
Sampled Longest Common Prefix Array

Jouni Sirén?

Department of Computer Science, University of Helsinki, Finland
jltsiren@cs.helsinki.fi

Abstract. When augmented with the longest common prefix (LCP)
array and some other structures, the suffix array can solve many string
processing problems in optimal time and space. A compressed represen-
tation of the LCP array is also one of the main building blocks in many
compressed suffix tree proposals. In this paper, we describe a new com-
pressed LCP representation: the sampled LCP array. We show that when
used with a compressed suffix array (CSA), the sampled LCP array often
offers better time/space trade-offs than the existing alternatives. We also
show how to construct the compressed representations of the LCP array
directly from a CSA.

1 Introduction

The suffix tree is one of the most important data structures in string processing
and bioinformatics. While it solves many problems efficiently, its usefulness is
limited by its size: typically 10–20 times the size of the text [17]. Much work has
been put on reducing the size, resulting in data structures such as the enhanced
suffix array [1] and several variants of the compressed suffix tree [22, 21, 11, 18].

Most of the proposed solutions are based on three structures: 1) the suffix ar-
ray, listing the suffixes of the text in lexicographic order; 2) the longest common
prefix (LCP) array, listing the lengths of the longest common prefixes of lexi-
cographically adjacent suffixes; and 3) a representation of suffix tree topology.
While there exists an extensive literature on compressed suffix arrays (CSA)1

[19], less has been done on compressing the other structures.
Existing proposals to compress the LCP information are based on the per-

muted LCP (PLCP) array that arranges the entries in text order. While the
PLCP array can be compressed, one requires expensive CSA operations to ac-
cess LCP values through it. In this paper, we describe the sampled LCP array as
an alternative to the PLCP-based approaches. Similar to the suffix array samples
used in CSAs, the sampled LCP array often offers better time/space trade-offs
than the PLCP-based alternatives.

We also modify a recent PLCP construction algorithm [14] to work directly
with a compressed suffix array. Using it, we can construct any PLCP represen-
tation with negligible working space in addition to the CSA and the PLCP. A
? Funded by the Academy of Finland under grant 119815.
1 In this paper, we use the term compressed suffix array to refer to any compressed

self-index based on the Burrows-Wheeler transform.



variant of the algorithm can also be used to construct the sampled LCP array,
but requires more working space. While our algorithm is much slower than the
alternatives, it is the first LCP construction algorithm that does not require ac-
cess to the text and the suffix array. This is especially important for large texts,
as the suffix array may not be available or the text might not fit into memory.

We begin with basic definitions and background information in Sect. 2. Sec-
tion 3 is a summary of previous compressed LCP representations. In Sect. 4,
we show how to build the PLCP array directly from a CSA. We describe our
sampled LCP array in Sect. 5. Section 6 contains experimental evaluation of our
proposals. We finish with conclusions and discussion on future work in Sect. 7.

2 Background

A string S = S[1, n] is a sequence of characters from alphabet Σ = {1, 2, . . . , σ}.
A substring of S is written as S[i, j]. A substring of type S[1, j] is called a prefix,
while a substring of type S[i, n] is called a suffix. A text string T = T [1, n] is a
string terminated by T [n] = $ 6∈ Σ with lexicographic value 0. The lexicographic
order ”<” among strings is defined in the usual way.

The suffix array (SA) of text T [1, n] is an array of pointers SA[1, n] to the
suffixes of T in lexicographic order. As an abstract data type, a suffix array is
any data structure with similar functionality as the concrete suffix array. This
can be defined by an efficient support for the following operations: (a) count the
number of occurrences of a pattern in the text; (b) locate these occurrences (or
more generally, retrieve a suffix array value); and (c) display any substring of T .

Compressed suffix arrays (CSA) [12, 8] support these operations. Their com-
pression is based on the Burrows-Wheeler transform (BWT) [3], a permutation
of the text related to the SA. The BWT of text T is a sequence L[1, n] such that
L[i] = T [SA[i]− 1], if SA[i] > 1, and L[i] = T [n] = $ otherwise.

The Burrows-Wheeler transform is reversible. The reverse transform is based
on a permutation called LF -mapping [3, 8]. Let C[1, σ] be an array such that
C[c] is the number of characters in {$, 1, 2, . . . , c− 1} occurring in the text. For
convenience, we also define C[0] = 0 and C[σ + 1] = n. By using this array and
the sequence L, we define LF -mapping as LF (i) = C[L[i]]+rankL[i](L, i), where
rankc(L, i) is the number of occurrences of character c in prefix L[1, i].

The inverse of LF -mapping is Ψ(i) = selectc(L, i − C[c]), where c is the
highest value with C[c] < i, and selectc(L, j) is the position of the jth occurrence
of character c in L [12]. By its definition, function Ψ is strictly increasing in the
range Ψc = [C[c] + 1, C[c + 1]] for every c ∈ Σ. Additionally, T [SA[i]] = c and
L[Ψ(i)] = c for every i ∈ Ψc.

These functions form the backbone of CSAs. As SA[LF (i)] = SA[i] − 1 [8]
and hence SA[Ψ(i)] = SA[i] + 1, we can use these functions to move the suffix
array position backward and forward in the sequence. Both of the functions can
be efficiently implemented by adding some extra information to a compressed
representation of the BWT. Standard techniques [19] to support suffix array



operations include backward searching [8] for count, and adding a sample of
suffix array values for locate and display.

Let lcp(A,B) be the length of the longest common prefix of sequences A and
B. The longest common prefix (LCP) array of text T [1, n] is the array LCP[1, n]
such that LCP[1] = 0 and LCP[i] = lcp(T [SA[i− 1], n], T [SA[i], n]) for i > 1. The
array requires n log n bits of space, and can be constructed in O(n) time [15, 14].

3 Previous Compressed LCP Representations

We can exploit the redundancy in LCP values by reordering them in text order.
This results in the permuted LCP (PLCP) array, where PLCP[SA[i]] = LCP[i].
The following lemma describes a key property of the PLCP array.

Lemma 1 ([15, 14]). For every i ∈ {2, . . . , n}, PLCP[i] ≥ PLCP[i− 1]− 1.

As the values PLCP[i] + 2i form a strictly increasing sequence, we can store
the array in a bit vector of length 2n [22]. Various schemes exist to represent
this bit vector in a succinct or compressed form [22, 11, 18].

Space-efficiency can also be achieved by sampling every qth PLCP value, and
deriving the missing values when needed [16]. Assume we have sampled PLCP[aq]
and PLCP[(a + 1)q], and we want to determine PLCP[aq + b] for some b < q.
Lemma 1 states that PLCP[aq] − b ≤ PLCP[aq + b] ≤ PLCP[(a + 1)q] + q − b,
so at most q + PLCP[(a + 1)q] − PLCP[aq] character comparisons are required
to determine the missing value. The average number of comparisons over all
entries is O(q) [14]. By carefully selecting the sampled positions, we can store
the samples in o(n) bits, while requiring only O(logδ n) comparisons in the worst
case for any 0 < δ ≤ 1 [10].

Unfortunately these compressed representations are not very suitable for use
with CSAs. The reason is that the LCP values are accessed through suffix array
values, and locate is an expensive operation in CSAs. In addition to that, sampled
PLCP arrays require access to the text, using the similarly expensive display.

Assume that a CSA has SA sample rate d, and that it computes Ψ(·) in time
tΨ . To retrieve SA[i], we compute i, Ψ(i), Ψ2(i), . . . , until we find a sampled suffix
array value. If the sampled value was SA[Ψk(i)] = j, then SA[i] = j−k. We find a
sample in at most d steps, so the time complexity for locate is O(d ·tΨ ). Similarly,
to retrieve a substring T [i, i+ l], we use the samples to get SA−1[d · b idc]. Then
we iterate the function Ψ until we reach text position i + l. This takes at most
d + l iterations, making the time complexity for display O((d + l) · tΨ ). From
these bounds, we get the PLCP access times shown in Table 1.2

Depending on the type of index used, tψ varies from O(1) to O(log n) in the
worst case [19], and is close to 1 microsecond for the fastest indexes in practice
[7, 18]. This is significant enough that it makes sense to keep tΨ in Table 1.

The only (P)LCP representation so far that is especially designed for use
with CSAs is Fischer’s Wee LCP [10] that is basically the select structure from

2 Some CSAs use LF -mapping instead of Ψ , but similar results apply to them as well.



Table 1. Time/space trade-offs for (P)LCP representations. R is the number of equal
letter runs in BWT, q is the PLCP sample rate, and 0 < δ ≤ 1 is a parameter. The
numbers for CSA assume Ψ access time tΨ and SA sample rate d.

Access times
Representation Space (bits) Using SA Using CSA

LCP n logn O(1) O(1)
PLCP [22] 2n+ o(n) O(1) O(d · tΨ )
PLCP [11] 2R log n

R
+O(R) + o(n) O(1) O(d · tΨ )

PLCP [18] 2R log n
R

+O(R log log n
R

) O(log log n) O(d · tΨ + log logn)

Sampled PLCP [10] o(n) O(logδ n) O((d+ logδ n) · tΨ )
Sampled PLCP [16] n

q
logn O(q) O((d+ q) · tΨ )

Sadakane’s bit vector representation [22]. When the bit vector itself would be
required to answer a query, some characters of two lexicographically adjacent
suffixes are compared to determine the LCP value. This increases the time com-
plexity, while reducing the size significantly. In this paper, we take the other
direction by reducing the access time, while achieving similar compression as in
the run-length encoded PLCP variants [11, 18].

4 Building the PLCP Array from a CSA

In this section, we adapt the irreducible LCP algorithm [14] to compute the
PLCP array directly from a CSA.

Definition 1. For i > 1, the left match of suffix T [SA[i], n] is T [SA[i− 1], n].

Definition 2. Let T [j, n] be the left match of T [i, n]. PLCP[i] is reducible, if
i, j > 1 and T [i−1] = T [j−1]. If PLCP[i] is not reducible, then it is irreducible.

The following lemma shows why reducible LCP values are called reducible.

Lemma 2 ([14]). If PLCP[i] is reducible, then PLCP[i] = PLCP[i− 1]− 1.

The irreducible LCP algorithm works as follows: 1) find the irreducible PLCP
values; 2) compute them naively; and 3) fill in the reducible values by using
Lemma 2. As the sum of the irreducible values is at most 2n log n, the algorithm
works in O(n log n) time [14].

The original algorithm uses the text and its suffix array that are expensive
to access in a CSA. In the following lemma, we show how to find the irreducible
values by using the function Ψ instead.

Lemma 3. Let T [j, n] be the left match of T [i, n]. The value PLCP[i + 1] is
reducible if and only if T [i] = T [j] and Ψ(SA−1[j]) = Ψ(SA−1[i])− 1.



— Compute the PLCP array
1 PLCP[1]← 0
2 (i, x)← (1, SA−1[1])
3 while i < n
4 Ψc ← rangeContaining(x)
5 if x− 1 6∈ Ψc or Ψ(x− 1) 6= Ψ(x)− 1
6 PLCP[i+ 1]← lcp(Ψ(x))
7 else PLCP[i+ 1]← PLCP[i]− 1
8 (i, x)← (i+ 1, Ψ(x))

— Compute an LCP value
9 def lcp(b)
10 (a, k)← (b− 1, 0)
11 Ψc ← rangeContaining(b)
12 while a ∈ Ψc
13 (a, b, k)← (Ψ(a), Ψ(b), k + 1)
14 Ψc ← rangeContaining(b)
15 return k

Fig. 1. The irreducible LCP algorithm for using a CSA to compute the PLCP array.
Function rangeContaining(x) returns Ψc = [C[c] + 1, C[c+ 1]] where x ∈ Ψc.

Proof. Let x = SA−1[i]. Then x− 1 = SA−1[j].
”If.” Assume that T [i] = T [j] and Ψ(x− 1) = Ψ(x)− 1. Then the left match

of T [SA[Ψ(x)], n] = T [i + 1, n] is T [SA[Ψ(x − 1)], n] = T [j + 1, n]. As i + 1 > 1
and j + 1 > 1, it follows that PLCP[i+ 1] is reducible.

”Only if.” Assume that PLCP[i + 1] is reducible, and let T [k, n] be the left
match of T [i+ 1, n]. Then k > 1 and T [k − 1] = T [i]. As T [k − 1, n] and T [i, n]
begin with the same character, and T [k, n] is the left match of T [i+ 1, n], there
cannot be any suffix S such that T [k − 1, n] < S < T [i, n]. But now j = k − 1,
and hence T [i] = T [j]. Additionally,

Ψ(SA−1[j]) = Ψ(SA−1[k − 1]) = SA−1[k] = SA−1[i+ 1]− 1 = Ψ(SA−1[i])− 1.

The lemma follows. �

The algorithm is given in Fig. 1. We maintain invariant x = SA−1[i], and
scan through the CSA in text order. If the conditions of Lemma 3 do not hold
for T [i, n], then PLCP[i+1] is irreducible, and we have to compute it. Otherwise
we reduce PLCP[i + 1] to PLCP[i]. To compute an irreducible value, we iterate
(Ψk(b − 1), Ψk(b)) for k = 0, 1, 2, . . . , until T [Ψk(b − 1)] 6= T [Ψk(b)]. When this
happens, we return k as the requested LCP value. As we compute Ψ(·) for a
total of O(n log n) times, we get the following theorem.

Theorem 1. Given a compressed suffix array for a text of length n, the irre-
ducible LCP algorithm computes the PLCP array in O(n log n · tΨ ) time, where
tΨ is the time required for accessing Ψ . The algorithm requires O(log n) bits of
working space in addition to the CSA and the PLCP array.

We can use the algorithm to build any PLCP representation from Table 1 di-
rectly. The time bound is asymptotically tight, as shown in the following lemma.

Lemma 4 (Direct extension of Lemma 5 in [14]). For an order-k de Bruijn
sequence on an alphabet of size σ, the sum of all irreducible PLCP values is
n(1− 1/σ) logσ n−O(n).



The sum of irreducible PLCP values of a random sequence should also be
close to n(1− 1/σ) logσ n. The probability that the characters preceding a suffix
and its left match differ, making the PLCP value irreducible, is (1 − 1/σ). On
the other hand, the average irreducible value should be close to logσ n [6]. For a
text generated by an order-k Markov source with H bits of entropy, the estimate
becomes n(1− 1/σ′)(log n)/H. Here σ′ is the effective alphabet size, defined by
the probability 1/σ′ that two characters sharing an order-k context are identical.

The following proposition shows that large-scale repetitiveness reduces the
sum of the irreducible values, and hence improves the algorithm performance.

Proposition 1. For a concatenation of r copies of text T [1, n], the sum of irre-
ducible PLCP values is s+ (r− 1)n, where s is the sum of the irreducible PLCP
values of T .

Proof. Let T = T1T2 · · ·Tr be the concatenation, Ta,i the suffix starting at Ta[i],
and PLCPa[i] the corresponding PLCP value. Assume that Tr[n] is lexicograph-
ically greater than the other end markers, but otherwise identical to them.

For every i, the suffix array of T contains a range with values T1,i, T2,i, . . . , Tr,i
[18]. Hence for any a > 1 and any i, the left match of Ta,i is Ta−1,i, making the
PLCP values reducible for almost all of the suffixes of T2 to Tr. The exception is
that T2,1 is irreducible, as its left match is T1,1, and hence PLCP2[1] = (r− 1)n.

Let T [j, n] be the left match of T [i, n] in the suffix array of T . Then the left
match of T1,i is Tr,j , and PLCP1[i] = PLCP[i]. Hence the sum of the irreducible
values corresponding to the suffixes of T1 is s. �

5 Sampled LCP Array

By Lemmas 1 and 2, the local maxima in the PLCP array are among the irre-
ducible values, and the local minima are immediately before them.

Definition 3. The value PLCP[i] is maximal, if it is irreducible, and minimal,
if either i = n or PLCP[i+ 1] is maximal.

Lemma 5. If PLCP[i] is non-minimal, then PLCP[i] = PLCP[i+ 1] + 1.

Proof. If PLCP[i] is non-minimal, then PLCP[i+1] is reducible. The result follows
from Lemma 2. �

In the following, R is the number of equal letter runs in BWT.

Lemma 6. The number of minimal PLCP values is R.

Proof. Lemma 3 essentially states that PLCP[i + 1] is reducible, if and only if
L[Ψ(SA−1[i])] = T [i] = T [j] = L[Ψ(SA−1[j])] = L[Ψ(SA−1[i])− 1], where T [j, n]
is the left match of T [i, n]. As this is true for n−R positions i, there are exactly
R irreducible values. As every maximal PLCP value can be reduced to the next
minimal value, and vice versa, the lemma follows. �



Lemma 7. The sum of minimal PLCP values is S − (n − R), where S is the
sum of maximal values.

Proof. From Lemmas 5 and 6. �

If we store the minimal PLCP values in SA order, and mark their positions
in a bit vector, we can use them in a similar way as the SA samples. If we
need LCP[i], and LCP[Ψk(i)] is a sampled position for the smallest k ≥ 0, then
LCP[i] = LCP[Ψk(i)] + k. As k can be Θ(n) in the worst case, the time bound is
O(n · tΨ ).

To improve the performance, we sample one out of d′ = n/R1−ε consecutive
non-minimal values for some ε > 0. Then there are R minimal samples and
at most R1−ε extra samples. We mark the sampled positions in a bit vector of
Raman et al. [20], taking at most (1+o(1)) ·R log n

R +O(R)+o(n) bits of space.
Checking whether an LCP entry has been sampled takes O(1) time.

We use δ codes [5] to encode the actual samples. As the sum of the minimal
values is at most 2n log n, these samples take at most

R log
2n log n
R

+O
(
R log log

n

R

)
≤ R log

n

R
+O(R log log n)

bits of space. The extra samples require at most log n + O(log log n) bits each.
To provide fast access to the samples, we can use dense sampling [9] or directly
addressable codes [2]. This increases the size by a factor of 1 + o(1), making the
total for samples (1 + o(1)) ·R log n

R +O(R log log n) + o(R log n) bits of space.
We find a sampled position in at most n/R1−ε steps. By combining the size

bounds, we get the following theorem.

Theorem 2. Given a text of length n and a parameter 0 < ε < 1, the sampled
LCP array requires at most (2+o(1)) ·R log n

R +O(R log log n)+o(R log n)+o(n)
bits of space, where R is the number of equal letter runs in the BWT of the text.
When used with a compressed suffix array, retrieving an LCP value takes at most
O((n/R1−ε) · tΨ ) time, where tΨ is the time required for accessing Ψ .

By using the BSD representation [13] for the bit vector, we can remove the
o(n) term from the size bound with a slight loss of performance.

When the space is limited, we can afford to sample the LCP array denser
than the SA, as SA samples are larger than LCP samples. In addition to the
mark in the bit vector, an SA sample requires 2 log n

d bits of space, while an LCP
sample takes just log v +O(log log v) bits, where v is the sampled value.

The LCP array can be sampled by a two-pass version of the irreducible
LCP algorithm. On the first pass, we scan the CSA in suffix array order to
find the minimal samples. Position x is minimal, if x is the smallest value in
the corresponding Ψc, or if Ψ(x − 1) 6= Ψ(x) − 1. As we compress the samples
immediately, we only need O(log n) bits of working space. On the second pass,
we scan the CSA in text order, and store the extra samples in an array. Then
we sort the array to SA order, and merge it with the minimal samples. As the
number of extra samples is o(R), we need o(R log n) bits of working space.



Theorem 3. Given a compressed suffix array for a text of length n, the modified
irreducible LCP algorithm computes the sampled LCP array in O(n log n · tΨ )
time, where tΨ is the time required for accessing Ψ . The algorithm requires
o(R log n) bits of working space in addition to the CSA and the samples, where
R is the number of equal letter runs in the BWT of the text.

6 Implementation and Experiments

We have implemented the sampled LCP array, a run-length encoded PLCP array,
and their construction algorithms as a part of the RLCSA [23].3 For PLCP, we
used the same run-length encoded bit vector as in the RLCSA. For the sampled
LCP, we used a gap encoded bit vector to mark the sampled positions, and a
stripped-down version of the same vector for storing the samples.

To avoid redundant work, we compute minimal instead of maximal PLCP
values, and interleave their computation with the main loop. To save space, we
only use strictly minimal PLCP values with PLCP[i] < PLCP[i + 1] + 1 as the
minimal samples. When sampling the LCP array, we make both of the passes in
text order, and store all the samples in an array before compressing them.

For testing, we used a 2.66 GHz Intel Core 2 Duo E6750 system with 4 GB
of memory (3.2 GB visible to OS) running a Fedora-based Linux with kernel
2.6.27. The implementation was written in C++, and compiled on g++ version
4.1.2. We used four data sets: human DNA sequences (dna) and English language
texts (english) from the Pizza & Chili Corpus [7], the Finnish language Wikipedia
with version history (fiwiki) [23], and the genomes of 36 strains of Saccharomyces
paradoxus (yeast) [18].4 When the data set was much larger than 400 megabytes,
a 400 MB prefix was used instead. Further information on the data sets can be
found in Table 2.

Only on the dna data set, the sum of the minimal values was close to the
entropy-based estimate. On the highly repetitive fiwiki and yeast data sets, the
difference between the estimate and the measurement was very large, as pre-
dicted by Proposition 1. Even regular English language texts contained enough
large-scale repetitiveness that the sum of the minimal values could not be ad-
equately explained by the entropy of the texts. This suggests that, for many
real-world texts, the number of runs in BWT is a better compressibility measure
than the empirical entropy.

The sum of minimal PLCP values was a good estimate for PLCP construction
time. LCP sampling was somewhat slower because of the second pass. Both
algorithms performed reasonably well on the highly repetitive data sets, but
were much slower on the regular ones. The overall performance was roughly an
order of magnitude worse than for the algorithms using plain text and SA [14].

We measured the performance of the sampled LCP array and the run-length
encoded PLCP array on each of the data sets. We also measured the locate
3 The implementation is available at http://www.cs.helsinki.fi/group/suds/rlcsa/.
4 The yeast genomes were obtained from the Durbin Research Group at the Sanger

Institute (http://www.sanger.ac.uk/Teams/Team71/durbin/sgrp/).



Table 2. Properties of the data sets. H5 is the order-5 empirical entropy, σ′ the corre-
sponding effective alphabet size, # the number of (strictly) minimal values, and S the
sum of those values. S′ = n(1 − 1/σ′)(logn)/H5 − n/σ′ is an entropy-based estimate
for the sum of the minimal values. The construction times are in seconds.

Estimates Minimal values Strictly minimal
Name MB H5 σ′ S′/106 #/106 S/106 S/n #/106 S/106 S/n

english 400 1.86 2.09 3167 156.35 1736 4.14 99.26 1052 2.51
fiwiki 400 1.09 1.52 3490 1.79 273 0.65 1.17 117 0.28
dna 385 1.90 3.55 4252 243.49 3469 8.59 158.55 2215 5.48
yeast 409 1.87 3.34 4493 15.64 520 1.21 10.05 299 0.70

Sample rates PLCP Sampled LCP
Name SA LCP Time MB/s Time MB/s

english 8, 16, 32, 64 8, 16 1688 0.24 2104 0.19
fiwiki 64, 128, 256, 512 32, 64, 128 327 1.22 533 0.75
dna 8, 16, 32, 64 8, 16 3475 0.11 3947 0.10
yeast 32, 64, 128, 256 16, 32, 64 576 0.71 890 0.46

0 200 400 600 800

0
10

20
30

40
50

60

Size (MB)

T
im

e 
(µ

s)

english

PLCP
Sampled
Locate

0 200 400 600 800

0
10

20
30

40
50

60

Size (MB)

T
im

e 
(µ

s)

dna

PLCP
Sampled
Locate

0 20 40 60 80 100

0
50

10
0

20
0

Size (MB)

T
im

e 
(µ

s)

fiwiki

PLCP
Sampled
Locate

0 50 100 150 200 250

0
50

10
0

15
0

Size (MB)

T
im

e 
(µ

s)

yeast

PLCP
Sampled
Locate

Fig. 2. Time/space trade-offs for retrieving an LCP or SA value. The times are averages
over 106 random queries. Sampled LCP results are grouped by SA sample rate.



performance of the RLCSA to get a lower bound for the time and space of any
PLCP-based approach. The results can be seen in Fig. 2.

The sampled LCP array outperformed PLCP on english and dna, where most
of the queries were resolved through minimal samples. On fiwiki and yeast, the
situation was reversed. As many extra samples were required to get reasonable
performance, increasing the size significantly, the sampled LCP array had worse
time/space trade-offs than the PLCP array.

While we used RLCSA in the experiments, the results generalize to other
types of CSA as well. The reason for this is that, in both PLCP and sampled
LCP, the time required for retrieving an LCP value depends mostly on the
number of iterations of Ψ required to find a sampled position.

7 Discussion

We have described the sampled LCP array, and shown that it offers better
time/space trade-offs than the PLCP-based alternatives, when the number of
extra samples required for dense sampling is small. Based on the experiments,
it seems that one should use the sampled LCP array for regular texts, and a
PLCP-based representation for highly repetitive texts.

In a recent proposal [4], the entire LCP array was compressed by using di-
rectly addressable codes (DAC) [2]. The resulting structure is much faster but
usually also much larger than the other compressed LCP representations. See
the full paper [24] for a comparison between the sampled LCP array and the
DAC-based approach.

We have also shown that it is feasible to construct the (P)LCP array directly
from a CSA. While the earlier algorithms are much faster, it is now possible to
construct the (P)LCP array for larger texts than before, and the performance is
still comparable to that of direct CSA construction [23]. On a multi-core system,
it is also easy to get extra speed by parallelizing the construction.

It is possible to maintain the (P)LCP array when merging two CSAs. The
important observation is that an LCP value can only change, if the left match
changes in the merge. An open question is, how much faster the merging is, both
in the worst case and in practice, than rebuilding the (P)LCP array.

While the suffix array and the LCP array can be compressed to a space
relative to the number of of equal letter runs in BWT, no such representation is
known for suffix tree topology. This is the main remaining obstacle in the way
to compressed suffix trees optimized for highly repetitive texts.

References

1. M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with en-
hanced suffix arrays. Journal on Discrete Algorithms, 2(1):53–86, 2004.

2. N. R. Brisaboa, S. Ladra, and G. Navarro. Directly adressable variable-length
codes. In SPIRE 2009, volume 5721 of LNCS, pages 122–130. Springer, 2009.



3. M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994.

4. R. Cánovas and G. Navarro. Practical compressed suffix trees. Accepted to Sym-
posium on Experimental Algorithms, 2010.

5. P. Elias. Universal codeword sets and representations of the integers. IEEE Trans-
actions on Information Theory, 21(2):194–203, 1975.

6. J. Fayolle and M. D. Ward. Analysis of the average depth in a suffix tree under a
Markov model. In Proc. 2005 International Conference on Analysis of Algorithms,
volume AD of DMTCS Proceedings, pages 95–104. DMTCS, 2005.

7. P. Ferragina, R. González, G. Navarro, and R. Venturini. Compressed text indexes:
From theory to practice. Journal of Experimental Algorithms, 13:1.12, 2009.

8. P. Ferragina and G. Manzini. Indexing compressed text. Journal of the ACM,
52(4):552–581, 2005.

9. P. Ferragina and R. Venturini. A simple storage scheme for strings achieving
entropy bounds. In SODA 2007, pages 690–696. SIAM, 2007.

10. J. Fischer. Wee LCP. arXiv:0910.3123v1 [cs.DS], 2009.
11. J. Fischer, V. Mäkinen, and G. Navarro. Faster entropy-bounded compressed suffix

trees. Theoretical Computer Science, 410(51):5354–5364, 2009.
12. R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with ap-

plications to text indexing and string matching. SIAM Journal on Computing,
35(2):378–407, 2005.

13. A. Gupta, W.-K. Hon, R. Shah, and J. S. Vitter. Compressed data structures:
dictionaries and data-aware measures. Theoretical Computer Science, 387(3):313–
331, 2007.

14. J. Kärkkäinen, G. Manzini, and S. Puglisi. Permuted longest-common-prefix array.
In CPM 2009, volume 5577 of LNCS, pages 181–192. Springer, 2009.

15. T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-
common-prefix computation in suffix arrays and its applications. In CPM 2001,
volume 2089 of LNCS, pages 181–192. Springer, 2001.

16. D. Khmelev. Program lcp version 0.1.9.
http://www.math.toronto.edu/dkhmelev/PROGS/misc/lcp-eng.html, 2004.

17. S. Kurtz. Reducing the space requirement of suffix trees. Software: Practice and
Experience, 29(13):1149–1171, 1999.

18. V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki. Storage and retrieval of
individual genomes. In RECOMB 2009, volume 5541 of LNCS, pages 121–137.
Springer, 2009.

19. G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing
Surveys, 39(1):2, 2007.

20. R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applica-
tions to encoding k-ary trees and multisets. In SODA 2002, pages 233–242. SIAM,
2002.

21. L. Russo, G. Navarro, and A. Oliveira. Fully-compressed suffix trees. In LATIN
2008, LNCS, pages 362–373. Springer, 2008.

22. K. Sadakane. Compressed suffix trees with full functionality. Theory of Computing
Systems, 41(4):589–607, 2007.

23. J. Sirén. Compressed suffix arrays for massive data. In SPIRE 2009, volume 5721
of LNCS, pages 63–74. Springer, 2009.

24. J. Sirén. Sampled longest common prefix array. arXiv:1001.2101v2 [cs.DS], 2010.


