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Abstract. We present a fast space-efficient algorithm for constructing
compressed suffix arrays (CSA). The algorithm requires O(n log n) time
in the worst case, and only O(n) bits of extra space in addition to the
CSA. As the basic step, we describe an algorithm for merging two CSAs.
We show that the construction algorithm can be parallelized in a sym-
metric multiprocessor system, and discuss the possibility of a distributed
implementation. We also describe a parallel implementation of the algo-
rithm, capable of indexing several gigabytes per hour.

1 Introduction

Self-indexing [23] is a new approach for storing sequence data. The main idea
is to combine the data and its index in a compressed structure, which provides
random access to the data and supports various pattern matching queries. Some
of the most relevant self-indexes are the compressed suffix array (CSA) [12] and
the FM-index [8], both offering suffix array-like functionality.

With the explosive growth of sequential data in many applications such
as genome browsers, version control systems, and online document collections,
good search capabilities are becoming more and more important every day. This
trend is making the self-indexes, combining small size with full-text searching, a
promising approach for indexing large and massive data sets.

Obviously we need efficient practical algorithms for constructing these self-
indexes, if we want them to truly live up to their promises. Unfortunately all
the experiments reported so far have been performed with data sets at most a
few gigabytes in size [24, 7, 14, 5, 17, 16], telling that the construction algorithms
have trouble scaling up for massive data sets.

The typical way to construct a compressed self-index has been to use a regular
suffix array construction algorithm [24]. While these algorithms are fast, they
must store the data and the suffix array in main memory, making the memory
requirements many times the size of the data. This is a major problem, especially
with highly repetitive collections [26, 21], where the final index can be more than
a hundred of times smaller than the suffix array.

Other alternatives have been to use secondary memory suffix array construc-
tion algorithms [4, 5], dynamic indexes [3, 19, 20, 11, 25], or algorithms for con-
structing the compressed index directly [15, 22, 13]. While these algorithms are
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often memory efficient, they are also slow. Experiments have reported through-
puts in the order of 100 kilobytes/second, which is more than an order of mag-
nitude slower than the regular suffix array construction algorithms, and clearly
too slow for data sets of tens of gigabytes or more.

The most promising algorithms are the distributed suffix array construction
algorithm by Kulla et al. [17] and the space-efficient Burrows-Wheeler transform
construction algorithm by Kärkkäinen [16]. Still, we must store either the suffix
array in distributed memory or the entire data set in local memory, making both
of the algorithms unsatisfactory for highly compressible data sets.

In this paper, we present a fast and space-efficient algorithm for direct CSA
construction. The algorithm is related to the incremental suffix array construc-
tion algorithm by Gonnet et al. [10], as well as to the incremental CSA construc-
tion algorithm by Hon et al. [13]. Alternatively our algorithm can be thought of
as replacing a dynamic CSA with a static structure and batch updates.

We start by some basic definitions in Sect. 2. Section 3 describes an algorithm
for merging two compressed suffix arrays. Section 4 builds upon it, describing a
parallelizable incremental CSA construction algorithm. The details of our imple-
mentation of the algorithm are discussed in Sect. 5. In Sect. 6, we validate the
effectiveness of our algorithm experimentally. Finally, we discuss the possibility
of a distributed implementation in Sect. 7.

2 Background Information

A string S = S1,n = s1s2 · · · sn is a sequence of symbols (characters, letters).
Each symbol is an element of an alphabet Σ = {1, 2, . . . , σ}. A substring of S
is written as Si,j = si · · · sj . A substring of type S1,j is called a prefix, while
a substring of type Si,n is called a suffix. We often assume that the string is
an array, and refer to its symbols as S[i], and to its substrings as S[i, j]. A text
string T = T1,n is a sequence terminated by tn = $ 6∈ Σ smaller than any symbol
in Σ. The lexicographic order ”<” among strings is defined in the usual way.

We call a set C of texts T 1, T 2, . . . , T r a collection. The collection can be
represented as a string T = T 1T 2 · · ·T r. We denote the length of each text T i

as ni, and the total length of the collection as |C| = |T | = n. Lexicographic
order among such strings is defined in the usual way, except that each of the end
markers $ is considered a different symbol, so that every suffix of every string
will be unique in the collection. If T [i] = T [j] = $ and i < j, we define T [i] <
T [j]. We informally call a collection highly repetitive, if most of its texts are
highly similar to some other text in the collection. Examples of highly repetitive
collections include individual genomes and different versions of a document.

The suffix array SA[1, n] of a string S is an array of pointers to the suffixes
of S in lexicographic order. As an abstract data type, a suffix array is any data
structure providing similar functionality as the concrete suffix array. This can
be defined by the following operations: (a) count the number of occurrences of
a pattern in the string; (b) locate these occurrences (or more generally retrieve
a suffix array value); and (c) display any substring of S.



The compressed suffix arrays discussed in this paper support these opera-
tions. Their compression is based on the Burrows-Wheeler transform (BWT)
[2], a permutation created by sorting cyclical strings. The cyclical strings cor-
responding to string S are all strings of the form CSi = Si,nS1,i−1, including
CS1 = S. The BWT is a sequence L such that L[i] = CSj [n], where CSj is the
ith cyclical string in lexicographic order. If S is a text or a collection, sorting
cyclical strings is the same as sorting suffixes, as the first end marker encountered
will end the comparison between two cyclical strings. In that case the BWT can
be defined as L[i] = S[SA[i]− 1], where S[0] = S[n].

The Burrows-Wheeler transform is reversible. The reverse transform is based
on a function called LF -mapping [2, 8] that is also used extensively in compressed
self-indexes. The mapping is usually described by using an array C[1, σ] such
that C[c] is the number of characters in {$, 1, 2, . . . , c − 1} occurring in the
collection. With this array and the sequence L, we can define LF -mapping as
LF (i) = C[L[i]] + rankL[i](L, i), where rankc(L, i) is the number of occurrences
of character c in the prefix L[1, i]. We leave LF (i) undefined when L[i] = $, as
each $ is actually a different character. This is not a problem, as LF -mapping
is not used for these positions in CSA operations.

LF -mapping and its inverse function Ψ [12] form the backbone of many
compressed self-indexes. As SA[LF (i)] = SA[i] − 1 [8] and hence SA[Ψ(i)] =
SA[i]+1, we can use these functions to move the suffix array position backward
and forward in the sequence. Both of the functions can be efficiently imple-
mented by adding some extra information to a compressed representation of the
BWT. Standard techniques [23] to support suffix array operations by using these
functions include backward searching [8] for count, and adding a sample of suffix
array values for locate and display.

The regular BWT is based on the cyclical strings of a single string. In this
paper, we generalize the transform by allowing multiple strings, each of which can
be a concatenation of several texts [9]. This makes it easier to merge the BWTs
of two collections. We call the way the texts of a collection A are concatenated
to form strings the structure of A. Collection B contains the structure of A, if
A ⊆ B and the texts of A are concatenated to form the same strings in the
structures of A and B.

The position of a character T i[j] 6= $ in the BWT is determined by the
cyclical string of the string containing it starting at T i[j + 1]. As the first end
marker encountered ends any comparison, we only need the suffix T i[j + 1, ni]
to determine the position, as with the regular BWT. The position of the end
marker T i[ni] is determined by the text T i′ following T i in the cyclical strings.
As each text is used to determine the position of exactly one end marker in the
BWT, the structure of a collection does not affect its BWT.

3 Merging Compressed Suffix Arrays

Consider the collection {T 1, T 2}, where T 1 = ababbaa$ and T 2 = abbaa$. The
BWTs of the texts are aab$bbaa and aab$ba, respectively. Figure 1 shows a



generalized Burrows-Wheeler transform of the collection, where the characters
of text T 2 are marked with 1-bits in bit vector I.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T a b a b b a a $ a b b a a $

SA 8 14 7 13 6 12 1 3 9 5 11 2 4 10

I 0 1 0 1 0 1 0 0 1 0 1 0 0 1

L a a a a b b $ b $ b b a a a

Ψa 1 1 1 1 0 0 0 0 0 0 0 1 1 1

Ψb 0 0 0 0 1 1 0 1 0 1 1 0 0 0

Fig. 1. A generalized Burrows-Wheeler transform L and the suffix array SA of col-
lection {T 1, T 2}. Note that T 1 and T 2 are separate strings in the structure of the
collection. One can get the regular BWT by changing which $ belongs to which text.

We see that the marked characters form the BWT of T 2, while the other
characters form the BWT of T 1. This is true in general as well. Assume we have
two collections A and B, where B contains the structure of A. As the position
of each character of A is determined by the same cyclical string in the BWTs of
A and B, the BWT of A is a subsequence of the BWT of B.

Now let us turn our attention to the bit vectors Ψc marking the occurrences
of character c ∈ Σ in L. These vectors completely describe the BWT of the
collection. We can perform the rankc(L, i) used in LF -mapping as rank1(Ψc, i).
We can also compute Ψ(j) as select1(Ψc, j−C[c]), where C[c] < j ≤ C[c+1] and
select1(Ψc, i) returns the position of the ith 1-bit in Ψc. Hence we can implement
a self-index by compressing the bit vectors Ψc.

In fact, that is exactly what compressed suffix arrays [12], based on the
function Ψ , already do. As the values of Ψ form an increasing sequence in the
region of the suffix array corresponding to a character c, any representation of
that part of Ψ is also a representation of the bit vector Ψc.

This gives us an idea for an algorithm to merge two compressed suffix arrays.
If we have the CSAs of collections C1 and C2 and the bit vector I, we can use
them to build a CSA for the combined collection. For each c ∈ Σ, we simply take
the Ψc vectors of the two CSAs and merge them. Vector I is used to indicate
how to interleave the bits from the two vectors. Sampled suffix array positions
can be merged in a similar manner.

Let ni = |Ci| and n = n1 + n2. With a suitable representation of the bit
vectors (as in Sect. 5), we can merge the CSAs in-place in O(|CSA|+n2σ) time,
where |CSA| is the size of the resulting CSA. The O(n2σ) part comes from the
fact that we have to scan the bit vector I once for every pair of vectors merged.
This is not very efficient for large alphabets.



In such situations, it is better to merge the BWTs instead of the bit vectors.
We can read the BWT of collection Ci from its CSA in O(ni) time by using a
buffer of Ω(σ) characters. If we decompress both of the BWTs simultaneously,
merge the buffers, and write the results immediately to the combined CSA, we
can perform the merge in O(n) time and O(σ log n) extra space for the buffer
and bookkeeping.

The remaining question is, how to construct the bit vector I, denoting the
ranks of every suffix of B in the combined suffix array. As the rank of a suffix
is the sum of its ranks among the suffixes of A and B [13], we get the following
algorithm for merging two CSAs:

2. Search for the ranks of the suffixes of B among the suffixes of A by backward
searching [13]. Store the ranks in an integer array in any order.

3. Sort the array. Increment the values by their positions in the array (by the
ranks of the suffixes of B among themselves) to get I.

4. Merge the BWTs of the two CSAs.

Searching takes O(n2tΨ ) time, where tΨ is the cost of one access to Ψ . We are
not aware of any upper bounds better than tΨ = O(log n1) (as in Sect. 5 with a
logarithmic value for B) for CSAs that allow efficient merging. Array I requires
O(n2 log n) bits of space, and sorting it takes O(n2 log n2) time. Hence the entire
algorithm takes O(|CSA|+ n2(σ + log n)) or O(n + n2 log n) time, and works in
|CSA|+O(n2 log n) or |CSA|+O((n2 +σ) log n) bits of space, respectively, with
regular and BWT-based merging.

A similar algorithm can be used to remove sequences from the collection. We
search for the positions of the suffixes to be removed, marking them on a bit
vector I. Then we scan the bit vectors Ψc, removing bits as indicated by I.

4 CSA Construction

The algorithm for merging two compressed suffix arrays can be used as a building
block for a CSA construction algorithm. The basic idea is to divide the collection
into smaller ones, each of which can be indexed in limited memory, build CSAs
for the parts, and merge the resulting partial indexes by using the algorithm in
the previous section. For each part of the input, we first execute the build phase:

1. Build a CSA for the current input collection.

Then we merge the resulting partial index to the existing CSA by executing the
search, sort, and merge phases.

Assume a collection of size n has been split into p parts of size n/p. Then,
with any O(n log n) time and space suffix array construction algorithm, the build
phases take a total of O(n log(n/p)) time and require |CSA|+O((n/p) log(n/p))
bits of space. By using BWT-based merging, the other three phases require
O(pn + n log n) time and |CSA|+ O((n/p + σ) log n) bits of space. If we assume
p = Θ(log n) and σ = O(n/p), we get an algorithm requiring O(n log n) time
and |CSA|+ O(n) bits of space.

The algorithm can be parallelized with the following modifications:



1. Build. We can either build indexes for multiple input collections in parallel,
increasing memory usage, or use a parallel suffix array construction algorithm
such as [17].

2. Search. The ranks of the suffixes of a text are independent from the other
texts in the input collection. Hence we can perform the search for multiple
texts in parallel. If there are too few texts to distribute the searches evenly, we
can try to split a search into multiple smaller ones. Assume we are searching
for the ranks of the suffixes of text T backwards from position T [j]. If we find
a substring T [i, j] with no occurrences in the index, we can start reporting
the ranks, as the symbols after T [j] do not affect them.

3. Sort. Use a parallel sorting algorithm.
4. Merge. Multiple bit vector pairs can be merged in parallel. If there are more

processors than bit vectors, work can be divided by splitting the vectors into
multiple parts.

5 Implementation

We have implemented a sequential version of the algorithm, as well as a parallel
version for symmetric multiprocessor (SMP) systems.1 The implementation is
written in in C++. The input is assumed to be divided into a number of files,
each of them consisting of concatenated C-style 0-terminated strings. Each string
is considered a separate text, with the trailing 0 interpreted as an end marker.
The build phase is executed for all input files in the beginning of the construction
to save memory. The resulting partial indexes as well as unused parts of the input
are stored in secondary memory until needed.

We use two kinds of bit vectors in the implementation: gap encoded and
run-length encoded. In gap encoding, the vector is encoded as a sequence of
integers denoting the distances between the successive 1-bits, while in run-length
encoding each run of 1s is encoded as the gap after the previous run followed by
the length of the run. In both cases, δ codes [6] are used to encode the integers.

The compressed bit vectors are divided into blocks of B bytes. For each block,
we sample the first 1-bit in the block, writing down its rank and position in the
vector. Each sample takes 2 log u bits, where u is the length of the vector. By
using these samples, we can determine, which block to decompress to answer bit
vector operations such as rank and select.

As a binary search among the samples is quite slow, we speed up the search
by constructing secondary indexes for rank and select when the vector is loaded
into memory. Both indexes consist of about b/5 integers of log b bits, where b
is the number of blocks in the vector. For rank, the ith value is the number of
the the block storing the first 1-bit at or after position i · 5u/b. For select, the
jth value is similarly the number of the block storing the 1-bit of rank j · 5no/b,
where no is the number of 1s in the vector. By using these indexes, we can limit
the search to a (typically) small number of samples.

1 The implementation is available at http://www.cs.helsinki.fi/group/suds/rlcsa/.



Instead of a compressed bit vector, we use a simpler structure as the indicator
vector I in the merge phase. This structure is just an array of native 32-bit or
64-bit integers in increasing order, each of them indicating a 1-bit in the vector.

Our implementation of CSA is based on the Run-Length Compressed Suffix
Array [26, 21]. We use a run-length encoded bit vector to represent each Ψc.
This makes the index most suitable for highly repetitive collections, while some
compression is lost on other types of collections.

Suffix array samples are marked in a gap encoded bit vector and stored as
log(n/d)-bit integers, where n is the size of the collection and d is the sample
rate. Inverse suffix array samples used in display are constructed when the index
is loaded, and stored as another array of log(n/d)-bit integers. The end points
of all sequences in the collection are marked in a gap encoded bit vector E.

The implementation supports multiple parallel queries. Each thread using the
CSA maintains separate state information, while large arrays, such as samples
and bit vector blocks, are shared between the threads. Large queries are not
automatically split into smaller ones, but must be parallelized manually.

Locate queries are optimized for retrieving multiple occurrences simultane-
ously [21]. This greatly reduces the required number of accesses to Ψ and suffix
array samples on highly repetitive collections.

We use the suffix array construction algorithm by Larsson and Sadakane [18]
in the build phase because of its robustness with highly repetitive collections.
The algorithm supports large alphabets, making it possible to use a different
character value for each $ in the collection. By limiting the size of the input files
to less than 2 gigabytes, we can build the CSA for a file of size ni in about 8ni

bytes. We build the indexes for multiple files in parallel, making this phase the
most memory intensive one in the algorithm.

When the partial indexes have been built, we take one of them as the initial
index, and begin merging the other indexes with it one at a time. We distribute
the sequences in the input file dynamically between the threads, and report the
ranks of the suffixes as either 32-bit or 64-bit integers. When all threads have
finished searching, we sort the resulting array, and increment each value by its
position in the array to get the bit vector I used in merging.

We merge the bit vectors instead of the BWTs in our implementation. Suffix
array samples, bit vector E, and each of the bit vectors Ψc are merged as separate
subtasks that are dynamically allocated to available threads. Large subtasks are
not divided into smaller ones, which can be a problem with small alphabets, or
when merging a large number of suffix array samples. In-place merging is not
implemented, doubling the memory usage of the bit vectors being merged.

6 Experiments

We tested the performance of our new algorithms experimentally. The experi-
ments were performed on a 16-core SMP system running Ubuntu Linux. The
system had 128 gigabytes of memory and four quad-core Intel Xeon X7350 pro-
cessors running at 2.93 GHz. All programs were compiled with GCC version



4.2.4. OpenMP was used for parallelization. MCSTL2 was used to parallelize
std::sort, as the GCC version in use did not support libstdc++ parallel mode.

Three data sets were used to test our construction algorithms: genome, en-
wiki, and fiwiki. Genome is the human reference genome (NCBI build 34), with
25 sequences as individual files for a total of 2.88 gigabytes. Enwiki and fiwiki
are larger text collections downloaded from Wikipedia.3 Enwiki contains a dump
of the current versions of all English language Wikipedia articles (as of 2009-03-
13), while fiwiki is a highly repetitive collection containing all Finnish language
Wikipedia articles with their full version histories (as of 2009-01-22).

The Wikipedia data sets were in XML format, and had to be preprocessed
before indexing. In the enwiki collection, we considered the lines between tags
<page> and </page> as one sequence. In fiwiki, each sequence was contained be-
tween tags <revision> and </revision>. The extracted sequences were written
into 500-megabyte input files. In this final form, enwiki contains 16080833 se-
quences in 85 files for a total of 41.48 gigabytes, while fiwiki contains 5849111
sequences in 87 files for a total of 42.03 gigabytes.

We tested our construction algorithm on the three data sets. The sequential
implementation was used on the smaller genome data set, while the larger enwiki
and fiwiki collections were indexed using the parallel implementation. Index
parameters were mostly set to default ones. We used 32-byte block size on the
run-length encoded Ψc vectors, and 16-byte block size on the gap encoded vectors.
Suffix array sample rate was set to 64 on genome and enwiki data sets, and to
512 on the highly repetitive fiwiki data set. With these parameters, the final
index sizes for genome, enwiki, and fiwiki were 2.18 GB, 17.37 GB, and 2.13
GB, respectively. Table 1 summarizes the construction.

Table 1. Results for index construction. The construction times are in hours, and the
peak memory usage is in gigabytes. Throughput is measured in megabytes / second to
make comparisons with earlier results easier.

Construction Times
Collection Threads Memory Build Search Sort Merge Total MB/s

genome 1 2.9 0.75 0.86 0.08 0.74 2.43 0.34

enwiki 8 36–37 3.25 1.88 0.37 3.42 9.00 1.31
16 64 2.97 1.17 0.37 3.35 7.92 1.49

fiwiki 8 32 5.33 1.75 0.36 2.16 9.60 1.24
16 64 5.01 1.22 0.38 1.99 8.62 1.39

We were able to index the human genome in about 145 minutes using less
than 3 gigabytes of memory. Even considering the improvements in processor
speeds and cache sizes, this is clearly better than the 24 hours and 3.6 gigabytes

2 http://algo2.iti.uni-karlsruhe.de/singler/mcstl/
3 http://download.wikipedia.org/



on a 1.7 GHz Pentium 4 system reported by Hon et al. [14]. By using in-place
merging, we should be able to reduce our memory consumption by the final
size of the largest bit vector (almost 500 megabytes). Further memory would be
saved by replacing the run-length encoded bit vectors with gap encoded ones.

On the the enwiki and fiwiki collections, there was no significant speedup
from 8 to 16 threads. Only the search phase that involves relatively complex
operations on small pieces of data shows major improvement. This behavior is
probably caused by cache and memory bus issues in the other phases that process
large amounts of data sequentially. Another thing to note is that while merging
the small indexes of the highly repetitive fiwiki collection was fast, building the
partial indexes for it was much slower than for the enwiki collection.

We also tested our implementation by performing a large number of count,
locate, and display queries using 1, 8, and 16 threads. We generated a set of
random patterns for count and locate queries for each of the three collections. On
the genome data set, this was 1000 patterns of length 10, with about 15.15 million
total occurrences. We modified one pattern with over 2 million occurrences, as
it dominated the query times in locate. For enwiki and fiwiki, we generated
40 random patterns of length 15 per input file, for a total of 3400 and 3480
patterns, respectively. Patterns with more than 105 occurrences were ignored in
locate, making the total number of reported occurrences 16.89 million and 14.07
million, respectively.

Display queries consist of 10000 random prefixes of at most 10000 characters
each. The total size of the extracted prefixes was 95.37 megabytes for genome,
17.64 megabytes for enwiki, and 38.90 megabytes for fiwiki. Table 2 shows the
average query times. The results are mostly comparable with those in [21].

Table 2. Query times on the three data sets with a different number of (T)hreads.
(C)ount and (D)isplay times are in microseconds / character, while (L)ocate times are
in microseconds / occurrence.

genome enwiki fiwiki
T C L D C L D C L D

1 1.532 34.155 0.611 2.272 10.603 0.992 1.704 37.081 0.829
8 0.238 4.816 0.082 0.337 1.475 0.137 0.262 5.163 0.116

16 0.211 2.914 0.044 0.221 0.899 0.080 0.177 4.091 0.070

The time required for one random access to the CSA is similar in all three
collections. We got a significant improvement from 8 to 16 threads for the same
reasons, as in the search phase of index construction. Locate performance was
similar on genome and fiwiki with different sample rates, because of the opti-
mizations for retrieving multiple occurrences. Enwiki was significantly faster, as
it benefited both from the low sample rate and the optimizations.

We could not directly compare the performance of our algorithm to other
similar algorithms. Of the few known implementations, the one by Hon et al. [14]



is not generally available. While Kärkkäinen’s space-efficient BWT construction
algorithm [16] is available, we could not compile it in a 64-bit environment.
Finally, the dynamic FM-index by Gerlach [9] is outperformed by Kärkkäinen’s
algorithm in BWT construction, making comparisons to it redundant.

With this in mind, we compared our sequential algorithm to Kärkkäinen’s
algorithm on BWT construction. The comparison was performed on a 2.66 GHz
Intel Core 2 Duo E6750 desktop system with 4 GB of memory (3.2 GB visible to
OS). We downloaded the 1.10 GB protein sequence collection from the Pizza &
Chili Corpus [7], and split it into 5, 10, and 20 parts for our algorithm. We used
parameter values v = 128 (default), 1024, and 4096 for Kärkkäinen’s algorithm.
The results can be seen in Table 3. While Kärkkäinen’s algorithm was faster
with default parameters, our algorithm performed better with limited memory.
We also achieved a reasonable speed while using less memory than the input
size, which is impossible with Kärkkäinen’s algorithm.

Table 3. Construction times for Burrows-Wheeler transform. The BWT is not included
in the memory consumption, as both implementations write it directly to disk.

Our Algorithm Kärkkäinen’s
5 10 20 128 1024 4096

Time (minutes) 35 41 46 29 46 68
Memory (GB) 1.86 1.29 1.02 2.00 1.45 1.28

7 Discussion

We have presented a parallel algorithm for constructing compressed suffix ar-
rays, and demonstrated its practical effectiveness by indexing tens of gigabytes
with a throughput of about 4–5 gigabytes / hour. When the collection is highly
repetitive, this can be done in memory available on today’s high-end desktop
systems, except for the build phase of the algorithm. Hence if we distribute the
building of partial indexes to multiple systems, it should be feasible to index
collections of hundreds of gigabytes in size with the current implementation.

We actually considered indexing the German language Wikipedia with full
version history – a 933 GB highly repetitive collection. The plan was to use two
older SMP systems (both with 8 cores and 32 GB of RAM) to index 10-gigabyte
parts, and to merge the partial indexes on the larger system. Extrapolating from
the results with the Finnish language Wikipedia, this should have taken about
four days. However, due to the need for exclusive access to the systems, the
experiment had to be postponed.

This naturally leads to the question, whether a true distributed implementa-
tion of the algorithm is possible. The answer seems to be yes. In addition to the
build phase, sort and merge phases are also relatively easy to distribute. Sort-
ing is one of the fundamental operations in distributed computing, with many



efficient practical solutions, as is made evident by the Sort Benchmark.4 On
the other hand, merging can easily be split into as many independent tasks as
necessary, making its distribution straightforward.

Search phase is the hardest one to distribute, as solving it will probably
require a distributed CSA. As long as the CSA fits into the memory of a single
node, things are easy. We can just have a copy of the CSA in each node, and
distribute the sequences between the nodes. When the index grows larger, we
must either store it in secondary memory, or distribute it among the nodes (or
both in case of very large collections).

Using secondary memory yields a major performance loss, as we need one
random access to the CSA for each character inserted. While a sequential search
can process more than 1 MB/s, hard disks allow at most a few hundred random
accesses per second. Although modern solid-state drives are much faster, allowing
tens of thousands of random accesses per second, they are still about 30–40 times
slower than the CPU. With one solid-state drive, one might get a 100 megabytes
/ hour throughput, so with many drives reasonable speeds could be attained.

Storing the CSA in distributed memory creates different performance prob-
lems. Network latency becomes the main factor in sequential search speed, as
nodes must communicate with each other to access different parts of the CSA. On
the other hand, large bandwidth makes it possible to search for many sequences
in parallel, alleviating the problem. If many queries directed to the same node
are grouped into one packet, a 5–10 MB/s (log n bits / character) data stream
should be enough for one CPU core.

With this algorithm, distributed construction of CSAs seems feasible for
multi-terabyte collections. Much of the work can even be performed on a produc-
tion system, as new data arrives. Significant resources are only required for the
final merging of the indexes. The real question is, can the algorithm be extended
for the other structures required for suffix tree functionality [1]. If the answer is
positive, it could make compressed suffix arrays the data structure of choice for
many applications, such as large-scale analysis of genome data.
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21. V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki. Storage and retrieval of
individual genomes. In RECOMB 2009, volume 5541 of LNCS, pages 121–137.
Springer-Verlag, 2009.

22. J. C. Na and K. Park. Alphabet-independent linear-time construction of com-
pressed suffix arrays using o(nlogn)-bit working space. Theoretical Computer Sci-
ence, 385(1-3):127–136, 2007.
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