
1

SERIOUS ABOUT SOFTWARE

Qt – Overview and development environment

Timo Strömmer, May 24, 2010

Contents

• Quick start

• QtCreator demonstration

• Qt overview

• Project basics and building

• Qt modules walkthrough

• QtCreator overview

• Session manager

• Project properties

• Code editor

• Integrated help

Contents

• Beyond project file basics

• Shared libraries

• Managing larger projects

• Platform-specific issues

3

Quick start
Creating a hello world project with QtCreator

4

Installation

• Ubuntu 10.04 repositories have Qt 4.6.2:

• sudo apt-get install qtcreator build-essential

• Need to enable universe repository from

Software Sources

5

Quick start

• Run qtcreator

• Select File / New File or Project

6

Quick start

7

Quick start

8

Quick start

9

Quick start

10

Quick start

11

Quick start

12

Quick start

13

Quick start

• Build with Ctrl+B, run with Ctrl+R

14

Excercise

• Try it out, create a GUI helloworld project

• Add some widgets with UI designer

• Build and run

15

Qt projects
Basics

16

Qt project file

• A .pro file with same name as the directory

it sits in

• Processed by qmake to generate platform-

specific build files

17

Qt project basics

• Project name and type

• TARGET, TEMPLATE

• Project files

• SOURCES, HEADERS, FORMS

• Project configuration

• CONFIG, QT

18

Project templates

• Basic TEMPLATE types: app, lib, subdirs

• Executable files (console or GUI) are created

with the app type

• GUI is default, console needs CONFIG += console

• Libraries (static and shared) are created with lib

type

• Shared default, static needs CONFIG += staticlib

• Sub-directory template is used to structure

large projects into hierarchies

19

Project name

• Project TARGET specifies the output file

name

• TARGET = helloworld

• Affected by template and platform

• Executable name (name, name.exe etc.)

• Library name (libname.so, name.dll etc.)

20

Project files

• SOURCES are obviously needed

• HEADERS also, as they are processed by

meta-object compiler

• UI form data (.ui files) are included with

FORMS directive

21

Sources and headers

• QtCreator updates the directives in .pro file

in most cases

• Add and remove but no rename

22

UI resources

• UI resource files are XML documents, which

are processed by uic compiler during build

• Generates C++ code from the resource and

integrates it into project

• No need to edit manually, use QtCreator

form editor instead

23

UI resources

24

Build from command line

• Run qmake in the directory, which contains

the .pro file

• Generates the project Makefile

• Run make to build project

• Runs uic, generates ui_<form>.h files

• Runs moc, generates moc_<class>.cpp files

• Compiles the sources to object .o files

• Links the object files together and with Qt

modules to produce the project target

25

Project output

26

Generated files - uic

• uic creates C++ code based on form resource

• Project source loads the UI

27

Generated files - moc

• Moc creates C++ code, which provides

meta-information about classes

• Somewhat similar to java instanceof operator

and reflection API

28

Qt modules
Overview of what’s in there

29

Qt modules

• Qt libraries are split into modules

• Specifying a module in .pro file results in it

to be included into the project

• Also loaded at runtime, so consumes resources

• Future plans?

• Mobile devices need smaller modules to save

resources

30

Qt modules

• Qt modules are configured into project files

with QT keyword

• Core and gui included by default

• QtCreator adds module definitions during

project creation

31

Qt modules

• Module documentation has some general

info about the module

32

• However, in general don’t include the

whole module as it increases compile time

(unless using precompiled headers)

Qt modules walkthrough

• Qt documentation integrated to QtCreator

• API reference -> Class and Function

Documentation -> All Qt Modules

33

Core module

• Frameworks discussed during this course

• Qt object model (QObject, QMetaObject)

• Strings (QString, QByteArray)

• Containers (QList, QMap, QHash, QLinkedList)

• Data models (QAbstractItemModel & related)

• Event loops (QCoreApplication, QEvent)

• Animations (QAbstractAnimation & related)

34

Core module

• Frameworks not discussed in this course

• Multithreading (QFuture & related)

• I/O devices (QIODevice, Qfile & related)

• State machines (QStateMachine & related)

35

GUI module

• ”Traditional” widgets

• Window is a widget without parent

36

GUI module

• Graphics view

• Graphics items

• Graphics widgets

• Proxy widgets

• Similar concepts, different

painting semantics

• More suitable for mobile

devices

37

GUI module

• Some GUI frameworks that might be

interesting, but not discussed in this course

• Gesture recognition

• Drag & drop

38

Network module

• Sockets, including secure ones

• QTcpSocket, QSslSocket

• Simple HTTP and FTP API’s

• QNetworkAccessManager

39

Multimedia modules

• OpenGL for 3D rendering

• OpenVG for 2D rendering

• Svg for processing vector graphics files

• Phonon multimedia framework

• Not in mobile devices

40

Scripting module

• Allows Qt objects to used via QtScript code

• Similar syntax as JavaScript, which is used with

web browsers

• However, environment is not browser (i.e. no

DOM tree)

41

Other modules

• XML

• SAX and DOM parsers

• XmlPatterns

• XPath, XQuery, XSLT, schemas

• WebKit browser engine

• SQL for accessing databases

42

Mobile development

• Mobility API’s are not part of standard QT

• http://doc.qt.nokia.com/qtmobility-

1.0/index.html

• Devices integration not yet in good shape

43

http://doc.qt.nokia.com/qtmobility-1.0/index.html
http://doc.qt.nokia.com/qtmobility-1.0/index.html
http://doc.qt.nokia.com/qtmobility-1.0/index.html

Future stuff

• Declarative UI programming

• Part of Qt 4.7 (Qt Quick)

• QML language

44

QtCreator overview

45

QtCreator overview

• This is an interactive part…

• Build and run configurations

• Session management

• Edit, search, navigate, refactor

• Running & debugging

46

Qt projects
Beyond the basics

47

Shared libraries

• A shared library contains code that is

loaded once and shared by all executables

that use it

• Saves resources, which is especially

important in mobile devices

48

Shared libraries

49

Shared libraries

50

Shared libraries

51

Shared libraries

• <name>_global.h header file is generated

by QtCreator

• Contains export declarations that are needed in

certain platforms (like Windows)

• Any class that is used from outside the library

needs to have the export tag

• The export tag flag is defined in .pro file

• When library is built, it exports the classes

• When someone uses the library, it imports them

52

Shared libraries

53

Shared libraries

• Exported classes define the public API of

the library and thus the headers are

needed by other libraries / executables

• In addition to headers, the library itself

needs to be exported

• Other libraries / executables need to be linked

against it

• The library needs to be present when an

executable that uses it is run

54

Public headers

• Project file variables

• Project files support user-defined variables

• For example FOO = 5

• Variables can be referenced with $$<name>

• For example $$FOO would be replaced with 5

• Public headers can be separated from

private headers with help of a variable

55

Exporting from project

• Project contents are exported with help of

makefiles

• Run make install in project directory

• Files and paths need to be specified first

56

Exporting from project

• INSTALLS directive is used to specify what

and where to install

• var.path specifies where to install

• Path is relative to project directory

• var.files specify what to install

• target.files is pre-defined to contain project binaries

57

Using exported libraries

• To use the library, a project needs to find

the exported data

• INCLUDEPATH for headers

• LIBS for libraries

• -L<path>

• -l<library-name>

58

Managing larger projects

• Larger projects usually consists of multiple

shared libraries and executables that share

a common configuration

• Building each library separately would be

tedious

• Solutions

• Project include files (.pri)

• Projects with subdirs TEMPLATE

59

Project include files

• Definitions common to multiple projects

should be put into .pri file

• For example, all projects binaries should be

installed into bin and headers into inc

60

Project include files

• Care must be taken with paths when using

project include files

• By default a path is relative to the project .pro

file, not the included .pri file

• Using $$PWD within include file makes path

relative to it

61

Root project file

• A project file with subdirs TEMPLATE

causes all subdirectores to be built with

single qmake && make command

• Use CONFIG += ordered if build order matters,

otherwise qmake may do parallel builds in

environments with multiple CPU cores

62

Build issues?

• Note that when building via root project

file, make install will not be run until all

sub-projects have been built

• Thus, INCLUDEPATH and LIBS cannot use the

install target directories

• INCLUDEPATH is not a problem, but library path

might change depending on build configuration

and platform

• Shared library may use DESTDIR to explicitly

specify where binaries are put

63

Build issues?

• Check QMake Manual from QtCreator

integrated help

• Lots of stuff that wasn’t covered here

64

Programming exercise
Project creation

65

Exercise

• Create four projects:

• musiclibrary (shared library)

• musiclibrarymodel (shared library)

• musiclibraryconsole (console application)

• musiclibrarygui (QMainWindow gui application)

• Add root project file, which builds all

• Install binaries to bin under project root

directory

66

Exercise

• Add some dependencies between libraries

and executables

• musiclibrarymodel need musiclibrary

• musiclibraryconsole needs musiclibrary

• musiclibrarygui needs both musiclibrary and

musiclibrarymodel

67

Exercise

68

69

