
1

SERIOUS ABOUT SOFTWARE

Qt – Localization & testing

Timo Strömmer, May 28, 2010



Contents

• Internationalization

• Preparing for localization

• Localization 

• Localization process

• Qt Linquist tool

• Testing

• QTestLib



Internationalization

3



i18n & l10n

• Internationalization

• Process of making generic program, which is 

suitable for all languages and cultures

• Localization

• Adapting the program for a specific language

and culture

• Not just language, but also for example number, date

and time formats

4



Getting started

• Qt provides two pre-processor definitions, 

which help locate parts of program that

need to be internationalized

• Prevent automatic conversion from const char * 

to QString and vice versa

5



Preparing strings

• A literal string can be internationalized with

help of tr function

• Available to all QObject subclasses

• Non-QObject functions can use

QCoreApplication::translate

• Global data can use QT_TRANSLATE_NOOP

6



Translation properties

• String that’s being translated can have

following properties

• Context name, which in case of tr is the class

name of the QObject subclass

• In other cases needs to be provided manually

• The string to be translated

• If translation is not found, this is shown in UI

7



Translation properties

• More translation properties

• Disambiguation, which is used if same context

has similar strings to be translated

• Possibility to translate them in different ways

• Plurality identifier

8

Bad

Good



Strings from parts

• Don’t use ’+’ to concatenate strings

• What if the numbers need to be displayed in 

opposite order?

• Use arg() instead

• Now the order of %1 and %2 can be changed

• Note the ’L’ prefix, which localizes integers

9

That’s actually 30000
and 55876,6…



QLocale class

• QLocale contains various functions for 

number, date, time etc. conversions

• QString functions usually do not use locale-

specific formatting

• toInt, toDouble are exeptions. Also arg with %L

• Use QLocale::toString for numbers

• Creating a QLocale object without

arguments initializes it to system locale

10



Key acceleratos

• Accelerators and keyboard shortcuts also

need to be internationalized

• &-character goes into tr()

• Prefer QKeySequence for keyboard shortcuts

• Also helps when porting to different platforms

11



Key accelerators

• The Qt Designer action editor can also be

used to specify key accelerators

• Will be translatable

12



Point to note

• GUI widgets might need to be resized

according to different text length in 

different languages

• Use layouts so there’s a possibility to adjust

13



Translation comments

• Comments are a good idea, otherwise

there’s going to be misunderstandings

between translator and programmer

• Special comment syntax

14



Project files

• All supported languages are added to 

project .pro file

• Language is identified by two-character

code, fi in above example

• <project-name>_<code>.ts

15



Translation process

16



Translation process

• After project has been internationalized, it

can be localized

• Open a terminal, go to project directory

and run lupdate <projectname>.pro

• No integration with QtCreator

• Creates a .ts file or updates the existing one

17



Translation file

• The .ts file is a XML representation of the 

strings to be translated

18



Translation process

• Use Qt Linguist tool and open .ts files

19



Translation process

• After translation, open a terminal again

• Run lrelease <project-name>.pro in the project

directory to create a binary file from the 

translations

• A .qm file is created

20



Using translations

• The translations (.qm) need to be shipped

with the program and loaded when run

• Use QTranslator object

• Preferably the application would have some kind

of preferences dialog or use system locale

21



Using translations

• In addition to application-specific

translations, Qt provides its own set of 

translations

• For example the shortcuts from QKeySequence

22



Qt Linquist

23



Qt Linquist

• A tool, which is used to write translations

for the strings found from the sources

• No knowledge about programming needed

• Can work with one or two languages

simultaneously

• In case the translator doesn’t know English

• Has certain data validation rules to help 

avoid problems

24



Qt Linquist validations

• Accelerator validation

• Ampersand (&) is there if the original has one

• Punctuation validation

• If original string ends for example with ’?’, the 

translated string probably also should

25



Qt Linquist validations

• Phrase validation

• Translated strings can be collected into a phrase

book

• If phrase book already contains a translation for 

a phrase, but new translation differs, a warning

is issued

• Place marker validation

• Arguments (%1, %2) should match

26



Qt Linquist validations

• Can be enabled / disabled from toolbar

27



Qt phrase book

• A phrase book is a collection of translations

from one language to another

• Can be distributed between projects

• Use Ctrl+T to add a translation to phrase book

28



Translating a program

• This is interactive part

• Create a GUI program with menu, widgets, 

dialogs etc.

• Add tr statements

• Try QT_NO_CAST_FROM_ASCII

• Run lupdate <project>.pro

• Translate with Qt Linquist (next slide)

• Run lrelease <project>.pro

29



Qt Linquist

• This is interactive part

• Contexts

• Translations

• Phrase book usage

• Validation rules

30



Testing
QTestLib introduction

31



QTestLib

• QTestLib is a library for creating test cases

• Can be used outside of a library or integrated

into a library or GUI program

• Provides functionality to simulate events

(mouse, keyboard) when testing a GUI

• Easy to read output that can also be interpreted

by tools

32



Creating a test program

• Create a new C++ source file

33



Creating a test program

34

• You could just as well use file browser or

touch etc. This just creates an empty file



Creating a test program

• Do NOT add it to a project

35



Add test object

• Slightly different way to use

QObject

• The test object is added to the source

file that was just created

• Each test function is implemented as a 

private slot

• QTEST_MAIN macro is used to declare

a main function

• Source file includes a .moc file, which

is generated by meta-object compiler

36



Create a project

• In this case the project is created after the 

first source file

• Open terminal, go to directory of source file

and run following to create the project

• Open the .pro file to QtCreator, build and 

run

37



Test functions

• A test function is a private slot

• Each test function within the object is run once

after the program is started

• Special test functions

• initTestCase, cleanupTestCase – Run once at 

beginning and end

• init, cleanup – Run before and after each test

function

38



Test functions

39



Doing something useful

• Verifying conditions

40



Doing something useful

• Comparing data

41



Integrating with GUI

• Create GUI project with a form

• Press ”Up” and ”UP” is shown on text field

• Press ”Down” and ”DOWN” is shown

• Add the SOURCES (except main.cpp) and 

HEADERS of the GUI project into the test

library project

• Basically you’re just building the same program

with a slightly modified main.cpp

• .pri files are your friends

42



Generate some events

• QTest API provides functions to simulate

GUI events

• Use QObject::findChild to search for target

43



Test results

• In previous example downButton was

pressed, but ”UP” was expected from text

field

• Note that there’s no need to show the window

to modify widgets

• But can be done

44



Pseudolocalization

• Pseudolocalization is a way of testing

possible localization issues without having

real translations

• Could for example use machine-translated

strings for particular language

• Or random characters

• Obviously not replacement for real localiztion

testing

45



Pseudolocalization example

46



Almost finished

47



Programming exercise

• No special tasks for today, start preparing

for your next week assignment

48



49


