

State of Mobile Linux

Juha-Matti Liukkonen, May 25, 2010

Contents

- Why is this interesting in a Qt course?
- Mobile devices vs. desktop/server systems
- Android, Maemo, and MeeGo today

 Designing software for mobile environments

Why is this interesting in a Qt course?

<symbio>

Rationale

- Advances in technology make computers mobile
 - Low-power processors, displays, wireless network chipsets, ...
 - iSuppli, Dec 2008
 - Laptops outsell desktop computers
 - High-end smartphones = mobile computers
 Nokia terminology
- Need to know how to make software function well in a mobile device
 - Qt is big part of Symbian & Maemo/MeeGo API

<symbio> Developing software for mobiles

- Android smartphones
 - Eclipse, Java
- Symbian smartphones
 - NetBeans / Eclipse, Java ME
 - Qt Creator, C/C++
- Maemo / MeeGo smartphones
 - Qt Creator, C/C++

In desktop/server computing: Java :== server C/C++ :== desktop

Qt was initially developed for desktop applications.

Mobile devices today are more powerful than the desktops 10 years ago.

Of particular interest in this course.

The elephant in the room

- In 2007, Apple change the mobile world with the iPhone
 - Touch user interface, excellent developer tools, seamless services integration, ...
 - Modern operating system, shared with iPod and Mac product lines
 - Caught "industry regulars" with their pants down
 - Nokia, Google, Samsung, et al what choice do they have? Linux!
 We don't talk about the iPhone here.

Mobile device constraints

- Mobility = situations change
 - May lose network coverage
 - May run out of battery

Network connections error out. Your app dies while writing to a file. Your app is frozen to let a call through.

- Software needs to adapt to situation at hand
- Mobility = limited resources
 - CPUs, GPUs not as fast as on desktop systems
 - Smaller screens, different input devices
- Limited amount of battery power

Cross development

- Cannot compile software in the target device
 - Not enough memory, disk space, CPU power
 - Poor input/output devices for development
- Must use a cross-compile environment
 - SDK = Software Development Kit
 - Build software in e.g. QtCreator, compile with SDK tools, install & run in the target device

Mobile Linux distributions

Linux Distribution

- Linux is the operating system kernel
 - Deals with hardware abstraction

- MeeGo Handheld UX, Kanchold UI Agays
 MeeGo Netbook UX, Rebok UI Agas
 Other UX's

 Image: Standard UI Agays
 MeeGo Netbook UX, MeeGo Netbook UX, MeeGo UI Jranework
 Other UX's

 Image: Standard UI Famework
 MeeGo Netbook UX, MeeGo Netbook UX,
- A *distribution* is a managed collection of software, including the kernel
 - Device drivers, middleware, user applications
 - Comes with distributor-defined default settings and applications
 - Often optimized for specific use(s)
 - E.g. Ubuntu, Red Hat Enterprise Linux, Maemo

Mobile Linux distributions

- Maemo
 - Nokia's Linux distribution for Internet tablets and high-end smartphones
 - Powers the N770, N800, N810, N900

- Android
 - Google's Linux distribution for Internet tablets and smartphones
 - Powers many HTC devices, Nexus One, etc.

Mobile Linux distributions

- OpenEmbedded
 - Open source project

<symbio>

- Best suited for custom adaptations to very small devices
- MeeGo
 - New kid on the block
 - Combines Intel's Moblin netbook Linux and Nokia's Maemo Linux
 - First MeeGo devices out in fall 2010

Android details

- Uses custom Linux kernel
 - Google maintains a set of Android patches
- Applications developed using Java
 - Google's custom Dalvik Java VM
- 5 versions in active use
 - 1.5, 1.6, 2.0, 2.1 and now 2.2
 - Used in various smartphones by HTC, Google, Motorola, LG, etc.

There is also a Native Development Kit (NDK) for building native Linux applications.

Android architecture

Android points of interest

- Custom C library
 - C library = system calls (interface to kernel), POSIX & ANSI standard library routines
 - Linux standard is glibc, which is a bit bloated
 - Android has a stripped down libc
 - Compatibility issues for generic Linux code
- Custom application installation
 - Apps bundled into .apk "Android packages"

Android points of interest

- Programming model
 - Activity
 - Impements an application view
 - Service
 - Background program with no UI
 - Broadcast receiver
 - Listens for e.g. battery notifications

• • •

- Content provider
 - Shares data from an app

Android and Qt

- Project Lighthouse = Qt for Android
 - Project ongoing... not ready for prime time yet
 - Some limitations of Android Native SDK (NDK) cause problems
 - Should eventually allow Qt to be the universal (mobile) Linux toolkit!
 - Google is not very supportive ;-)

Maemo details

- Uses standard Linux kernel
- Applications developed using Qt, C/C++
 - Maemo 4 & 5 are GTK based, but even there Qt is the recommended development toolkit
- Maemo 4 used in Nokia N800 tablet (deprecated)
- Maemo 5 used in Nokia N900 smartphone
- Maemo 6 this fall -> MeeGo

architecture L Maemo

19

•

Maemo points of interest

- Very regular Linux in most ways
 - Debian based, uses dpkg & apt-get
 - Uses glibc, gstreamer, X.org, etc.
- User interface based on Hildon/GTK+
 - Clutter backend for fancy effects
- Qt natively supported

Nokia SDK = QtCreator + SDKs for Symbian/Maemo

20

• Qt apps for Maemo 5 have the Maemo look & feel, support touch input, etc.

MeeGo details MeeGo details <symbio>

- Uses standard Linux kernel
- Applications developed using Qt, C/C++
- Replaces both Moblin from Intel, and Maemo from Nokia
- 1.0 release week 21/2010 (= now!)
 - In practice, Alpha quality right now
 - Beta quality release Oct 2010
 - Product quality release Apr 2011

MeeGo architecture

MeeGo points of interest

- Mostly regular Linux
 - Glibc, gstreamer, ALSA, etc.
 - Not based on any existing distribution, but uses rpm & yum for package management
- User interface modules separated from base platform
 - Different user interaction models for different use scenarios

MeeGo points of interest

- UX modules
 - Handheld: touchscreen (meegotouch toolkit on top of Qt)
 - Netbook: keyboard/mouse
 - Connected TV: remote control
 - In-Vehicle Information: touchscreen, joystick
- Reference applications for each UX model
 - System vendors can customize as needed

MeeGo points of interest

- Stable API
 - Any MeeGo application can run on any MeeGo certified system
 - Main part of API is Qt (Core, Gui, Mobility, ...)
 - Also: gstreamer, sqlite, ALSA, D-BUS interfaces to various frameworks, etc.
- Goal is to encourage an App Store ecosystem rivaling Apple

- Only credible challenger to Android
- Backed by Nokia -> direct impact to Finnish software development scene
- You can participate in building MeeGo: go to meego.com and become active!

- Innovative architectural solutions
- Aims to become the "industry standard" Linux for modern embedded systems
- Will drive Qt development in mobile space

Participate to MeeGo!

- Go to meego.com and register as a developer
 - Participate in community working groups
 - Discuss in #meego at freenode
 - Contribute code, documentation, tests
 - Gain reputation, become a component maintainer
 - Steering group meetings in #meego-meeting
- Help us create the future of mobile Linux!

Developing software for mobile Linux

- Mobile environment constraints
 - Limited battery power
 - Limited CPU power
 - Limited screen size
 - Changing situations
- Not that difficult to work with, once you know what to avoid
 - Mobile optimized software runs *fast* on higher end hardware

Design your app for a CPU from 1990, graphics from 2005, but use modern tools and techniques.

Limited battery power

- Typical smartphone battery is around 1300-1400 mAh
 - An ARM Cortex A8 @ 600 MHz draws 300 mW an Intel XEON @ 3 GHz draws 130W
- Software must do as little as possible
 - Must not poll for network traffic, user input, ambient light sensors, ...

Applications must	
become <i>context</i>	
aware.	1

• Must not update the screen when in background

Tools: powertop

Luc Eau	t ⊻i	ew]	ferminal	<u>G</u> o	Help				
P	owe	TOP	versi	on	1.8		(C)	2007 Intel Corporation
Cn			A	vg	resi	den	су		P-states (frequencies)
C0 (cp	u ri	inni	ng)		(1	2.9	6)		1.71 Ghz 9.8%
C1			0).Om	ns (0.0	6)		1200 Mhz 0.3%
C2			16).7m	ns (8	37.1	b)		800 Mhz 0.5%
С3			e	0.01	ns (0.0	s)		600 Mhz 89.4%
C4			0	0.01	1s (0.0	£)		
									internal all Ac
akeup:	5-TI	rom-	idle p	er	seco	ond	: 81	z	Interval: 15.05
Power	usaq	je (/	ACPI e	st1	mate	:): .	14.1	W.	(6.6 hours) (long term: 136.4W,/0./h)
Top ca	115.01	fo	r wako						
34.4	use: % (31.	9) 9)	ups	<int< td=""><td>err</td><td>into</td><td></td><td>ipw2200, Intel 82801DB-ICH4, Intel 82801DB-I</td></int<>	err	into		ipw2200, Intel 82801DB-ICH4, Intel 82801DB-I
19.4	s (18.	e)		fire	fox	-bir		futex wait (hrtimer wakeup)
15.5	\$ (14.	4))		do setitimer (it real fn)
11.5	\$ (10.	7)		e\	/olu	tior	1:	schedule timeout (process timeout)
4.3	% (4.	0) <	ker	nel	mod	ule>	. :	usb hcd poll rh status (rh timer func)
3.9	% (3.	6)		<int< td=""><td>err</td><td>upt></td><td>• :</td><td>libata</td></int<>	err	upt>	• :	libata
1.8	% (1.	7)	<k< td=""><td>erne</td><td>el co</td><td>ore></td><td>• :</td><td>sk reset timer (tcp delack timer)</td></k<>	erne	el co	ore>	• :	sk reset timer (tcp delack timer)
1.2	% (1.	1)				>	: :	schedule_timeout (process_timeout)
1.1	°s (1.	0)		1	[erm:	inal		<pre>schedule_timeout (process_timeout)</pre>
1.1	°s (1.	0)		xfce	24 - pa	anel		<pre>schedule_timeout (process_timeout)</pre>
0.6	% (Θ.	5) <	:ker	nel	mod	ule>	• :	<pre>neigh_table_init_no_netlink (neigh_periodic_</pre>
0.5	% (Θ.	5)			5	bamd	:	<pre>schedule_timeout (process_timeout)</pre>
0.5	% (Θ.	5)		e	even	ts/0	:	ipw_gather_stats (delayed_work_timer_fn)
0.4	% (Θ.	3)		X1	des	ktop		schedule_timeout (process_timeout)
0.4	% (0.	3)		fire	fox	-bir	:	<pre>sk_reset_timer (tcp_write_timer)</pre>
0.3	% (0.	3)			1	nscd	:	futex_wait (hrtimer_wakeup)
0.2	% (0.	2)	×	scre	ensi	aver		<pre>schedule_timeout (process_timeout)</pre>
	10 m	Θ.	2)		ks	inap	shot		schedule_timeout (process_timeout)
0.2	s (
0.2	* (i coh lo						teath intenders with the delleving second.
0.2 Sugges	tion	n: D	isable	th	ie un	nuse	i bl	uet	tooth interface with the following command: -
0.2 Sugges hcic	τion onf:	n:D	isable ci0 do	th wn	ie un ; rm	nuse	i bl hci	uet	tooth interface with the following command: • sb wite some newer, and keeps USR buck as well

Netbooks and smartphones have 1-2 cores

of 0.5-1 GHz

• Level of parallelization is very different

Server machines have 3-4x that

- Maximum throughput is very different
- Efficient algorithms work on smartphone level CPUs, and scream on high-end computers

 Desktop machines today use 2-4 CPU cores of 2-3 GHz each (4x3 GHz)

Tools: htop

9 - X	Sh	ell No.	3 - Ko	nsole							
1	[]]					2.0	8]	Tas ks :	76 total, 1 running		
2	[]					1.3	8]	Load av	verage: 0.00 0.02 0.06		
Me	em[197	/499M	IB]	Uptime:	: l day, 01:19:29		
S١	/p [2	2/511M	IB]				
										_	
PRI	NI	VIRT	RES	SHR	S	CPU%	MEM%	TIME+	Command		
16	0	1 440	508	452	S	0.0	0.1	0:00.85	init [2]		
14	- 4	1424	444	380	S	0.0	0.1	0:00.04	`- udevd		
16	0	<mark>6</mark> 016	<mark>2</mark> 828	1 596	S	0.0	0.3	0:00.26	`zsh		
16	0	1424	468	412	S	0.0	0.1	0:00.00	`- /System/Links/Executables	5/	
16	0	1 424	468	412	S	0.0	0.1	0:00.00	`- /System/Links/Executables	5/	
16	0	1428	468	412	S	0.0	0.1	0:00.00	`- /System/Links/Executables	i/ 🚃	
16	0	1428	468	412	S	0.0	0.1	0:00.00	- /System/Links/Executables	7	
16	0	<mark>5</mark> 260	1 920	1 400	S	0.0	0.2	0:00.06	`zsh		
18	0	<mark>2</mark> 384	1076	904	S	0.0	0.1	0:00.00	`- /bin/sh /System/Links	5/	
16	0	<mark>2</mark> 260	628	540	S	0.0	0.1	0:00.00	`- xinit /Users/hisł	a	
15	0	107M	<mark>41</mark> 764	3804	S	0.7	5.2	11:20.32	`- X :0		
16	0	<mark>2</mark> 392	1112	928	S	0.0	0.1	0:00.00	`- /bin/sh /Syst	e	
16	0	1 416	316	256	S	0.0	0.0	0:00.00	`- kwrapper	k	
16	0	<mark>32</mark> 892	14 632	7268	S	0.0	1.8	0:02.89	- kdeinit Running		
16	0	33788	14 952	7672	S	0.0	1.8	0:02.46	- klauncher [kdeinit]		
16	0	<mark>35</mark> 852	19 008	10576	S	0.0	2.3	0:36.09	- kwin [kdeinit] -sessi	.0	
16	0	<mark>38</mark> 496	<mark>21</mark> 424	12208	S	0.0	2.6	0:15.50	- konsole [kdeinit]		
16	0	6320	3120	1576	S	0.0	0.4	0:00.52	`- /bin/zsh		
16	0	6000	2788	1568	S	0.0	0.3	0:00.25	`- /bin/zsh		
F1He	lp	F2Set	up F3Se	earchF4	4In	vertF	5Tree	e F6SortE	ByF7 <mark>Nice -</mark> F8 <mark>Nice +</mark> F9 <mark>Kill </mark> F10()u 🚔	
		Shall	Chal	No 2		E Cho	ll No. 3	3			
ڪار		shell	snel	110.2		sne	II NO			(ff 🗙	

Limited screen size

- Laptops may have 17", 1920x1200 screens
 - Netbooks have 7-13", max 1280x800
 - Smartphones have 3-4", max 860x480
- Designing a scaling application UI is hard
 - Dialogs designed for 860x480 may look tiny on 1920x1200
 - Dialogs designed for 1920x1200 may simply not fit in 860x480

Changing situations

- May lose network coverage
 - Applications must degrade gracefully
- May start to run out of power
 - Must absolutely minimize what apps do
 - Must survive power outages gracefully
- Incoming phone call
 - Applications must yield immediately to allow the high priority task to run

You always <i>do</i> check
for error values from
API calls, right?

Database tra	ansactions
and journalir	ng file sys-
tems are you	ur friends.

User interaction

- Device rotation
 - Mobile devices often have accelerometers can tell whether it is in landscape or portrait mode
 - Applications should register for orientation change notifications and re-layout accordingly
- Input methods
 - Hardware keyboard, virtual keyboard, finger input, Bluetooth keyboards and mice, ...
 - Extra controls such as microphone buttons

Catching rotation on Maemo

Memory management

- Memory leaks cause device to reboot
 - User will not like this! (user = you)
 - Careful weeding out of dynamic memory allocation problems is needed
 - Use QObjects, tools such as valgrind

Arguably, Java is better than C/C++ in this regard	
as it handles memory deallocation automatically.	

- Limited amount of memory in device
 - Swapping is slow and expensive power-wise
 - Use as little memory as you can, free memory when not needed

<symbio>

Tool: valgrind

- Supports x86, older ARM chips
- Full ARMv7 support coming soon
- Multiple GUI frontends

Multitasking

- Running multiple applications simultaneously requires special care
 - You run out of memory, and device reboots
 - Background apps eat all your CPU, and you can't answer phone calls
- iPhone OS just tells your app it's about to be killed

• Your app must save state information to disk, so that it can resume smoothly when restarted

Multitasking

- Android does automatic suspend/resume
 - Stores idle app state on disk automatically
 - Reloads app state when app is resumed, which causes occasional stalls
- Maemo/MeeGo does regular Linux multitasking

Android 2.2 has
a task manager,
where you can kill
idle apps by hand.
'

- cgroups to prioritize process groups in memory
- Uses swap to extend physical memory, which causes occasional stalls

User interface design

- Mobile design patterns
 - Mobilize, Don't Miniaturize
 - The Carry Principle
 - Context Sensitivity
- New research coming out all the time
 - Including 3D interfaces in 1-2 years
 - Tricky to combine 3D and touch...

Multiplatform applications

- Qt is supported "everywhere"
 - Encourages creation of multiplatform applications
 - But: even if the core application works everywhere, the user interface may not
 - #ifdef statements in code to instantiate different UI code for different UX environments?
 - QtMobility APIs to query system features

Web widgets

- WebKit is the standard web runtime (WRT)
 - Provided by Android, Symbian, Maemo/MeeGo
 - Differences in JIT support
 - Platform service interfaces visible in JavaScript
- Applications as widgets run in a WRT process context
 - Similar considerations as for native applications
 - Often possible to embed to native applications, sometimes just use in homescreen etc.

SERIOUS ABOUT SOFTWARE

• • • • • •