woodland and Young 1993]. In fact,
when the number of free parameters is lower, the statistical estimation of the parameters is
more robust, which can improve the performance and generality of the speech recognition
system [Woodland and Young 1993]. The research concerning multilingual acoustic mod-
eling indicated that much can be gained by modeling different languages with common
acoustic models. The following sections outline the methods for developing multilingual
speech recognition systems. The Sections 3.3.1 and 3.3.2 describe the knowledge-based and
computational approaches for the definition of a set of multilingual acoustic models. The
Section 3.3.3 outlines the functionality of the language identification (LID) unit needed in
a multilingual ASR system.

5. This is performed most often with ASR systems having context-dependent acoustic units, e.g. triphone
HMMs.
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Figure 3.1: (a) Several monolingual acoustic models vs. (b) a set of multilingual models
in speech recognition system. The language identification (LID) block controls
the use of different recognition systems. The language model (LM) and the
lexicon are always separate, as they are language dependent.

3.3.1 Knowledge-Based Methods

The International Phonetic Association (IPA) has defined a phonetic alphabet for describ-
ing the sounds used in human speech [Ladefoged et al. 1999]. This alphabet is designed to
provide consistent means to characterize the pronunciation in spoken languages globally.
The IPA phonetic transcription has been applied e.g. in many printed dictionaries. The
phone inventory defined by IPA is still found to be subjective, and not all the phoneticians
agree with all the definitions [Köhler 1999].

The most simple way to define a multilingual phone set is to gather all the distinct IPA-
alphabet symbols from the source languages. In this method, referred to as IPA-MAP, each
distinct phone corresponding to an IPA symbol is modeled with one acoustic model. This
kind of definition of phone models is the most straightforward knowledge-based method for
the task [Köhler 2001]. Further simplifications may be introduced to decrease the number
of phone models in the recognition system, e.g. by substituting the double consonant and
double vowel phonemes by two distinct single phones [Vihola et al. 2002].

The IPA-MAP method provides consistent definition of multilingual phone set. Further-

20



CHAPTER 3. MULTILINGUAL SPEECH RECOGNITION

more, if a set of multilingual acoustic models is created according to the IPA alphabet6,
the recognition system should be potentially language independent. This means that an
unseen target language can be recognized if the phone inventory of the source languages
is sufficient, i.e. it contains all the phonemes in the target language. The IPA chart is
defined for the purposes of the phonetic representation of the languages, and is based on
articulatory features of the sounds. It may not describe the acoustic features as accurately
as is needed for the purposes of speech recognition, e.g. the representation does not cover
the allophone variation of one phoneme.

3.3.2 Computational Methods

When expert knowledge is not available or, e.g. the number of multilingual phone models
is constrained to be very low, the IPA-MAP method may not be useful. In this case, an
automatic, i.e. computational, method may provide an alternative approach for defining a
set of multilingual phone models [Köhler 2001]. Using the same number of phone models
as in the IPA-MAP method, the recognition accuracy of the resulting multilingual ASR
system has been observed to be slightly better with the computational method [Köhler
2001]. Conversely, a recognition accuracy comparable to the IPA-MAP recognition system
can be achieved with less phone models when using the computational method [Harju
et al. 2001].

The computational methods used in defining the multilingual phone model set are based on
some measure of dissimilarity of two language dependent phoneme models, namely HMMs.
These dissimilarity measures are reviewed and described in detail in Chapter 4. Usually,
this kind of a measure is employed, and the models are collected to certain number of clus-
ters, and each cluster is modeled with a common multilingual phone model. The clusters
are typically obtained using a bottom-up, i.e. agglomerative clustering algorithm [Harju
et al. 2001, Köhler 2001]. This algorithm is described briefly in Algorithm 3.1.

3.3.3 Language Identification

A multilingual speech recognition system is fully operational after a language identification
(LID) block is implemented [Kiss 2001]. The decision in LID block is made according
to some knowledge about the spoken language. The knowledge of the language can be
explicit, e.g. defined by the user, or automatically identified. The function of the LID
block in the recognition system is depicted in Figure 3.1. In the case of multilingual
recognition system constructed from a set of monolingual recognition systems, the LID
block switches between the monolingual recognition systems as shown in Figure 3.1 (a).
After the language selection, the recognition system performs the recognition using the
chosen monolingual system. In the case of a multilingual recognition system with common
multilingual acoustic models only the language model and the lexicon need to be selected.
The same acoustic models are used for all the languages. This is shown in Figure 3.1 (b).

Automatic language identification has many real-world applications including telephony
services, such as hotel reservation and emergency lines [Muthusamy et al. 1994]. The issue
of language identification has been researched for decades, and it seems that the peak
in the number of published reports and articles is just before middle of the 1990s. The
systems implemented for language identification purposes are based on numerous methods

6. Usually, the alphabet used in computer environments is Speech Assessment Methods Phonetic Alpha-
bet, SAMPA. It is a mapping of IPA alphabet into ASCII codes [SAM].
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Initialization I = {1, . . . , N}
P = {λi : i ∈ I}
G1

i = {λi} ∀i ∈ I

n:th iteration (i, j) = arg min
i,j∈I, i�=j

[
max

λk∈Gn
i , λl∈Gn

j

dkl

]
Gn+1

i = Gn
i ∪Gn

j

I = I\{j}

Algorithm 3.1: Agglomerative clustering algorithm that has been used in phone model
clustering [Theodoridis and Koutroumbas 1999]. The initial clusters G1

i

consist of single phone models λi of the initial model set P. The number
of clusters is decreased by one at each iteration, as the two closest clusters
are combined in symbol level. The closeness of the clusters is defined by
the maximum dissimilarity dkl between two phone models λk and λl in
the clusters Gn

i and Gn
j , respectively. The algorithm is iterated until the

desired number of clusters is achieved, i.e. the index set I has the desired
number of elements.

ranging from expert systems to statistical classifiers [Muthusamy et al. 1994]. The field is
wide also considering the number and nature of the acoustic features used in classification
of the languages [Muthusamy et al. 1994].
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Chapter 4

Dissimilarity Measures for Hidden Markov Models

In Chapter 3, the concept of multilingual acoustic modeling was discussed. The Sec-
tion 3.3.2 summarized the computational method used in definition of a set of multilingual
phone models. The explained method was based on a dissimilarity measurement of the LD
phoneme models, i.e. HMMs. This dissimilarity has been evaluated in the previous research
projects using one of the two methods: the Kullback-Leibler (KL) divergence estimate, or
an estimate based on the confusion matrix [Andersen et al. 1994, Harju et al. 2001, Köhler
2001]. Both of the estimates have been obtained using some speech data set. However,
these methods have mainly two drawbacks: Firstly, the estimation procedure is computa-
tionally expensive. Secondly, as the measures have been obtained from statistics computed
using some speech data set1, these measures have a considerable variation to the case when
the measures are evaluated from another data set.

This chapter reviews the dissimilarity measures for HMMs. In addition to the above men-
tioned computational phoneme model clustering, the dissimilarity measures can be utilized
in speech recognition e.g. in model selection and clustering [Juang and Rabiner 1985]. Fur-
thermore, the measures could be applied in the MLLR adaptation framework, as described
in Appendix A. A detailed description of such dissimilarity measures that are suitable for
the purposes of phoneme model clustering is given in this chapter. Although these measures
are presented only for the monophone HMMs, most of the techinques can be generalized
for cases in which different acoustic modeling units, e.g. allophones or words, are used. In
addition, it should be noted that all the measures described in this chapter are considered
as dissimilarity measures. This is due to simpler representation, interpretation and compar-
ison of the measures. Intuitively, a dissimilarity measure can be considered as a “distance”
metric. All the dissimilarity measures described in this chapter, however, do not fulfill the
properties of a proper metric2. Therefore, the presented measures are generally referred to
as dissimilarity measures.

The natural criterion, that describes the dissimilarity of statistical models used in pat-
tern recognition, is the classification characteristics, i.e. the nature of the errors made in
classification task. This can be measured e.g. using a confusion matrix such as shown in
Table 4.1. An interpretation of the dissimilarity in such a case is as follows. The more

1. This means that the speech data is considered as independent random observations of the HMMs.
2. In topology, a metric is a function that describes proximity of objects. It is defined formally as a
function d : X × X → [0,∞), having the following properties:

1. d(x, y) = 0 if and only if x = y
2. d(x, y) = d(y, x)
3. d(x, z) ≤ d(x, y) + d(y, z)

where x, y and z are elements of the topological space X [Gariepy and Ziemer 1994].
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Table 4.1: An example of a confusion matrix. Observations of class ‘a’ are classified cor-
rectly every time, i.e. there are no confusions of ‘a’ to ‘b’ or ‘c’. However the
observations of class ‘c’ are confused to class ‘a’ ten times out of 100. The values
in the table are percentages.

Classified as
‘a’ ‘b’ ‘c’

Source
class

‘a’ 100 0 0
‘b’ 0 67 33
‘c’ 10 0 90

frequently the models are misclassified with each other, the closer they are, i.e. the value
of the dissimilarity measure is small. Conversely, if the models are very discriminating,
i.e. misclassifications occur rarely, the dissimilarity value is large. This dissimilarity can
be obtained using either one of the alternative methods.

This chapter has briefly the following content. First, the confusion matrix approach is
discussed in Section 4.1. The estimation of an confusion matrix is described for phoneme
model HMMs. In addition, two methods are proposed to get improved, i.e. more accurate,
confusion matrix estimates. The Section 4.2 describes the Kullback-Leibler divergence
and reviews the previously proposed methods for evaluating this measure for HMMs. In
addition, two modified measures are proposed that are obtained very similarly to the two
proposed confusion matrix estimates. Finally, Section 4.2.3 discusses such measures that
are based on Kullback-Leibler divergence, but employ simplifying assumptions, and can
be presented in a closed form. One of such previously presented measure is generalized
for HMMs with arbitrary emission densities3. After that, a modification of the latter is
presented. These dissimilarity measures, that can be given in closed form with respect to
the HMM parameters, have very low computational cost compared to the other measures,
which are estimated using speech data.

4.1 Measures Based on Confusion Matrix

In pattern recognition, the classification errors are very often of greatest interest. The clas-
sification errors are usually presented in the form of a confusion matrix, such as shown in
Table 4.1. The matrix is obtained usually using a labeled data set that contains sufficient
amount of samples from each class. The columns of the matrix correspond to the results of
classification. The rows correspond to the true pattern classes of the observations. Thus,
the element cij of a confusion matrix C, is the number of classifications of observations
of class i as class j. The diagonal elements thus show the number of correctly classified
observations for each case, and the off-diagonal elements show the number of misclassifi-
cations, i.e. substitution errors. The confusion matrices are usually represented such that
the rows of the matrix are normalized by the total number of tokens evaluated. This way
the value in the estimated matrix shows relative number of confusions, i.e. the confusion

3. If the divergences of the state-dependent observation densities can be given in a closed form, this
measure can also be given in a closed form.
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frequency, which can be given as

ĉij =
card {k : Oκi

k is classified as κj}
card {k : Oκi

k } (4.1)

where card denotes the number of elements in the set. Once a confusion matrix estimate
Ĉ is obtained for the set of models, it contains the estimates of how likely it is that a
given model is classified as other model. The confusion frequency between two models
describes the dissimilarity of the corresponding models in certain manner. Obviously, the
more frequently the phone models are confused, the more similar they must be. However,
the confusion matrix is not applicable as a dissimilarity measure as such. The Section 4.1.1
outlines the practical issues that need to be considered when estimating a confusion matrix
for ASR classifier with phoneme model HMMs. Next, the Section 4.1.2 describes how a
meaningful dissimilarity measure can be obtained based on a confusion matrix estimate.

4.1.1 Estimation of a Confusion Matrix for Phoneme Model HMMs

The estimation of the confusion matrix is not straightforward in the case of phoneme
HMMs. This is due to two reasons. Firstly, the most common case is that isolated phoneme
observations are not available, but only the observations of sentences or words. Secondly,
the phonemes are coarticulated to each other in natural speech and each transition from
one phoneme to another is smooth. This means that strict phoneme boundaries cannot be
set. In addition, many speech corpora do not contain any phoneme boundary information.

If a speech database with phoneme boundary information is available, a confusion matrix
of the phoneme models is rather straightforward to obtain. A predefined number of tokens
Oλ

1 , . . . ,O
λ
N corresponding to each phoneme model λ are extracted from the speech cor-

pus. After that, these tokens are classified individually and the results are gathered into
a confusion matrix as determined in Equation (4.1). On the other hand, when the speech
corpus does not contain the phoneme boundary information, automatic phoneme segmen-
tation can be obtained using a well-trained speech recognition system. This automatic
segmentation is based on the Viterbi decoding described in Algorithm 2.3. The algorithm
is forced to obtain the most likely state sequence for the known phoneme sequence. The
phoneme boundary information of each sentence is set according to the obtained most
likely state sequence.

The classification of the tokens Oλ
i is performed such that a token corresponding the model

λ is classified as
κ∗ = arg max

κ∈P
SC(Oλ

i | κ) (4.2)

where P is the set of all the phoneme models and SC(Oλ
i | κ) is the likelihood score

function, e.g. the forced Viterbi-score. A confusion matrix is formed based on these classi-
fication results of the tokens as explained in Section 4.1. In the following, we define three
score functions, SCS(O | κ), SCC1(O | κ) and SCC2(O | κ), to be used in Equation 4.2.
The confusion matrix estimates obtained using these score functions are referred to as ĈS,
ĈC1 and ĈC2, respectively.

The first score function is the logarithmic likelihood of the most likely state sequence

SCS(Oλ | κ) = logP ∗(Oλ | κ) (4.3)

where the likelihood P ∗ is obtained using the Viterbi decoding described in Algorithm 2.3.
This score is typically used as the classification criterion in the speech recognition phase.

25



CHAPTER 4. DISSIMILARITY MEASURES FOR HMMS

λRλL

κ1

κ2

κN

/�/ /p/

/�/

/�/

/�/

ba

...
...

Figure 4.1: Evaluation of confusions using one left and right context model. The Figure
(a) shows the symbols used in the Equations (4.4) and (4.5). For example, in
Figure (b), the utterend English word /��	/, “ship”, is used in the evaluation
of confusions of the phoneme /�/. Any phoneme model can appear in place of
/�/, and the model that gives the best overall likelihood score is chosen.

The effects of coarticulation and ambiguity of the phoneme boundaries can be one source
of errors in estimation of the confusion frequencies. A method proposed to overcome this
problem is based on the use of context phonemes in gathering of the tokens. This means
that instead of gathering tokens Oλ

i corresponding the model λ, the tokens including the

natural left and right context models OλL
i ⊕λ⊕λR

i
i are gathered. After that, the recognition

of these tokens is performed by choosing the target center model as in Equation (4.2). The
score function used in classification becomes

SCC1(OλL⊕λ⊕λR | κ) = logP ∗(OλL⊕λ⊕λR | λL ⊕ κ⊕ λR) (4.4)

where λL and λR are the left and right context models corresponding the current token
of λ, respectively. The operator “⊕” represents concatenation of models, as explained in
Figure 2.4. This model substitution procedure is depicted in Figure 4.1.

Alternatively to the method based on Equation (4.4), one can eliminate the effect of the
context models on the likelihood P ∗. This means that only the contribution of the target
model is included in the classification. This contribution is straightforward to evaluate,
as the likelihood P ∗ is evaluated using the observation vectors as shown in Figure 4.2.
The auxiliary variables δt(j) described in Algorithm 2.3 contain the desired information.
The cumulative likelihood of the most likely state sequence of OλL⊕λ⊕λR

given the model
λL ⊕ κ⊕ λR is denoted as δ∗t (κ). The contribution of the target model can be written as

SCC2(OλL⊕λ⊕λR | κ) =
log δ∗m(κ) − log δ∗l−1(κ)

Tκ
(4.5)

where l and m are the time indices of the left and right boundaries of κ, respectively. The
denominator Tκ is the number of feature vectors of OλL⊕κ⊕λR that lie in states of κ at the
most likely state sequence of the combined model λL

j ⊕ κ⊕ λR
j . The normalization by Tκ

results in the mean log-likelihood per observation sample.

When the two latter score functions, SCC1(O | ·) and SCC2(O | ·), are used for estimation
of the confusion frequencies, an extra paradigm arises. Due to the drift of the segmentation,
the concept of confusion becomes fuzzy. The similarity of the segmentations can be included
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Figure 4.2: Contribution of the center model to the Viterbi-score of the HMM triplet.
The most likely state sequence q∗ is shown as black circles. The shaded circles
represent impossible state-time combinations. Note also that each HMM has
left-to-right topology, and three states.

to the confusion estimation framework. Two binary state segmentation vectors x and y,
exemplified in Figure 4.3, are introduced. They are formed such that an element of the
vector is one if the corresponding observation vector is assigned to the center model, and
zero otherwise. Then, the similarity ratio between these two vectors is computed according
to the Tanimoto measure, and a fuzzy confusion value is obtained. The Tanimoto similarity
measure is defined for vectors x and y as [Theodoridis and Koutroumbas 1999]

t(x,y) =
xT y

xT x + yT y − xT y
(4.6)

where x and y are such binary vectors as in Figure 4.3. This ratio of two binary vectors
t(x,y) can be interpreted as the ratio of the number of common elements having value
of one in x and y, and the number of elements that have the value one in either x or y.
Therefore, the effect of common zeros in x and y is discarded in the Tanimoto measure.
In the confusion matrix estimation, which is determined in Equation (4.1), the number of
confusions between the models are gathered to form the confusion matrix estimate. Simi-
larly, when using the framework described above, the fuzzy confusion values are summed
up to obtain the elements of the confusion matrix

ĉij =

∑
{k:O

λi
k is classified as λj}

t(xk,yk)

card {k : Oλi
k } (4.7)

where xk and yk are state segmentation vectors, such as in Figure 4.3, for observation Oλi
k .

It is easy to see that for arbitrary vectors x and y the measure takes values 0 ≤ t(x,y) ≤ 1.
Furthermore, if the alignments of the two target models do not overlap, t(x,y) = 0, and
no confusion is observed. The confusion matrix estimates corresponding to the confusion
matrix estimates ĈC1 and ĈC2, but using the fuzzy confusion values are denoted as Ĉt

C1

and Ĉt
C2, respectively.

4.1.2 Conversion of a Confusion Matrix into a Dissimilarity Matrix

When deriving a dissimilarity matrix from a confusion matrix, the following issues need to
be considered. The confusion matrix is not symmetric, but the dissimilarity matrix should
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Figure 4.3: Similarity of the segmentations of a token. The token OλL⊕λ⊕λR
is classified

as λL ⊕ κ⊕ λR. The value of the Tanimoto measure of the vectors x and y is
0.5.

be symmetric. In addition, the confusion frequencies describe the similarity of the models,
not dissimilarity. It is obvious that the same information is contained in similarity and
dissimilarity matrices, therefore performing the conversion of similarity into dissimilarity
rather straightforward.

One conversion method of a confusion matrix into a symmetric similarity matrix is the
Houtgast algorithm [Andersen et al. 1994, Imperl and Horvat 1999, Žgank et al. 2001]. It
is given as

sij =
N∑

k=1

min [cik, cjk] =
1
2

N∑
k=1

[cik + cjk − |cik − cjk|] (4.8)

where cij are the elements of the confusion matrix C and sij is the similarity between the
models i and j, i.e. an element of the similarity matrix S. The conversion in Equation (4.8)
essentially measures the simultaneous confusability of the both models i and j to all models
k. If the both models are very often confused to a particular model, the minimum function
gives a large value. This means that the sum over all the models, i.e. the value sij, is large
and the models are considered similar. On the other hand, if one of the models is often
confused to a model, and the other is not confused to that particular model, the output
of the minimum function is small. In such a case the sum over all the models is small, and
the models are considered dissimilar.

The Houtgast algorithm can be viewed almost as a special case of fuzzy similarity4, a
concept used in soft computing [Turunen 2001]. The only differences between the Houtgast
and this fuzzy similarity relation are that, the similarity value is the mean of the summed
elements, and the diagonal values of the similarity matrix equal to one, i.e.

s′ij =

{
1
N

∑N
k=1 min [cik, cjk] , if i �= j

1 if i = j
(4.9)

where s′ij is the fuzzy similarity corresponding the Houtgast similarity sij . Therefore, the
elements of the similarity matrix S′ satisfy 0 ≤ s′ij ≤ 1, and the maximum similarity,
i.e. value one, is achieved when the models are the same. These modifications do not,
however, have any effect on the clustering framework, in which the dissimilarity measures
are applied in this thesis. This is because of the following: Only the off-diagonal values

4. This is the case when the chosen T-norm is the minimum function, i.e. the Gödel algebra is em-
ployed [Turunen 2001].
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are employed in the clustering procedure. In other words, only the HMMs having different
model indices are compared against each other. In addition, the similarity values are
compared only against each other, meaning that the scaling does not have effect on the
clustering procedure.

The conversion from a similarity matrix into a dissimilarity matrix can be performed using
basically any monotonically decreasing function. The choice of such function depends on
the nature of the application in which the dissimilarity matrix is to be used. The clus-
tering can be performed using agglomerative clustering algorithm with complete linkage
criterion, explained in Algorithm 3.1. As this procedure uses maximum dissimilarity in the
cluster merging criterion, it is obvious that the clustering does not depend on the choise of
the function used in the similarity-to-dissimilarity conversion. For example, the following
simple function can be applied for this coversion

dij = 1 − s′ij (4.10)

where dij is the element of the dissimilarity matrix D corresponding the fuzzy similarity
matrix S′.

4.2 Measures Based on Kullback-Leibler Divergence

The dissimilarity measures described in Section 4.1 were based on the classification errors
made by the recognition system. Alternatively, the dissimilarity of stochastic models can
be measured based on the distributions of the models. A well-known dissimilarity measure
between two probability distributions is the Kullback-Leibler divergence. It characterizes
the discriminating properties of two probabilistic models λ and κ, and is defined as [Kull-
back 1968]

J(λ, κ) = I(λ : κ) + I(κ : λ) (4.11)

where

I(λ : κ) = E

{
log

f(Oλ;λ)
f(Oλ;κ)

}
(4.12)

is the directed divergence from λ to κ. In Equation (4.12), the expectation E is taken with
respect to the random variable Oλ corresponding the distribution of the model λ, and the
probability density functions of the corresponding models are denoted by f(Oλ; ·).
The Kullback-Leibler (KL) divergence measure cannot usually be presented for HMMs
in a closed form. Therefore, some approximations of this measure have been introduced
[Falkhausen et al. 1995, Juang and Rabiner 1985, Köhler 2001]. These approximations are
based on Monte Carlo (MC) methods or simplifying approximations that lead to a closed
form solution. In practice, the drawbacks of MC techniques are the extensive computa-
tional cost and slow convergence properties. On the other hand, the closed form approx-
imations presented are limited to very specific class of HMMs, e.g. HMMs with discrete
observation densities [Falkhausen et al. 1995]. The above mentioned methods are reviewed
in Sections 4.2.1–4.2.3. The previously presented closed-form solution is extended to con-
tinuous distributions in Section 4.2.3. In addition, a modified approximation is presented
in Section 4.2.3, that is supposed to be more accurate.
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4.2.1 Monte-Carlo Techniques

Juang et al. studied the KL-divergence between HMMs using MC simulations. The models
were assumed ergodic, and the measure was defined as the mean divergence per observation
sample [Juang and Rabiner 1985]. The measure was given as

ÎMC(λ : κ) =
1
T

log
P (Oλ | λ)
P (Oλ | κ) (4.13)

where Oλ is an observation sequence generated by model λ. In addition, the length of the
sequence is denoted with T , and the likelihoods given the models λ and κ are given as
P (Oλ | λ) and P (Oλ | κ), respectively. The method is valid for HMMs with arbitrary
observation probability distributions [Juang and Rabiner 1985].

Some approximations of the measure in Equation (4.13) were proposed and compared
in [Falkhausen et al. 1995]. In that article, the assumed ergodicity property of the originally
left-to-right models was achieved by substituting the transitions to non-emitting state
with transitions to the first emitting state. The resulting measure, denoted by Î∗MC , was
obtained by substituting the likelihoods P (O | ·) in Equation (4.13) with likelihoods of
the most likely state sequences P ∗(O | ·) = max�∈Q P (O,q | ·)5. Only minor differences
were observed when comparing the behavior of ÎMC and Î∗MC [Falkhausen et al. 1995].

4.2.2 Monte-Carlo Estimates based on Speech Data

A variant of the measure given in Equation (4.13) was proposed in [Köhler 2001]. Tokens
extracted from speech corpus were used in the evaluation of the measure instead of a gen-
erated random sequence. Furthermore, the models were not ergodic as in Equation (4.13),
but left-to-right phone models. Estimate of the divergence was defined as a sample mean
of the log-likelihood differences over the tokens

Î(λ : κ) =
1
N

N∑
i=1

1
Ti

log
P (Oλ

i | λ)
P (Oλ

i | κ) (4.14)

where Oλ
i is the i:th token of length Ti corresponding the model λ. Experimental results

showed that the obtained estimates of the divergence measure were applicable in phoneme
model clustering [Köhler 2001]. As Falkhausen et. al. proposed, the likelihood of the most
likely state sequence P ∗(O | ·) can be used instead of P (O | ·) in Equation (4.14), which
results in the estimate

ÎS(λ : κ) =
1
N

N∑
i=1

1
Ti

log
P ∗(Oλ

i | λ)
P ∗(Oλ

i | κ) =
1
N

N∑
i=1

LLRS(Oλ
i | λ, κ) (4.15)

where the function LLRS(O | λ, κ) denotes the logarithmic likelihood ratio of O given λ
and κ, respectively. The logarithmic likelihoods in Equation (4.15) are in fact the very
same values that were used as likelihood scores in evaluation of the confusion matrix ĈS.
Therefore, the function can be written as

LLRS(Oλ
i | λ, κ) =

1
Ti

[
SCS(Oλ

i | λ) − SCS(Oλ
i | κ)

]
(4.16)

5. This can be obtained using the Viterbi-decoding described in Algorithm 2.3.
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where SCS(O | κ) are given in Equation (4.3). This measure has been applied for phoneme
HMM clustering e.g. in [Harju et al. 2001].

In Section 4.1.1, the classification criterion used in estimation of ĈS was modified in
order to obtain the two new confusion matrix estimates ĈC1 and ĈC2. Similarly, two new
directed divergence estimates ÎC1 and ÎC2 can be introduced. These new estimates are
averages of N logarithmic likelihood ratios as the estimate ÎS given in Equation (4.15). The
function LLRS(Oi | ·, ·) in Equation (4.15) is replaced with two new functions LLRC1(Oi |
·, ·) and LLRC2(Oi | ·, ·). The first new function is given as

LLRC1(O
λL

i ⊕λ⊕λR
i

i | λ, κ) =
1
Ti

[
SCC1(O

λL
i ⊕λ⊕λR

i
i | λ)

− SCC1(O
λL

i ⊕λ⊕λR
i

i | κ)
] (4.17)

where λL
i and λR

i are the left and right context models of the ith token of λ, respectively.
The function SCC1(O | ·) is defined in Equation (4.4). The likelihood score function
SCC2(O | ·) in Equation (4.5) can be used directly to obtain the second new likelihood
ratio function

LLRC2(O
λL

i ⊕λ⊕λR
i

i | λ, κ) = SCC2(O
λL

i ⊕λ⊕λR
i

i | λ) − SCC2(O
λL

i ⊕λ⊕λR
i

i | κ) (4.18)

The normalization by the lenght Ti is not needed, because the functions SCC2(O | ·)
already include this normalization term.

4.2.3 Closed Form Solutions based on Simplifying Approximations

Another class of methods proposed for computing the Kullback-Leibler divergence for
HMMs are based on some simplifying approximations. These approximations consist of a
set of assumptions of the model topologies and approximations made on their behavior.
These approximations enable to present the divergence measure finally in a closed form.
This section presents three approximations of the above kind. The first of them is presented
in [Falkhausen et al. 1995]. The other two are extensions of the latter measure proposed
by the author [Vihola et al. 2002].

The closed-form approximation described by Falkhausen et. al. assumed discrete observa-
tion density HMMs with similar topologies [Falkhausen et al. 1995]. Moreover, the most
likely state sequences of both models were assumed to be equal with the state sequence
that generated the token Oλ, i.e. q = q∗

λ = q∗
κ. It is straightforward to evaluate the

obtained measure, as Monte Carlo simulations are not needed anymore. The resulting
approximation can be written in closed form as [Falkhausen et al. 1995]

Î(λ : κ) =
∑

i

ri
∑

j

aλ
ij log

(
aλ

ij/a
κ
ij

)
+

∑
i

ri
∑

k

bλik log
(
bλik/b

κ
ik

)
(4.19)

where A = [aij ] is the N × N transition matrix and B = [bik] the N ×M observation
probability matrix. The probabilities ri are solved from rT = rTAλ with constraint

∑
i ri =

1. They can be interpreted as the probabilities of being in state i in the long-run proportion
of time [Ross 1983].

The approximation in Equation (4.19) assumed discrete observation densities. However,
the last sum term in Equation (4.19) is the directed divergence between the observation
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Figure 4.4: State alignment in divergence approximation. The possible state alignments of
the models λ and κ are shown as dotted lines in (a). The solid line corresponds
the alignment of the models shown in (b). The symbols ri and wi are the ones
used in Equation 4.22.

distributions of state i of the models λ and κ. Thus, we can rewrite the Equation (4.19)
in the form

ÎA1(λ : κ) =
∑

i

ri
∑

j

aλ
ij log

(
aλ

ij/a
κ
ij

)
+

∑
i

riI(bλi : bκi ) (4.20)

where bλi and bκi are the observation probability distributions of the models λ and κ in
state i, respectively. Now, the only terms that are dependent of the observation probabil-
ity distributions are the directed divergences between the corresponding distributions of
the states, I(bλi : bκi ). The Equation (4.20) generalizes the Equation (4.19) for arbitrary
observation densities. The other simplifying assumptions made in deriving the approxima-
tion in Equation (4.19) still remain. In the case of Gaussian observation distributions, the
cross-state directed divergences can be expressed in a closed form as [Kullback 1968]

I(b1 : b2) =
1
2

[
log

|Σ2|
|Σ1| + tr

(
Σ1(Σ−1

2 −Σ−1
1 )

)
+ tr

(
Σ−1

2 (µ1 − µ2)(µ1 − µ2)
T
) ] (4.21)

where Σ and µ denote the covariance matrices and the mean vectors of the distributions,
respectively.

The assumption made in deriving the approximation in Equation (4.20) is that the most
likely state sequences of both of the models are equal to the state sequence of the generating
model, i.e. q = q∗

λ = q∗
κ. This assumption can be considered realistic with the model λ.

However, there is no reason to assume that the model κ would follow the same sequence.
Let us draw one sample from the observation distribution of i:th state of the model λ.
It is easy to agree that in most of the cases the likelihood of the generating distribution
is greater than likelihoods given by other distributions. This justifies why the most likely
state sequence of model λ should correspond the generating sequence, q∗

λ = q in average.
Considering the state sequence q∗

κ of the model κ, the best likelihood for this model is
most likely given by the state-dependent density closest to the corresponding density of
λ. This gives us a reason to find such a state alignment between the models λ and κ that
the states with best matching distributions coincide.

Assume now that the both HMMs have left-to-right topologies, such as the model shown
in Figure 2.3. The transitions in these models are either self-transitions or transitions
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to the successor state6. We introduce now a set of possible state alignments S between
the models λ and κ. The alignments are illustrated in Figure 4.4 (a) for HMMs having
three emitting states. The alignments are restricted such that the start and end points
of the models are fixed, and occur at the same time. The transitions of model κ can
drift under the restriction that the segmentation of one state of λ can be divided into
segments of equal duration. A new measure can be obtained for this kind of left-to-right
models in the following way. The divergence measure is evaluated for each possible state-
to-state alignment in a similar way to Equation (4.20), and the alignment is picked that
produces the minimum value. In other words, the divergence measures between the states
are minimized when the corresponding observation distributions are most similar. The
derived measure can be expressed as [Vihola et al. 2002]

ÎA2(λ : κ) = min
(�,�)∈S

{
L−1∑
i=1

vqi

[
aλ

qiqi
log

aλ
qiqi

aκ
sisi

+ aλ
qiqi+1

log
aλ

qiqi+1

aκ
sisi+1

+ I(bλqi
: bκsi

)
]} (4.22)

where S is the set of all possible alignments (q, s). The state vectors q and s are defined
such that the models λ and κ are at states qi and si, respectively, at step i. The last, non-
emitting states of the models are appended to q and s. The length of the state alignment
vectors is L = dim q = dims. The weight vector v is defined as vi = ri/ui where ui denotes
the count of state qi in the state vector7 q. For example, the values corresponding to the
case in Figure 4.4 (b) are q = [1, 1, 2, 3, 4]T , s = [1, 2, 2, 3, 4]T and v = [r1/2, r1/2, r2, r3]T .

The approximation in Equation (4.22) can be evaluated for HMMs with different number of
states unlike the approximation in Equation (4.20). In both Equations (4.20) and (4.22),
the directed divergence measure between state-dependent observation densities can be
expressed as in Equation (4.21), if the observation densities are Gaussian. The number of
alignments to be evaluated in the minimization task of Equation (4.22) increases rapidly as
the number of states in the models increases. The search of this minimun value, however,
can be performed more efficiently using dynamic programming algorithm similar to the
Viterbi decoding described in Algorithm 2.3.

6. This kind of model is shown in Figure 2.3.
7. More precisely, ui is the number of elements in the set, i.e. ui = card {j | qj = qi}.
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Chapter 5

Experimental Setup and Results

The dissimilarity measures covered in Chapter 4 were experimented in the task of phoneme
model clustering. The clustering was used for defining a set of multilingual phone models for
a multilingual speech recognition system. The word recognition accuracy of the resulting
speech recognition systems was evaluated in speaker independent isolated word recognition
task. The experiments were evaluated with The Hidden Markov Model Toolkit (HTK),
which provided efficient implementations of algorithms used in both training and testing
of the speech recognition systems [Young et al. 2000]. The estimation of the dissimilarity
measures and the clustering framework were implemented with Matlab 5.3 [MAT].

The content of this chapter is briefly following. Section 5.1 describes the speech corpora and
the front-end unit employed for the experiments. After that, the configuration and training
of the language dependent baseline ASR systems is explained in Section 5.2. In addition,
the test setup and the word recognition accuracies of the baseline systems are described
in detail. Section 5.3 covers the derivation and testing of the different multilingual ASR
systems. Finally, in Section 5.4, a summary and a comparison of the recognition results of
the ML systems are given.

5.1 Speech Corpora and Front-End

All the experiments were performed using the SpeechDat(II) speech corpora of seven lan-
guages: English, Finnish, French, German, Italian, Spanish and Swedish [Winski 1997].
The speech utterances in the SpeechDat(II) corpora have been recorded over a fixed tele-
phone network. The sample files are in raw 8bit A-law data format, with 8kHz sampling
frequency. The speech utterances in the corpora are annotated in word level, but without
any word boundary information. However, the annotation contains additional information
of e.g. strong background noise, truncation of a sentence or speaker-specific noise occured
during the recording session. In some of the languages, the utterances with speaker-specific
noise were included in the experiments, due to shortage of data. The last column in Ta-
bles 5.1–5.3 indicate whether such utterances were included in the data sets. The word
pronunciation lexicons in the SpeechDat(II) corpora are written with the SAMPA phonetic
symbols [SAM]. These phonetic symbols are used in this chapter to denote the phonemes.

The speech material was parametrized using a Mel-frequency cepstral coefficient (MFCC)
front-end described in Section 2.3. The frame interval and window length used in the front-
end were 10ms and 25ms, respectively. For each frame, the front-end produced a feature
vector consisting of 13 Mel-cepstral coefficients of which the zeroth, C0, was replaced with
frame energy E. The first and second time derivatives of the elements were appended
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Table 5.1: Summary of the training sets of the five languages used in training of the mul-
tilingual speech recognition systems.

Language Utterances Speakers Phonemes Speaker noise

English 4000 917 44 no
Finnish 4000 1019 46 no
German 4000 1011 47 yes
Italian 4000 1000 51 yes
Spanish 4000 1090 31 no

Total 20000 5037 219 yes

Table 5.2: Summary of the training set of the two unseen languages.

Language Utterances Speakers Phonemes Speaker noise

French 4052 1427 38 no
Swedish 4000 526 46 no

to the feature vector. After that, mean normalization technique explained in [Viikki and
Laurila 1998] was applied to the elements of the feature vector. In addition, the variance
of the energy coefficient E and its derivatives ∆E and ∆2E were normalized as described
in [Viikki and Laurila 1998].

5.2 Baseline Speech Recognition Systems and Data Sets

The language dependent (LD) baseline recognition system was trained for each of the seven
languages mentioned in Section 5.1. Five of the languages shown in Table 5.1 were used for
training the multilingual recognition systems, and the two languages in Table 5.2 were used
for testing the portability of the multilingual system into new languages. These recognition
systems consisted of 31 to 51 monophone HMMs, as shown in Tables 5.1 and 5.2. The model
topology was common to all phoneme models in the recognition systems. The phoneme
models had the structure shown in Figure 2.3: three emitting states, with self-transitions
and transitions to the successor state. Two extra models were used in each recognition
system to model silence (SIL) and short pause (SP). The SIL model was similar to the
phoneme models, except that it had backward transition from the last state to the first, and
a skip transition from the first state to the last. The SP model had only one emitting state
tied to the center state of the silence model1. The emission probability density functions
were GMMs with eight mixture component densities with diagonal covariance matrices in
every state.

The speech recognition systems were trained using phonetically rich sentences, labeled
with corpus codes S1-9 in SpeechDat(II). The summary of the contents of the training set
is shown in Tables 5.1 and 5.2. The training procedure can be outlined as follows
1. All the states of the HMMs shared initially a Gaussian observation density with

global mean vector and covariance matrix of the training data. This is known as
flat-start initialization of the model emission densities [Young et al. 2000]. All the

1. The tied states share a common emission probability density.

35



CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS

HMMs, including the SIL model had equivalent initial topology. The SP model was
omitted at this stage of the training. The initial state distribution and the transition
probabilities of the HMMs were set to π1 = 1, a11 = a22 = 0.6, a23 = a34 = 0.4,
a33 = 0.7 and a34 = 0.3. Other elements of π and A were constrained zero.

2. The parameters of HMMs were re-estimated using the embedded Baum-Welch
(BW) re-estimation procedure explained in Section 2.4.3. Three iterations of the
algorithm were performed over the full training data set.

3. Two extra transitions, the skip and the backward transition, were included to
the SIL model, a13 = a31 = 0.2. The other transition probabilities of the model
were modified such that

∑
j aij = 1, for all i. The SP model was included at this

time. The model consisted of one emitting state, namely the state two of SIL.
The observation density parameters of the SP state and the second state of SIL
were tied. A so called tee-transition, i.e. a transition over the emitting state of the
model π2 = 0.3, was included to the SP model. Finally, two iterations of BW were
performed for the HMMs in the recognition system.

4. A realignment of the training utterances was performed next. This means that the
training utterances were recognized with current HMMs, and the best matching
pronunciations of the words in the utterance were chosen, when there were duplicate
pronunciations in the lexicon. After the realignment of the training utterances, two
iterations of the BW re-estimation were performed to the HMMs.

5. The Gaussian emission densities of the HMMs were replaced gradually with mixture-
Gaussian densities. The number of mixture components was incremented by one at
a time2, and after each incrementation of the components, an iteration of BW re-
estimation was performed over the full training data set. This mixture incrementing
was repeated until the final number of mixtures, eight, was achieved. Finally, eight
more iterations of the BW re-estimation were performed.

The final LD recognition systems were tested in isolated word recognition task. The sum-
mary of the test sets is shown in Table 5.3. The number of vocabulary items was around
200 in each language. The test set of a language covered 3000–4000 samples including
application words (A1-3), isolated digits (I1) and forename-surname combinations3 (O7).
The average word recognition rates of the baseline LD recognition systems are shown in
Table 5.4. The differences between languages as well as different vocabulary items are
substantial. The shorter items, i.e. application words and digits were recognized poorly
compared to the longer forename-surname combinations, especially in English and German
languages. This reflects into the inferior average word recognition rate (WRR) of these
languages.

5.3 Multilingual Recognition Systems

The multilingual (ML) recognition systems were trained using the training data for the five
source languages shown in Table 5.1. The training procedure as well as the model config-
uration were identical to the LD recognizers described in Section 5.2. The only difference
was that the label files and the lexicon were changed to correspond to the phone cluster

2. This mixture incrementation was performed such that the mixture component with the greatest weight
was split, meaning that the mixture component was copied, the weights were divided by two, and the means
were perturbed by plus or minus 0.2 times the standard deviations [Young et al. 2000].
3. The forename-surname combinations were recognized as one unit, i.e. the arbitrary combinations of
the forenames and surnames were not allowed.
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Table 5.3: Summary of the test sets

Number of utterances Vocab. Speaker

Language A1 A2 A3 I1 O7 Total Speakers items noise

English 800 800 800 800 800 4000 1228 194 no
Finnish 800 800 800 800 800 4000 1024 194 no
German 800 800 800 800 800 4000 1582 196 yes
Italian 800 800 800 800 800 4000 1349 201 yes
Spanish 800 800 800 800 800 4000 1513 193 no

French 600 600 600 600 600 3000 1158 190 yes
Swedish 800 805 807 803 781 3996 1435 190 no

Total 5400 5405 5407 5403 5381 26996 9289 - yes

Table 5.4: Average word recognition rates of the seven LD baseline recognition systems.

Language A1 A2 A3 I1 O7 Avg.

English 78.75 78.25 78.62 64.38 91.93 78.40
Finnish 93.91 95.15 94.05 96.50 98.38 95.35
German 82.75 83.50 80.75 75.62 95.16 83.32
Italian 89.50 94.88 87.25 92.38 96.52 92.07
Spanish 98.38 97.23 95.12 93.00 96.44 95.78

French 88.05 87.72 88.28 62.67 92.12 83.57
Swedish 90.06 87.27 89.52 71.64 95.40 85.29

symbols of each ML recognition system. The determination of these phone clusters was
based on either expert knowledge or agglomerative clustering. This clustering was based
on the dissimilarity measures between the phoneme HMMs of the baseline LD recogni-
tion systems. These dissimilarity measures and the agglomerative clustering algorithm are
described in Chapter 4 and Algorithm 3.1, respectively. The obtained ML systems were
tested similarly as the LD systems described in Section 5.2. During the recognition, only
the vocabulary of the target language was set active. The Sections 5.3.1–5.3.3 review the
derivation and the experiments performed with the ML recognition systems.

5.3.1 Knowledge-based Multilingual Recognition Systems

The multilingual recognition system SAMPA was based on the method IPA-MAP de-
scribed in Section 3.3.1. The phonemes of different languages were clustered according to
their phonetic SAMPA symbol. The derived SAMPA system had a total of 105 multilin-
gual phone models corresponding to all the unique SAMPA symbols present within the
databases of the five source languages.

The second knowledge-based recognition system, referred to as SR, was obtained with
straightforward simplifications of the phone cluster definitions of SAMPA. The recognition
system had no explicit models for long vowels and double consonants. Such phones were
replaced with two single ones, e.g. /e:/ and /ee/ → /e/⊕/e/. In addition, the geminate
affricates in Italian language were replaced with the preceding plosive and the following
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Table 5.5: Tying of the rare phoneme models in Finnish, Italian and German.

Finnish Italian German

/gg/ → Italian /gg/ /@/ → English /@/ /o˜/ → Italian /o/
/bb/ → Italian /bb/ /dz/ → Italian /dZ/ /Z/ → English /Z/
/dd/ → Italian /dd/ /J/ → Spanish /J/ /a˜/ → Italian /a/
/ff/ → Italian /ff/ /L/ → Spanish /L/ /dZ/ → English /dZ/
/hh/ → Finnish /h/ /S/ → German /S/

affricate, e.g. /ddz/ → /d/⊕/dz/. When these simplifications were employed, the total
number of phone models was reduced to 64 from 105 of the SAMPA system.

5.3.2 Multilingual Recognition Systems based on Dissimilarity Measures

All the multilingual systems based on dissimilarity measures had a total of 64 phone
models. The phone model definitions in such ML recognition systems were created as
follows. The symmetric dissimilarity matrices D were created according to the particular
dissimilarity estimate. Each dissimilarity matrix was applied in the clustering framework,
and the derived phone cluster configuration was used for training a ML recognition system
having 64 phone models. The agglomerative clustering used in the phone cluster definition
is described in Algorithm 3.1.

The dissimilarity measure estimates were obtained for both Gaussian and eight-mixture
GMM observation density HMMs. The phoneme models of the fully trained LD recognition
systems were the HMMs with eight-mixture GMM observation densities. The Gaussian
observation density HMMs were obtained from the training procedure of the LD recogni-
tion systems, just before the first mixture split. The estimates of the dissimilarity measures
were obtained using up to 1000 tokens for each LD phoneme model. These tokens were
extracted from training speech material according to phoneme level segmentation of the
utterances. The segmentation of the utterances was obtained using the fully trained LD
recognition systems explained in Section 5.2. The phoneme models that did not have suf-
ficient number of tokens for estimating the dissimilarity measures (under 50 tokens) were
not included in the clustering framework. Instead, they were assigned manually to the
cluster having the most similar LD phoneme. The tying of these rare phoneme models is
shown in Table 5.5. In addition, the clustering was constrained such that phoneme models
of the same language were not allowed to locate in a same cluster, excluding the man-
ually tied rare phonemes. This clustering procedure was applied identically with all the
dissimilarity measures.

The experiments were carried out with the dissimilarity measures evaluated from the
confusion matrix estimates ĈS, ĈC1, ĈC2, Ĉt

C1 and Ĉt
C2, and from the KL divergence

estimates. These KL divergence estimates ĴX were obtained according to Equation (4.11)
from the corresponding directed divergence measures ÎX . The three directed divergence
estimates ÎS , ÎC1 and ÎC2, as well as the two closed-form approximations ÎA1 and ÎA2,
were employed in the experiments. The latter two approximations were evaluated only for
models with Gaussian observation densities, as these approximations cannot be presented
in a closed form with mixture observation density HMMs. The measures are referred here
according the terminology in Chapter 4. Specifically, the definitions of these estimates
are given in Equations (4.2)–(4.22). The number of mixture density components in the
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Table 5.6: Approximate values of the dissimilarity measures between English /i:/ and a
set of phonemes. The two smallest values in each row are bolded, and the two
largest values are in italic.

Diss. English German Spanish

measure /I/ /eI/ /e/ /m/ /i:/ /I/ /e:/ /m/ /i/ /e/ /m/

ÎA1(1) 6.57 8.66 21.96 21.10 8.98 5.52 5.43 23.00 9.17 10.65 27.29
ÎA2(1) 11.38 15.38 39.24 37.97 15.72 8.91 10.12 41.68 14.24 19.99 47.34

ÎS(1) 3.73 5.07 15.86 16.31 4.42 4.17 5.50 17.87 3.52 8.01 20.05
ÎC1(1) 1.28 2.30 5.20 5.37 1.81 1.57 1.76 5.70 1.33 3.04 6.22
ÎC2(1) 3.85 5.07 16.83 17.59 4.57 4.65 5.07 19.42 3.19 8.84 21.68

ĈS(1) 0.56 0.66 0.83 0.94 0.52 0.55 0.55 0.94 0.51 0.70 0.95
ĈC1(1) 0.58 0.66 0.80 0.90 0.56 0.58 0.57 0.91 0.57 0.70 0.93
ĈC2(1) 0.45 0.51 0.65 0.66 0.45 0.51 0.52 0.69 0.46 0.63 0.74
Ĉt

C1(1) 0.67 0.71 0.85 0.95 0.64 0.67 0.64 0.95 0.64 0.76 0.96
Ĉt

C2(1) 0.67 0.65 0.79 0.81 0.61 0.68 0.59 0.83 0.58 0.71 0.83

ÎS(8) 6.14 8.39 23.71 25.89 6.58 8.44 10.55 25.65 5.36 13.56 29.51
ÎC1(8) 1.77 3.23 7.13 7.66 2.39 2.61 3.12 7.73 1.86 4.24 8.68
ÎC2(8) 5.66 7.01 23.95 23.47 5.73 7.61 8.90 24.07 4.66 13.01 26.94

ĈS(8) 0.70 0.74 0.88 0.98 0.67 0.70 0.69 0.98 0.64 0.80 0.99
ĈC1(8) 0.67 0.72 0.86 0.97 0.64 0.68 0.66 0.97 0.61 0.78 0.98
ĈC2(8) 0.58 0.63 0.75 0.78 0.56 0.62 0.63 0.79 0.56 0.71 0.84
Ĉt

C1(8) 0.73 0.76 0.89 0.98 0.69 0.74 0.71 0.99 0.66 0.82 0.99
Ĉt

C2(8) 0.80 0.76 0.91 0.94 0.73 0.81 0.74 0.96 0.70 0.85 0.96

emission densities of the HMMs employed for the computation of the dissimilarity measures
is indicated by the number shown in parenthesis after the symbol of each measure. All
the trained ML recognition systems, however, have eight mixture components in emission
densities.

In Table 5.6, the values of the dissimilarity measures are shown between English /i:/ and
a set of phones from three languages. When these values are ordered, all the measures
indicate that either the German or Spanish /m/ is the most dissimilar phoneme model
among the phoneme models shown in Table 5.6. The model that is ranked the most similar
to the English /i:/ varies according to the different measures. The divergence measures
based on approximations, ÎA1 and ÎA2, pick either German /I/ or /e:/ to be most similar
to English /i:/. The divergence estimates based on speech data, ÎS , ÎC1 and ÎC2, claim that
either English /I/ or Spanish /i/ is the most similar. The measures based on confusion
matrix estimates suggest that either German /i:/ or Spanish /i/ is the most similar.
Thereby, some variation can be observed in the ranking of the phonemes in Table 5.6, but
all the measures seem reasonable.

As an example, the derived full phone cluster definition corresponding to the estimate
ÎC2(1), is shown in Table 5.7. In addition, Table 5.8 shows the number of common clusters
between the phone cluster definitions derived using the different dissimilarity measures.
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Table 5.7: Phone cluster definitions derived from the dissimilarity estimate ÎC2(1). The
manually assigned rare phonemes are shown in parenthesis. This table continues
on Page 41.

Phone cluster English Finnish German Italian Spanish

1 U Y
2 d g
3 oo aU O
4 U@
5 h h, (hh) h
6 dZ, (dz) jj
7 I i I
8 LL, (L) L
9 u: yy 2:
10 JJ, (J) J
11 N N N N
12 (dd) dd
13 V 6
14 nn nn D
15 aI aI
16 ll ll
17 @U A a
18 b b
19 j ddZ
20 3: 22

Most of these definitions are very different compared against each other. In most of the
cases, only less than half of the phone clusters in the definitions are common.

5.3.3 Unseen Languages

There were two unseen languages, French and Swedish, included in the tests. They are
unseen, since no data was used from these languages in the training of the ML recog-
nition systems. The tying of the phonemes of these languages was based on phonetic
knowledge [Raimo and Savela 2001]. Each phoneme was tied explicitly to one language
dependent phoneme model of the five source languages. This tying is shown in Table 5.9.
Based on this information, each phoneme of the unseen languages was mapped to a ML
phone model accordingly. The tying shown in Table 5.9 was same within all the evaluated
ML recognition systems.

The cross-language transfer (CLT) was experimented also for the two unseen languages.
The LD recognition systems of the five source languages were employed for this transfer.
The systems were obtained for French and Swedish by gathering the necessary phoneme
models from the source LD recognizers to form a new CLT recognition system. The gath-
ering of the models was performed according to the tying in Table 5.9, thus similarly as
in the case of ML recognition systems. The silence and short pause models of the CLT
systems were obtained from the Spanish LD recognition system.
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Table 5.7: Continued from Page 40.

Phone cluster English Finnish German Italian Spanish

21 OI OY
22 NN vv g
23 ts ts
24 e@ 2
25 tS tS tS
26 @ v @ v, (@) B
27 S C SS
28 e e E e
29 l u: u G
30 T f, (ff) pf ff
31 D y y: ddz
32 Q o O, (o˜) o o
33 Z s S, (Z) (S) s
34 u U u
35 r rr 9 rr rr
36 A: AA a:
37 b b, (bb) b bb
38 I@ ee E: E
39 d (gg) d gg
40 eI e: e
41 f f f f
42 g g g d d
43 k k k k k
44 l l l l
45 m m m m m
46 n n n n n
47 i: ii i: i i
48 p p p p p
49 r r r r
50 s s s
51 t t t t t
52 v v tts T
53 kk x kk x
54 z z z z
55 O: uu o:
56 dZ (dZ) ttS tS
57 j j j j
58 w w w
59 aU {{
60 { { (a˜) a a
61 ss ss
62 pp pp
63 tt tt
64 mm mm
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Table 5.8: The number of common phone clusters in the phone cluster definitions obtained
using the dissimilarity measures. The phone cluster definitions that have at least
32 common clusters are bolded. This number is half of the total number of the
phone clusters in each ML system.

Î A
2
(1

)

Î S
(1

)

Î C
1
(1

)

Î C
2
(1

)

Ĉ
S
(1

)

Ĉ
C

1
(1

)

Ĉ
C

2
(1

)

Ĉ
t C

1
(1

)

Ĉ
t C

2
(1

)

Î S
(8

)

Î C
1
(8

)

Î C
2
(8

)

Ĉ
S
(8

)

Ĉ
C

1
(8

)

Ĉ
C

2
(8

)

Ĉ
t C

1
(8

)

Ĉ
t C

2
(8

)

ÎA1(1) 23 12 12 11 8 9 9 10 7 11 9 9 8 8 8 7 6
ÎA2(1) – 17 20 15 14 15 13 14 13 12 15 13 12 11 13 10 9

ÎS(1) – – 22 26 21 24 20 24 18 22 14 20 22 19 17 19 16
ÎC1(1) – – – 28 25 26 21 21 16 21 22 26 20 18 21 17 15
ÎC2(1) – – – – 23 24 19 21 20 26 19 26 22 20 19 20 20

ĈS(1) – – – – – 35 22 29 22 23 23 29 29 29 24 26 20
ĈC1(1) – – – – – – 27 38 23 32 28 38 29 30 26 30 27
ĈC2(1) – – – – – – – 21 20 20 21 24 23 25 24 22 21
Ĉt

C1(1) – – – – – – – – 23 30 21 31 30 28 24 28 19
Ĉt

C2(1) – – – – – – – – – 19 19 20 26 23 19 23 22

ÎS(8) – – – – – – – – – – 25 36 30 28 20 30 26
ÎC1(8) – – – – – – – – – – – 34 31 29 26 29 19
ÎC2(8) – – – – – – – – – – – – 34 31 28 32 25

ĈS(8) – – – – – – – – – – – – – 45 24 46 24
ĈC1(8) – – – – – – – – – – – – – – 26 53 29
ĈC2(8) – – – – – – – – – – – – – – – 24 25
Ĉt

C1(8) – – – – – – – – – – – – – – – – 28

5.4 Comparison of Recognition Results

The average word recognition rates of the LD and ML speech recognition systems are
shown for the test sets in Tables 5.10 and 5.11. The two highest average WRRs of the
ML systems are bolded, and the two lowest WRRs are shown in italic. In Tables 5.10
and 5.11, the ML recognition systems SAMPA and SR are based on expert knowledge,
while the other ML recognition systems are based on dissimilarity measures. Table 5.10
shows that the degradation in WRR of the test set was moderate within the five source
languages, when comparing the LD recognition systems and the ML recognition system
SAMPA having 105 phone models. The further reduction of the WRR was small, when the
number of ML phone models was dropped into 64 in the SR system. All the ML recognition
systems based on computational model tying and employing the data-driven dissimilarity
measures can be considered comparable to the knowledge based SR system having 64
phone models. The systems based on approximations ÎA1 and ÎA2 had comparable WRRs
to the other ML systems. The WRRs of all these ML recognition systems did not differ
significantly. However, these results show that a ML speech recognition system can be
built, in this case, using only 30% of the number of parameters that are used in the LD
recognition systems.

The test set WRRs of the unseen languages are shown in Table 5.11. The WRRs of the
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Table 5.9: Mapping of the phonemes of the two unseen languages to the phones included in
ML recognition systems. In Swedish, the new retroflex consonant phonemes were
split into separate phones, e.g. /rn/ → /r/⊕/n/, and then mapped accordingly.
Similarly, the unseen nasal vowels of French were split into separate vowel and
velar nasal, e.g. /9/ → /9/⊕/N/.

Mapping of the French phonemes

/A/ → English /A:/ /e/ → Italian /e/ /p/ → Italian /p/
/E/ → Italian /E/ /f/ → Italian /f/ /2/ → German /2:/
/e˜/ → German /E/ /9˜/ → German /9/ /s/ → Italian /s/
/H/ → Finnish /y/ /g/ → Italian /g/ /t/ → Italian /t/
/J/ → Italian /J/ /h/ → English /h/ /u/ → Italian /u/
/N/ → German /N/ /i/ → Italian /i/ /v/ → Italian /v/
/O/ → Italian /O/ /j/ → Italian /j/ /9/ → German /9/
/R/ → German /r/ /k/ → Italian /k/ /w/ → Italian /w/
/S/ → Italian /S/ /l/ → Italian /l/ /o˜/ → German /o˜/
/Z/ → English /Z/ /m/ → Italian /m/ /y/ → German /y:/
/a/ → Italian /a/ /n/ → Italian /n/ /z/ → German /z/
/b/ → Italian /b/ /o/ → Italian /o/
/d/ → Italian /d/ /a˜/ → German /a˜/

Mapping of the Swedish phonemes

/C/ → German /C/ /b/ → English /b/ /n/ → German /n/
/E/ → German /E/ /E:/ → German /E:/ /i:/ → German /i:/
/u:/ → German /u:/ /d/ → English /d/ /2/ → Finnish /2/
/I/ → German /I/ /e:/ → German /e:/ /p/ → German /p/
/9:/ → German /9/ /e/ → Finnish /e/ /r/ → Finnish /r/
/N/ → German /N/ /f/ → German /f/ /s/ → German /s/
/O/ → German /O/ /g/ → English /g/ /t/ → German /t/
/y:/ → German /y:/ /h/ → German /h/ /{/ → Finnish /{/
/S/ → German /S/ /{:/ → Finnish /{{/ /v/ → English /v/
/U/ → German /U/ /j/ → German /j/ /9/ → German /9/
/Y/ → German /Y/ /k/ → German /k/ /o:/ → German /o:/
/A:/ → English /A:/ /l/ → German /l/ /u0/ → English /U/
/2:/ → German /2:/ /m/ → German /m/
/a/ → Italian /a/ /}:/ → English /u:/

ML systems were significantly lower compared to the corresponding LD systems, especially
for French. The variation on the average WRR is much greater in the unseen languages
compared to the source languages of the ML recognition systems. The systems that were
based on cross-language transfer (CLT) achieved WRRs that are comparable to the ML
systems. Despite the fact that the WRRs of the ML systems was low compared to the
corresponding results of the baseline LD recognition systems of the unseen languages, this
can be considered as a fair starting point for language or speaker adaptation.

All the ML recognition systems having 64 phone models had comparable WRRs. The
phone cluster definitions of these systems were, however, fundamentally different as shown
in Table 5.8. Small differences in values of the dissimilarity measures may cause big dif-
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ference in the cluster definitions, due to the nature of the employed clustering algorithm.
Furthermore, the dissimilarity measure approximations ÎA1 and ÎA2 showed to be applica-
ble to the task of multilingual phoneme model clustering. They have, however, significantly
lower computational cost compared to the data-driven dissimilarity measures.
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Table 5.10: Average test set WRRs of the source languages of the ML recognition systems.

Recognition system English Finnish German Italian Spanish Avg.

LD 78.40 95.35 83.32 92.07 95.78 88.98

SAMPA 63.38 92.30 79.60 93.18 94.55 84.60
SR 59.67 91.07 79.07 92.68 93.22 83.14

ÎA1(1) 65.75 89.40 78.10 89.10 91.28 82.73
ÎA2(1) 64.43 90.05 78.60 91.75 91.45 83.26

ÎS(1) 63.00 90.97 80.12 92.00 93.00 83.82
ÎC1(1) 65.40 90.65 78.80 92.40 91.70 83.79
ÎC2(1) 65.53 90.95 78.88 93.00 93.62 84.40

ĈS(1) 63.12 90.88 78.78 92.32 92.88 83.60
ĈC1(1) 65.55 90.07 78.95 92.20 93.47 84.05
ĈC2(1) 63.90 88.10 77.70 91.15 92.78 82.73
Ĉt

C1(1) 65.80 89.68 79.28 91.35 93.55 83.93
Ĉt

C2(1) 64.40 90.32 79.32 91.62 92.72 83.68

ÎS(8) 64.53 90.55 76.85 92.10 93.30 83.47
ÎC1(8) 67.78 91.15 77.64 90.60 92.20 83.87
ÎC2(8) 63.47 89.20 77.38 92.70 93.43 83.24

ĈS(8) 64.35 89.75 78.20 92.05 94.38 83.75
ĈC1(8) 66.05 88.97 77.72 92.10 92.95 83.56
ĈC2(8) 63.03 89.32 77.45 89.75 91.57 82.22
Ĉt

C1(8) 66.88 88.53 79.25 93.35 93.20 84.24
Ĉt

C2(8) 66.47 89.60 78.78 92.62 92.20 83.93

Table 5.11: Average test set WRRs of the unseen languages.

Rec. system French Swedish Avg. Rec. system French Swedish Avg.

LD 82.77 85.29 84.03 CLT 55.90 68.31 62.11

SAMPA 49.73 69.52 59.62 ÎA1(1) 46.72 66.54 56.63
SR 50.03 66.27 58.15 ÎA2(1) 54.77 66.68 60.73

ÎS(1) 56.50 68.82 62.66 ÎS(8) 54.80 65.54 60.17
ÎC1(1) 52.90 68.74 60.82 ÎC1(8) 60.00 67.49 63.75
ÎC2(1) 58.30 68.69 63.50 ÎC2(8) 56.29 68.39 62.34

ĈS(1) 54.33 66.42 60.38 ĈS(8) 58.97 65.39 62.18
ĈC1(1) 53.13 66.14 59.64 ĈC1(8) 58.63 66.79 62.71
ĈC2(1) 58.23 65.89 62.06 ĈC2(8) 56.33 67.67 62.00
Ĉt

C1(1) 54.57 64.46 59.52 Ĉt
C1(8) 61.43 66.79 64.11

Ĉt
C2(1) 57.03 67.46 62.24 Ĉt

C2(8) 61.50 67.39 64.44
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Conclusions

This thesis covered the dissimilarity measures for hidden Markov models (HMMs). They
were researched especially for the purposes of multilingual (ML) speech recognition. These
measures are needed when a compact set of ML phone models is created from a large set of
language dependent (LD) phoneme models by using a computational clustering method.
This clustering can be done such that the dissimilarity measures are evaluated between the
LD phoneme models, and the phonemes that are close to each other are represented with
a common ML phone model. Such a phone model is shared across the source languages
and may also be ported for new languages. The source languages of the ML recognition
systems were English, Finnish, German, Italian and Spanish. The ML recognition were
experimented also with two unseen languages: French and Swedish.

The dissimilarity measures researched for HMMs can be grouped into two categories:
the methods that are based on confusion matrix estimation, and those methods that are
based on Kullback-Leibler divergence. The different dissimilarity measures were compared
against each other in the task of phoneme model clustering. The experiments covered the
evaluation of 18 different dissimilarity measures for the total of 219 LD phoneme model
HMMs of five languages. The data-driven dissimilarity measures were estimated using the
training data of the LD recognition systems. For each measure, a dissimilarity matrix
was formed. Based on that matrix, these LD phoneme models were clustered into 64
clusters, each of which corresponded to one ML phone model. After that, new vocabulary
independent ML recognition system was trained according to each phone cluster definition.
These ML systems having 64 phone models had approximately 30% of the number of
parameters in the five LD recognition systems. In addition, the recognition systems based
on the computational definition of phone clusters were compared to the recognition systems
with knowledge-based phone cluster definitions. Particularly, a ML recognition system
having 105 ML phone models corresponding to unique SAMPA phonemes in the source
languages, was included in the experiments. The second knowledge-based system, that was
included in the experiments, had no separate models for long vowels, double consonants
and geminate affricates. They were represented with the corresponding single phonemes.
This system, having reduced set of SAMPA phones, had a total of 64 ML phone models.

The ML recognition systems were tested in isolated word recognition with approximately
200 word vocabulary for each language. Only the vocabulary of the target language was set
active during the recognition. The test sets consisted of approximately 4000 utterances for
each language. The baseline LD recognition systems of the source languages had an average
word recognition rate (WRR) of 89.0%. The average WRRs of all the ML recognition were
surprisingly close to each other. The SAMPA recognition system having 105 ML phone
models had an average WRR of 84.6%. The other knowledge-based system, which had 64
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phone models, had WRR of 83.1%. The systems having phone cluster definitions derived
using different dissimilarity measures had WRRs between 82.2% and 84.4%. All these ML
recognition systems had 64 phone models.

All the ML recognition systems were also tested with two new languages. These languages
were not included in the training of the ML recognition systems. The baseline LD recog-
nition systems of French and Swedish had the average WRRs of 82.8% and 85.3%, respec-
tively. The mapping of the phonemes of the new languages into the ML phone models was
defined using phonetic knowledge. This mapping was performed for each ML recognition
system. Only moderate differences were observed in the test set WRRs when the two new
languages were recognized with the ML recognition systems. The WRRs of French and
Swedish ranged from 46.7% to 61.5%, and from 58.2% to 69.5%, respectively. Despite the
fact that these WRRs are very low compared to corresponding WRRs of the baseline LD
recognition systems, they can be considered as a fair starting point for language or speaker
adaptation.

All of the measures employed in the experiments can be considered applicable in the task of
phoneme HMM clustering. It is interesting, that WRRs in these experiments were close to
each other, as the phone cluster definitions differed substantially among the measures. The
phone cluster definitions, that were derived using the different dissimilarity measures had,
in most of the cases, less than half common clusters. Moreover, the proposed closed form
measures having low computational cost proved to be equally applicable to the task. The
assumptions that were made with these measures are fulfilled with common left-to-right
proceeding phoneme HMMs. Furthermore, an closed form approximation was proposed,
that allows the HMMs to consist of different number of states. These measures, that have
closed form representation with respect to the model parameters, are also useful when no
training data, but a fully trained LD HMMs are available.

A possible future work topic is the definition of transformation class tree for MLLR model
adaptation scheme. This definition could be performed using the dissimilarity measures
presented in this thesis. The HMM level definition of the transformation classes, which
is achieved by using the dissimilarity measures for HMMs, has been mentioned as an
advantage, when performing MLLR speaker adaptation.
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Appendix A

Transformation Classes for MLLR

In the MLLR adaptation framework, discussed in Chapter 2, the target densities are
assigned into transformation classes to ensure the sufficient data to estimate the transform
matrices. All the densities in one transformation class are assumed to have similar acoustic
properties, as they are transformed using a common transformation matrix [Leggetter and
Woodland 1994]. Usually a transformation class tree is built to enable dynamic use of
the transformation classes. This means that the more adaptation data is available, the
more specific transforms can be used [Leggetter and Woodland 1995]. An example of
the transformation class tree is exemplified in Figure A.1. This transformation class tree is
usually built either by using phonetic knowledge, or by some acoustic clustering algorithm.

The dissimilarity measures, discussed in Chapter 4, can also be employed for the definition
of the transformation class tree. The Sections A.1 and A.2 briefly describe the different
methods that have been used for defining a transformation class tree. The Section A.1
describes some acoustic clustering algorithms that form a tree consisting of the mixture
components of the state-dependent densities of HMMs. The Section A.2 discusses the
HMM level definition of the transformation class tree. Most commonly used method for
defining a HMM level transformation class tree is the phonetic knowledge, but also a
computational method has been proposed [Haeb-Umbach 2001].

A.1 Mixture Component Level Definition

Some acoustic clustering algorithms used in the definition of the transformation classes
utilize a distance measure between two mixture components. Based on the measure, a
tree of mixture component classes can be created using e.g. the agglomerative clustering
scheme shown in Algorithm 3.1. The advantages of this method are that expert phonetic
knowledge is not needed, and the construction of the tree can be done using the available
adaptation data [Leggetter and Woodland 1995, Young et al. 2000]. The disadvantage of
this mixture component level method is that the mixture components of a single HMM, or
even state, can be transformed using several different transformation matrices [Leggetter
and Woodland 1994].

The acoustic clustering method used by Leggetter and Woodland employed the Kullback-
Leibler divergence between two Gaussian mixture density components as a distance mea-
sure [Leggetter and Woodland 1995]. The algorithm implemented in Hidden Markov Model
Toolkit (HTK) introduces occupation counters1 in addition to the KL divergence to create

1. The occupation counters are the mean number of feature vectors that are assigned to a particular
mixture component. They can be obtained using the posteriori probabilities γt(j, k) defined in Section 2.4.3.
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1

2 3

4 5 6 7

8 9

Figure A.1: An example of a transformation class tree that may be used in MLLR adap-
tation. Gray circles denote nodes with insufficient data. In this example, only
three transformation matrices are computed: for nodes 2, 3 and 7. The compo-
nents in terminal nodes (TNs) 8, 9 and 5 are transformed using one common
transformation matrix. The TN 7 has its own specific transformation, and the
components in TN 6 are transformed with a transformation matrix calculated
using the data from both TNs 6 and 7.

the transformation classes [Young et al. 2000]. This enables the creation of such clusters
that utilize the specific adaptation data more efficiently. Gales has proposed a method that
is optimal in the sense of maximizing the likelihood of the transformation class usage. The
results, however, differed very little from the acoustic clustering used as a baseline [Gales
1996]. Furthermore, this method is computationally expensive.

A.2 HMM Level Definition

The use of phonetic knowledge in the generation of transformation class tree ensures
that all the mixture component densities in one HMM are transformed using a common
transform matrix [Leggetter and Woodland 1994]. The disadvantage of this method is the
use of expert knowledge which may not be available. Moreover, the phonetic trees are not
unique as the phonetic categories are not strictly hierarchical [Raimo and Savela 2001].
An example of a phonetic transformation class tree is shown in Figure A.2.

The dissimilarity measures presented in Chapter 4 could be also used to define a trans-
formation class tree in HMM level. The agglomerative clustering procedure described in
Algorithm 3.1 produces a binary tree [Theodoridis and Koutroumbas 1999]. The question
of using dissimilarity measures for HMMs for defining a transformation class tree is out of
the scope of this thesis, but is mentioned here for possible future work. A computational
HMM level transformation class tree definition has been reported earlier in [Haeb-Umbach
2001]. The dissimilarity measure employed in that research was based on inter-speaker
correlation [Haeb-Umbach 2001]. The advantages of this type of transformation class tree
definition is the HMM level definition, which has been mentioned as an advantage of the
phonetic transformation class tree definition.
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Figure A.2: A phonetic transformation class according to [Raimo and Savela 2001]. The
tree contains the phonemes of the five languages: English, Finnish, German,
Italian and Spanish. The phonemes are shown as SAMPA symbols [SAM]
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