
Supplement to: Haplotype-aware graph indexes

Jouni Sirén, Erik Garrison, Adam M. Novak, Benedict Paten and Richard Durbin

July 16, 2019

1 GBWT encodings

1.1 Dynamic GBWT

The dynamic GBWT is a representation of the GBWT optimised for index construction, where
speed is more important than size. We have an array of fixed-size records for characters $ and
v ∈ [a, b], including character values v 6∈ V . The record for the endmarker is at array position 0,
while the record for node v is at array position v − (a− 1).

For each node v ∈ V , the corresponding record contains four pointers to arrays: header, body,
incoming edges, and text identifiers. For each incoming edge (u, v) ∈ E, the incoming edges array
stores a pair (u,BWTu.rank(|BWTu|, v)), recording the number of paths crossing from u to v.

Let SAv and DAv be the parts of SA and DA corresponding to BWTv. The text identifiers array
for node v stores, in sorted order, pairs (i,DAv[i]) for which SAv[i] points to either the last node on
a path or a path position divisible by d > 0. These pairs are used for locate() queries, like stored SA
pointers in an ordinary FM-index.

1.2 Compressed GBWT

The compressed GBWT balances query performance with index size. We use it when the set of
haplotypes is fixed and for storing the index on disk. Each record is a byte array. We encode
integers as sequences of bytes, where the lower 7 bits contain data and the high bit tells whether the
encoding continues. The header starts with the local alphabet size |Σv|. We encode the outgoing
edges (wi,BWT.rank(v, wi)) differentially, replacing wi with wi−wi−1. If the local alphabet is large,
each run (k, `) in the body is encoded as an integer pair. Otherwise we encode k and as much of `
as possible in the first byte, and continue with the remaining run length in subsequent bytes.

We concatenate all records and mark their starting positions in a sparse bitvector [5] BV .
The records can be accessed with select queries on the bitvector. If the record for node v is at
array position i in the dynamic GBWT (see Supplement 1.1), its encoding starts at position
BV .select(i + 1, 1) in the concatenated byte array. If array position i does not correspond to any
node, the record uses one byte to indicate that the local alphabet size is 0.

Each compressed record must be decompressed sequentially. As the stored text identifiers tend
to cluster in certain nodes, storing them in records would make these records large and slow to
decompress. Instead, we use a global structure for the text identifiers. The structure consists of
three bitvectors and an array of identifiers:

• Uncompressed bitvector Bs marks the records with stored identifiers. If the ith record contains
identifiers, we set Bs[i] = 1. This allows us to skip checking the identifiers in most records
when iterating LF().

1

• Sparse bitvector Br is defined over the concatenated offset ranges of the records with stored
identifiers. If Bs[i] = 1, the range for the record starts at Br.select(Bs.rank(i, 1) + 1, 1).

• Sparse bitvector Bo covers the same range as Br. If Bo[i + j] = 1 and the range for the record
starts at Bo[i], we have an identifier for offset j at array position Bo.rank(i + j, 1).

The endmarker record storing BWT$ can be very large, if there are many texts in the collection
or if the local alphabet Σ$ is large. Because accessing large records is expensive in the compressed
GBWT, we decompress the endmarker record for faster access. As the endmarker is mostly used for
extracting entire texts, we decompress BWT$ into an array LF$ such that LF$[i] = LF(($, i),BWT$[i]).
This array takes 8 bytes per text, as long as the number of nodes and the size of the largest BWTv

are both less than 232.

2 GBWT construction

2.1 Direct construction

The following algorithm [3] updates the BWT of text T to be the BWT of text cT , where c is a
character, forming the basis of many incremental BWT construction algorithms:

1. Find the offset i where BWT[i] = $ and replace the endmarker with character c.

2. Compute i′ = LF(i, c) and insert a new endmarker between offsets i′ − 1 and i′.

If we have a BWT for m texts, we can insert a new empty text by inserting an endmarker between
offsets m− 1 and m. By iterating the above algorithm, we can then insert the actual text. If we
have a dynamic FM-index [2], this can be quite efficient in practice.

The BCR algorithm [1] builds a BWT for m texts. It starts with the BWT for m empty texts
and then extends each text by one character in each step. Originally intended for indexing short
reads, the BCR algorithm is also used for PBWT construction.

Our GBWT construction algorithm is similar to RopeBWT2 [4]. We have a dynamic GBWT
and insert multiple texts into the index in a single batch using the BCR algorithm. In each step, we
extend each text in the batch by one character. In the following, v and w are the current and the
next character in the current text Tj and i is a record offset. If v is the last character of the text
(the endmarker is at Tj [0]), we set w = $. In each step, we:

1. Rebuild records: The texts are sorted by positions (v, i) such that the endmarker of that
text should be at BWTv[i]. (We do not write the temporary endmarkers to the records.) We
process all texts at the same node v to rebuild the record.

(a) If the record does not contain the edge (v, w), we add (w, 0) to the header.

(b) We add BWT runs and text identifiers until offset i to the new record. If we have inserted
k characters so far, we replace text identifier (i′, j′) with (i′ + k, j′).

(c) If w = $ or the text position is divisible by d, we insert text identifier (i, j).

(d) We insert w to the BWT and set i← BWTv.rank(i, w).

(e) If w 6= $, we increment the number of paths from v to w in the incoming edges of w.

2. Sort: We sort the texts by (w, v, i), which is the order we need in the next step. If w = $, the
text is now fully inserted, and we remove it from further processing.

2

3. Rebuild offsets: For each distinct node w, we rebuild the BWT.rank(v′, w) fields in the
outgoing edges of predecessor nodes v′ using the path counts in the incoming edges of w. Then
we set i← i + BWT.rank(v, w) to have the correct offset in the next step.

2.2 GBWT merging

The GBWT construction algorithm is sequential. Parallelizing it is difficult, because the algorithm
interleaves queries with index updates. For faster construction, we can build GBWT indexes for
multiple batches in parallel and then merge the partial indexes.

Let GBWT1 and GBWT2 be two GBWT indexes we want to merge. The basic idea [6] is the
following. We extract texts from GBWT2 and search for them in GBWT1 as in direct construction.
Instead of updating GBWT1, we only store the positions (v, i) where we would have updated GBWT1.
The sorted positions form the rank array of GBWT2 relative to GBWT1. The rank array tells us
how we can build the merged index by interleaving GBWT1 and GBWT2.

Our GBWT merging algorithm is based on BWT-merge [7]. In the search phase, we extract
texts from the dynamic GBWT2 and search for them in dynamic GBWT1 using multiple search
threads. Because we expect that the texts are long and that most of their suffixes are unique, each
thread extracts one text at a time. In contrast, the original BWT-merge was intended for merging
the BWTs of short read collections. It traversed the trie of reverse texts and reported each distinct
suffix only once.

Each search thread has a position buffer and a thread buffer. The reported positions are stored
in the position buffer. When the buffer gets full, we sort the positions, encode them differentially,
and merge the compressed buffer with the thread buffer. (The original BWT-merge had run-length
encoded buffers, because the search threads reported multiple occurrences of the same suffix.) If the
thread buffer also gets full, we try to insert it into the global merge buffers, starting from buffer 0.
Each merge buffer i is either empty or contains 2i merged thread buffers. If the merge buffer i we
are currently trying is empty, we insert the thread buffer into it and return to searching. Otherwise
we take the existing merge buffer, merge it with the thread buffer, and continue to buffer i + 1. If
there are no more merge buffers remaining, we write the thread buffer to a new file.

In the merge phase, we use the rank array for interleaving the GBWTs. There is a separate
reader thread for reading and decompressing each file. The merge thread takes the streams generated
by the reader threads and merges them into a single stream using a tournament tree. (There was no
separate merge thread in the original BWT-merge.) The main thread takes that stream, interleaves
the BWTs, and updates the stored text identifiers.

Because searching in a dynamic GBWT is fast, the multithreaded search phase can be much
faster than the effectively sequential merge phase. We use multiple merge jobs to avoid this sequential
bottleneck, which did not exist in the original BWT-merge. We partition the alphabet between
the merge jobs, so that each job gets a range [a, b] ⊆ Σ. When a search thread writes its thread
buffer to disk, it creates a separate file for each partition. In the merge phase, each merge job has a
separate rank array, which it uses for interleaving the range of records [a, b].

When the node identifiers in GBWT1 and GBWT2 do not overlap (e.g. we have indexes for
different chromosomes), merging is much faster. We can also merge more than two indexes in this
case. The records for all nodes v ∈ V can be reused in the merged index. In the endmarker record
$, we merge the local alphabets and concatenate the record bodies. We also have to update the
stored text identifiers in all records, assigning new identifiers according to the order we used in the
endmarker.

Texts can be removed from the GBWT by reversing the merging algorithm. We extract the
texts we want to remove and store the positions we encounter. Once we have the rank array, we

3

find(X), |X| = 2 find(X), |X| = 50 locate() extract()

Dataset Index Unidir Bidir Unidir Bidir Queries Length Direct Fast Length Time

1000GP-all-S Compressed 460 ns 530 ns 220 ns 260 ns 20,000 57.1 M 96 μs 11 μs 433 M 160 ns
1000GP-all-S Dynamic 150 ns 260 ns 74 ns 95 ns 20,000 57.1 M 19 μs 9.4 μs 433 M 790 ns

1000GP-all-L Compressed 470 ns 540 ns 220 ns 260 ns 20,000 57.1 M 110 μs 11 μs 91.8 G 170 ns
1000GP-all-L Dynamic 150 ns 260 ns 77 ns 94 ns 20,000 57.1 M 19 μs 9.6 μs 91.8 G 89 ns

TOPMed-17-L Compressed 400 ns 500 ns 260 ns 330 ns 200 13.0 M 1600 μs 220 μs 216 G 200 ns
TOPMed-17-L Dynamic 140 ns 240 ns 82 ns 110 ns 200 13.0 M 360 μs 210 μs 216 G 100 ns

Table 1: Query benchmarks. find(): We give the average query time in nanoseconds/character for
each dataset and index type for pattern lengths |X| = 2 and |X| = 50 in both unidirectional and
bidirectional search. locate(): We give the number of query ranges, total length of the query ranges,
and average time in microseconds/position with direct and fast algorithms. extract(): We give the
total length of the extracted paths and the average time in nanoseconds/character. M and G suffixes
denote millions and billions, respectively.

remove the marked positions from the BWT. We also have to update the text identifiers to remove
the gaps we may have created. Because we usually want to remove only a small number of texts
(e.g. those corresponding to a particular sample), we can store the rank array as an uncompressed
array in memory.

2.3 Merging the TOPMed superbatches

We merged the superbatch indexes using BWT-merge with 32 search threads, 64 MiB position
buffers, 256 MiB thread buffers, 6 merge buffers, and 8 merge jobs. The rank arrays were written to
disk in 1.5 GiB files, and the peak disk usage was 575 GiB. The time for merging a new superbatch
into the index varied between 2.0 hours and 2.4 hours, except for the last superbatch which took
1.4 hours. Roughly 75% of the time was spent in the search phase and 25% in the merge phase.
During the merge phase, merge jobs read the rank arrays at an average rate of 250 MiB/s.

3 GBWT benchmarks

We benchmarked the basic queries on both whole-genome 1000GP indexes and on the chromosome 17
TOPMed index. For find(), we selected several pattern lengths |X| from 2 to 50 and extracted
100, 000 patterns of each length, starting from random positions in the index. We then measured
the average time per character in unidirectional and bidirectional search. This can be understood as
measuring O(tr) in the expected case, where tr is the time required to compute rank on the BWT.
See Table 1 for the results.

As expected, the average time per character was lower with long patterns due to memory locality.
Bidirectional search was slightly slower than unidirectional search. The overall smaller TOPMed
chromosome 17 index was faster with short patterns than the 1000GP indexes, because random
access times are lower in smaller structures. The situation was reversed with long patterns, as we
benefit less from memory locality when the individual records are larger. For a comparison, the
typical find() speed in uncompressed FM-indexes for DNA sequences is 200 to 400 ns/character [8],
which is comparable to the compressed GBWT. The dynamic GBWT is several times faster.

The locate() performance suffers from the long distance between stored identifiers: d = 1, 024 in

4

the 1000GP indexes and d = 16, 384 in the TOPMed index. We extracted a number of patterns of
length 20 from the index and used the ranges returned by find() queries for locate() benchmarks. We
measured the average time per occurrence. With the direct algorithm, this corresponds to measuring
O(d · tr). See Table 1 for the results.

With the direct locate() algorithm, the dynamic index was several times faster than the com-
pressed index. The fast algorithm improved the performance of the compressed index by an order
of magnitude, making the difference between the index types minimal. Queries were 16 to 22 times
slower in the TOPMed index than in the 1000GP indexes due to the longer distance between stored
identifiers. For a comparison, FM-indexes for non-repetitive text typically use d = 16 or d = 32 and
take a few microseconds to locate each position [8].

We also extracted 10,000 paths from each index and measured the average time per character.
This corresponds to measuring O(tr). See Table 1 for the results. The extract() times are comparable
to long find() queries, except for the dynamic index for short 1000GP paths. While the compressed
index stores the decompressed endmarker record and uses it for extract() queries, we do not do
this in the dynamic index, as we expect the index to change frequently. When the total number of
paths is large and the extracted paths are short, the majority of the time is spent decompressing
the endmarker. (When we extract paths from the dynamic index in the BWT-merge algorithm, we
decompress the endmarker only once.)

4 Input and output sizes

Input Output

Dataset Reference VCF Total Graph GBWT Total

1000GP-all-S 838 MiB 16.2 GiB 17.0 GiB 4.14 GiB 18.6 GiB 22.8 GiB
1000GP-all-L 838 MiB 16.2 GiB 17.0 GiB 4.14 GiB 16.6 GiB 20.8 GiB

1000GP-17-S 22 MiB 414 MiB 437 MiB 115 MiB 500 MiB 615 MiB
1000GP-17-L 22 MiB 414 MiB 437 MiB 115 MiB 444 MiB 559 MiB

TOPMed-17-L 25 MiB 9.16 GiB 9.18 GiB 329 MiB 2.16 GiB 2.48 GiB

Table 2: Input and output sizes for the datasets. The input consists of gzip-compressed reference
and VCF files, while the output consists of VG graph and GBWT index files.

References

[1] Markus J. Bauer, Anthony J. Cox, and Giovanna Rosone. Lightweight algorithms for constructing
and inverting the BWT of string collections. Theoretical Computer Science, 483:134–148, 2013.

[2] Ho-Leung Chan et al. Compressed indexes for dynamic text collections. ACM Transactions on
Algorithms, 3(2):21, 2007.

[3] Wing-Kai Hon et al. A space and time efficient algorithm for constructing compressed suffix
arrays. Algorithmica, 48(1):23–36, 2007.

[4] Heng Li. Fast construction of FM-index for long sequence reads. Bioinformatics, 30(22):3274–
3275, 2014.

5

[5] Daisuke Okanohara and Kunihiko Sadakane. Practical entropy-compressed rank/select dictionary.
In Proc. ALENEX 2007, pages 60–70. SIAM, 2007.

[6] Jouni Sirén. Compressed suffix arrays for massive data. In Proc. SPIRE 2009, volume 5721 of
LNCS, pages 63–74. Springer, 2009.

[7] Jouni Sirén. Burrows-Wheeler transform for terabases. In Proc. DCC 2016, pages 211–220.
IEEE, 2016.

[8] Jouni Sirén. Indexing variation graphs. In Proc. ALENEX 2017, pages 13–27. SIAM, 2017.

6

	GBWT encodings
	Dynamic GBWT
	Compressed GBWT

	GBWT construction
	Direct construction
	GBWT merging
	Merging the TOPMed superbatches

	GBWT benchmarks
	Input and output sizes

