
State of Mobile Linux
Juha-Matti Liukkonen, May 25, 2010

1

Contents

•  Why is this interesting in a Qt course?

•  Mobile devices vs. desktop/server systems

•  Android, Maemo, and MeeGo today

•  Designing software for mobile

environments

2

Why is this interesting in a Qt course?

3

Rationale

•  Advances in technology make computers
mobile

•  Low-power processors, displays, wireless

network chipsets, …

•  Laptops outsell desktop computers

•  High-end smartphones = mobile computers

•  Need to know how to make software
function well in a mobile device

•  Qt is big part of Symbian & Maemo/MeeGo API

4

iSuppli, Dec 2008

Nokia terminology

Developing software for mobiles

•  Android smartphones

•  Eclipse, Java

•  Symbian smartphones

•  NetBeans / Eclipse, Java ME

•  Qt Creator, C/C++

•  Maemo / MeeGo smartphones

•  Qt Creator, C/C++

5

Of particular interest
in this course.

In desktop/server computing:
Java :== server

C/C++ :== desktop

Qt was initially developed
for desktop applications.

Mobile devices today are
more powerful than the
desktops 10 years ago.

The elephant in the room

•  In 2007, Apple change the mobile world
with the iPhone

•  Touch user interface, excellent developer tools,

seamless services integration, …

•  Modern operating system, shared with iPod and

Mac product lines

•  Caught “industry regulars” with their pants
down

•  Nokia, Google, Samsung, et al – what choice do
they have? Linux!

6

We don’t talk about the iPhone here.

Mobile device constraints

•  Mobility = situations change

•  May lose network coverage

•  May run out of battery

•  Software needs to adapt to situation at hand

•  Mobility = limited resources

•  CPUs, GPUs not as fast as on desktop systems

•  Smaller screens, different input devices

•  Limited amount of battery power

7

Network connections error out.
Your app dies while writing to a file.

Your app is frozen to let a call through.

Cross development

•  Cannot compile software in the target
device

•  Not enough memory, disk space, CPU power

•  Poor input/output devices for development

•  Must use a cross-compile environment

•  SDK = Software Development Kit

•  Build software in e.g. QtCreator, compile with

SDK tools, install & run in the target device

8

Debugging software
in target is often a
bit tricky. Most SDKs
come with a device
emulator.

Mobile Linux distributions

9

Linux Distribution

•  Linux is the operating system kernel

•  Deals with hardware abstraction

•  A distribution is a managed collection of

software, including the kernel

•  Device drivers, middleware, user applications

•  Comes with distributor-defined default settings
and applications

•  Often optimized for specific use(s)

•  E.g. Ubuntu, Red Hat Enterprise Linux, Maemo

10

Mobile Linux distributions

•  Maemo

•  Nokia’s Linux distribution for Internet tablets

and high-end smartphones

•  Powers the N770, N800, N810, N900

•  Android

•  Google’s Linux distribution for Internet tablets
and smartphones

•  Powers many HTC devices, Nexus One, etc.

11

Mobile Linux distributions

•  OpenEmbedded

•  Open source project

•  Best suited for custom adaptations to very small

devices

•  MeeGo

•  New kid on the block

•  Combines Intel’s Moblin netbook Linux and

Nokia’s Maemo Linux

•  First MeeGo devices out in fall 2010

12

Android details

•  Uses custom Linux kernel

•  Google maintains a set of Android patches

•  Applications developed using Java

•  Google’s custom Dalvik Java VM

•  5 versions in active use

•  1.5, 1.6, 2.0, 2.1 and now 2.2

•  Used in various smartphones by HTC, Google,
Motorola, LG, etc.

13

There is also a Native
Development Kit (NDK)
for building native Linux
applications.

The devices have a bit
different resolutions and
feature sets.

Android architecture

14

Android points of interest

•  Custom C library

•  C library = system calls (interface to kernel),

POSIX & ANSI standard library routines

•  Linux standard is glibc, which is a bit bloated

•  Android has a stripped down libc

•  Compatibility issues for generic Linux code

•  Custom application installation

•  Apps bundled into .apk “Android packages”

15

Android points of interest

•  Programming model

•  Activity

•  Impements an application view

•  Service

•  Background program with no UI

•  Broadcast receiver

•  Listens for e.g. battery notifications

•  Content provider

•  Shares data from an app

16

Android and Qt

•  Project Lighthouse = Qt for Android

•  Project ongoing… not ready for prime time yet

•  Some limitations of Android Native SDK (NDK)

cause problems

•  Should eventually allow Qt to be the universal
(mobile) Linux toolkit!

•  Google is not very supportive ;-)

17

Maemo details

•  Uses standard Linux kernel

•  Applications developed using Qt, C/C++

•  Maemo 4 & 5 are GTK based, but even there Qt is the
recommended development toolkit

•  Maemo 4 used in Nokia N800 tablet (deprecated)

•  Maemo 5 used in Nokia N900 smartphone

•  Maemo 6 this fall -> MeeGo

18

M
ae

m
o
 5

 a
rc

h
it
ec

tu
re

19

Maemo points of interest

•  Very regular Linux in most ways

•  Debian based, uses dpkg & apt-get

•  Uses glibc, gstreamer, X.org, etc.

•  User interface based on Hildon/GTK+

•  Clutter backend for fancy effects

•  Qt natively supported

•  Qt apps for Maemo 5 have the Maemo look &
feel, support touch input, etc.

20

Nokia SDK = QtCreator +
SDKs for Symbian/Maemo

MeeGo details

•  Uses standard Linux kernel

•  Applications developed using Qt, C/C++

•  Replaces both Moblin from Intel, and
Maemo from Nokia

•  1.0 release week 21/2010 (= now!)

•  In practice, Alpha quality right now

•  Beta quality release Oct 2010

•  Product quality release Apr 2011

21

MeeGo architecture

22

MeeGo points of interest

•  Mostly regular Linux

•  Glibc, gstreamer, ALSA, etc.

•  Not based on any existing distribution, but uses

rpm & yum for package management

•  User interface modules separated from
base platform

•  Different user interaction models for different
use scenarios

•  Qt is the primary application interface

23

MeeGo points of interest

•  UX modules

•  Handheld: touchscreen (meegotouch toolkit on

top of Qt)

•  Netbook: keyboard/mouse

•  Connected TV: remote control

•  In-Vehicle Information: touchscreen, joystick

•  Reference applications for each UX model

•  System vendors can customize as needed

24

MeeGo points of interest

•  Stable API

•  Any MeeGo application can run on any MeeGo

certified system

•  Main part of API is Qt (Core, Gui, Mobility, …)

•  Also: gstreamer, sqlite, ALSA, D-BUS interfaces
to various frameworks, etc.

•  Goal is to encourage an App Store
ecosystem rivaling Apple

25

Why MeeGo is interesting to us

•  Only credible challenger to Android

•  Backed by Nokia -> direct impact to
Finnish software development scene

•  Innovative architectural solutions

•  Aims to become the “industry standard”
Linux for modern embedded systems

•  Will drive Qt development in mobile space

26

You can participate
in building MeeGo:
go to meego.com
and become active!

Participate to MeeGo!

•  Go to meego.com and register as a
developer

•  Participate in community working groups

•  Discuss in #meego at freenode

•  Contribute code, documentation, tests

•  Gain reputation, become a component
maintainer

•  Steering group meetings in #meego-meeting

•  Help us create the future of mobile Linux!

27

Developing software for mobile Linux

28

Software design considerations

•  Mobile environment constraints

•  Limited battery power

•  Limited CPU power

•  Limited screen size

•  Changing situations

•  Not that difficult to work with, once you
know what to avoid

•  Mobile optimized software runs fast on higher

end hardware

29

Design your app
for a CPU from 1990,
graphics from 2005,
but use modern tools
and techniques.

Limited battery power

•  Typical smartphone battery is around
1300-1400 mAh

•  An ARM Cortex A8 @ 600 MHz draws 300 mW -

an Intel XEON @ 3 GHz draws 130W

•  Software must do as little as possible

•  Must not poll for network traffic, user input,
ambient light sensors, …

•  Must not update the screen when in background

•  Use platform services for notifications

30

Applications must
become context
aware.

Tools: powertop

31

Limited CPU power

•  Desktop machines today use 2-4 CPU cores
of 2-3 GHz each (4x3 GHz)

•  Server machines have 3-4x that

•  Netbooks and smartphones have 1-2 cores

of 0.5-1 GHz

•  Level of parallelization is very different

•  Maximum throughput is very different

•  Efficient algorithms work on smartphone level

CPUs, and scream on high-end computers

32

Tools: htop

33

Limited screen size

•  Laptops may have 17”, 1920x1200 screens

•  Netbooks have 7-13”, max 1280x800

•  Smartphones have 3-4”, max 860x480

•  Designing a scaling application UI is hard

•  Dialogs designed for 860x480 may look tiny on
1920x1200

•  Dialogs designed for 1920x1200 may simply not

fit in 860x480

•  Also, what is the input mechanism?

34

Changing situations

•  May lose network coverage

•  Applications must degrade gracefully

•  May start to run out of power

•  Must absolutely minimize what apps do

•  Must survive power outages gracefully

•  Incoming phone call

•  Applications must yield immediately to allow the
high priority task to run

35

You always do check
for error values from
API calls, right?

Database transactions
and journaling file sys-
tems are your friends.

User interaction

•  Device rotation

•  Mobile devices often have accelerometers – can

tell whether it is in landscape or portrait mode

•  Applications should register for orientation

change notifications and re-layout accordingly

•  Input methods

•  Hardware keyboard, virtual keyboard, finger
input, Bluetooth keyboards and mice, …

•  Extra controls such as microphone buttons

36

Catching rotation on Maemo

37

 MyReceiverClass * receiver = new MyReceiverClass(this);
 QDBusConnection systemBus = QDBusConnection::systemBus();
 systemBus.connect("com.nokia.mce",
 "/com/nokia/mce/signal",
 "com.nokia.mce.signal",
 "sig_device_orientation_ind",
 receiver, SLOT(orientationChanged(QString)));

MyReceiverClass inherits QObject, and
implements slot orientationChanged().

DBus is a message
passing system.

MCE is the Mode Control
Entity (a system process)
in Maemo.

When MCE sends the sig_device_orientation_ind
via the system message bus, your object’s slot
orientationChanged() will get called with argument
“portrait” or “landscape”.

Memory management

•  Memory leaks cause device to reboot

•  User will not like this! (user = you)

•  Careful weeding out of dynamic memory

allocation problems is needed

•  Use QObjects, tools such as valgrind

•  Limited amount of memory in device

•  Swapping is slow and expensive power-wise

•  Use as little memory as you can, free memory

when not needed

38

Arguably, Java is better
than C/C++ in this regard
as it handles memory
deallocation automatically.

Tool: valgrind

•  Supports x86,
older ARM chips

•  Full ARMv7 support
coming soon

•  Multiple GUI front-
ends

39

Multitasking

•  Running multiple applications
simultaneously requires special care

•  You run out of memory, and device reboots

•  Background apps eat all your CPU, and you can’t

answer phone calls

•  iPhone OS just tells your app it’s about to
be killed

•  Your app must save state information to disk, so
that it can resume smoothly when restarted

40

This is clever,
because only
one app at a
time is in memory.

Multitasking

•  Android does automatic suspend/resume

•  Stores idle app state on disk automatically

•  Reloads app state when app is resumed, which

causes occasional stalls

•  Maemo/MeeGo does regular Linux
multitasking

•  cgroups to prioritize process groups in memory

•  Uses swap to extend physical memory, which

causes occasional stalls

41

Android 2.2 has
a task manager,
where you can kill
idle apps by hand.

User interface design

•  Mobile design patterns

•  Mobilize, Don’t Miniaturize

•  The Carry Principle

•  Context Sensitivity

•  New research coming out all the time

•  Including 3D interfaces in 1-2 years

•  Tricky to combine 3D and touch…

42

Multiplatform applications

•  Qt is supported “everywhere”

•  Encourages creation of multiplatform

applications

•  But: even if the core application works

everywhere, the user interface may not

•  #ifdef statements in code to instantiate different
UI code for different UX environments?

•  QtMobility APIs to query system features

43

Web widgets

•  WebKit is the standard web runtime (WRT)

•  Provided by Android, Symbian, Maemo/MeeGo

•  Differences in JIT support

•  Platform service interfaces visible in JavaScript

•  Applications as widgets run in a WRT
process context

•  Similar considerations as for native applications

•  Often possible to embed to native applications,

sometimes just use in homescreen etc.

44

45

