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Abstract

The famous Burrows-Wheeler Transform (BWT) was originally defined
for a single string but variations have been developed for sets of strings,
labelled trees, de Bruijn graphs, etc. In this paper we propose a framework
that includes many of these variations and that we hope will simplify the
search for more.

We first define Wheeler graphs and show they have a property we call
path coherence. We show that if the state diagram of a finite-state automa-
ton is a Wheeler graph then, by its path coherence, we can order the nodes
such that, for any string, the nodes reachable from the initial state or states
by processing that string are consecutive. This means that even if the au-
tomaton is non-deterministic, we can still store it compactly and process
strings with it quickly.

We then rederive several variations of the BWT by designing straight-
forward finite-state automata for the relevant problems and showing that
their state diagrams are Wheeler graphs.
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1. Introduction

The Burrows-Wheeler Transformation (BWT) has a very peculiar his-
tory. First conceived in 1983, it was published only eleven years later in a
technical report [9], presumably because it was so innovative that the first
reviewers were not able to grasp its full significance. A few years later,
the compression algorithm bzip2 based on the BWT became popular, chal-
lenging gzip’s dominance, thanks to the finely engineered implementation of
Julian Seward [46] (the very same computer scientist who gave us also the
invaluable tool Valgrind [47]).

After its introduction as a compression tool, interest in the BWT was
rekindled when many researchers realized that, among the different tech-
niques discovered at the turn of the century for designing compressed in-
dexes [19] 29, [34], those based on the BWT are probably the simplest and
most space efficient [15] 43]. After this realization, in the last ten years we
have witnessed an unusual phenomenon in computer science: variants of the
BWT have been proposed and applied to more and more complex objects:
from trees, to graphs, to alignments. These variants are clearly related to
the BWT even if some of them no longer have the two main features of the
original BWT, namely of being invertible and of “helping” compression.

At this point it is natural to ask whether we have approached the BWT
as the blind men approached the elephant (see, e.g., [45]), with one touching
a leg and thinking the elephant is like a tree, another touching the trunk and
thinking it is like a snake, and yet another touching the tail and thinking it is
like a rope. We do not disparage previous surveys of the BWT and related
data structures, such as [I, 35 42], since we too have spent years trying
to make sense of our sometimes disparate impressions of the it. Without
pretending to give a complete answer, in this paper we propose a unifying
view for many different BWT variants. Somewhat surprisingly we get our
unifying view considering the Nondeterministic Finite Automata related to
different pattern matching problems. We show that the state graphs asso-
ciated to these automata have common properties that we summarize with
the concept of Wheeler graphsE

Using the notion of a Wheeler graph, we show that it is possible to pro-
cess strings efficiently, e.g., in linear time if the alphabet is constant, even
if the automaton is nondeterministic. In addition, we show that Wheeler

1On many occasions Mike Burrows stated that, as reported also in [9], the original idea
of the BWT is due to David Wheeler. We therefore decided to name this graph class after
this pioneer of computer science.
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graphs can be compactly represented and traversed using up to three arrays
with additional data structures supporting efficient rank and select oper-
ations. It turns out that these arrays coincide with, or are substantially
equivalent to, the output of many BWT variants described in the literature.

We believe our unifying view can help researchers develop new BWT
variants and new indexing data structures. However, we stress that not
every BWT-related data structure fits our framework: for example Ganguly
et al.’s parameterized BWT [25] and the index for order-preserving matching
in [23]. Therefore, we hope that our contribution will spur further research
resulting in a wider vision of the fascinating field originated by the seminal
work of Burrows and Wheeler.

2. Definitions and Basic Results

Consider a directed edge-labeled graph G such that each edge is labeled
by a character from an totally-ordered alphabet A. We use < to denote the
ordering among A’s elements. Labels on the edges leaving a given node are
not necessarily distinct, and there can be multiple edges linking the same
pair of nodes (for simplicity we still use the term graph rather than the more
formally correct multi-graph).

Definition 1. G is a Wheeler graph if there is an ordering of the nodes such
that nodes with in-degree 0 precede those with positive in-degree and, for
any pair of edges e = (u,v) and €’ = (u/,v’) labelled a and a’ respectively,
the following monotonicity properties hold:

a<d = v<v, (1)
(a=d)AN(u<v) = o<,

An example of a Wheeler graph is shown in Fig. As an immediate
consequence of , all edges entering a given node must have the same label.
We now show that Wheeler graphs also possess the following property:

Definition 2. G is path coherent if there is a total order of the nodes such
that for any consecutive range [i, j] of nodes and string «, the nodes reach-
able from those in [i,j] in |«| steps by following edges whose labels for «
when concatenated, themselves form a consecutive range.

Lemma 3. If G is a Wheeler graph by an ordering m on its nodes then it
1s path coherent by .



70

75

80

85

90

Figure 1: An eight-node Wheeler graph. Node 1 has in-degree 0; edges labelled a enters
in nodes 2, 3, 4; edges labelled b in nodes 5, 6; edges labelled ¢ in nodes 7, 8.

Proof. Suppose G is a Wheeler graph by w. Consider a consecutive range
[i, 7] of nodes and let [i’, j/] be the smallest range that contains all the nodes
reachable from those in [7,j] in one step by following edges labelled with
some character a. By our choice of [i’, j'], both i’ and j" are reachable from
nodes in [z, j] in one step by following edges labelled a. By our definition of a
Wheeler graph, nodes with in-degree 0 precede those with positive in-degree,
such as 7/, so every node in [i, j'] has at least one incoming edge.

Assume some node v strictly between ¢/ and j’ has an incoming edge
labelled a’ # a. Since i/ < v we have a < da’, by our definition of a Wheeler
graph and modus tollens; similarly, since v < j' we have a’ < a, thus ob-
taining a contradiction. It follows that the edges arriving at nodes in [/, '
are all labelled a. Furthermore, since the labels are equal, by the second
implication in and modus tollens we get that any edge with destination
strictly between i’ and j’ must originate in [i, j].

It follows that the nodes reachable in one step from those in [i,j] by
following edges labelled a are the ones in [¢/, j'], which is a consecutive range.
For any string «, therefore, the nodes reachable in |a| steps from those in
[i, 7] by following edges whose labels form «, themselves form a consecutive
range, by induction on the length of a. O

In the later sections of this paper, we explore the implications of path
coherence. In the remainder of this section we first show it is possible to
obtain a fast and compact representation of a Wheeler graph, then sketch
why Wheeler graphs can achieve compression. We point out that, even
without explicitly defining Wheeler graphs, many researchers have implicitly
considered them while studying how to implement efficiently BWT variants
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and how to bound their space usage, and given results analogous to the ones
we give now.

A plain, edge-by-edge representation of a labelled graph with n nodes
and e edges uses O(e(logn + log |A|)) bits. Given a Wheeler graph G, let
r1 < 19 < --- < x, denote the ordered set of nodes. For i =1,...,n let ¥;
and k; denote respectively the out-degree and in-degree of node x;. Define
the binary arrays of length e + n

O =0%10%1...0"1, T=0M10%1...0%1. (2)

Note that O (resp. I) consists of the concatenated unary representations
of the out-degrees (resp. in-degrees). Let L; denote the multiset of labels
on the edges exiting from z; arranged in an arbitrary order, and let L[1..e]
denote the concatenation L = LiLs--- L,. By construction, |L;| = ¢; and
there is a natural one-to-one correspondence between the 0’s in O and the
characters in L. For example, for the graph of Fig. [1] it is

O = 000100101100100100101
L = aab ac b ac bc bc a

while the indegree array is I = 101001001001001001001. Finally, let C[1..|A]]
denote the array such that Clc] is the number of edges with label smaller
than c. For simplicity, assume every distinct character labels some edge; oth-
erwise, we store a bitvector of |A| bits marking the characters that do label
edges and work with that subset. With this assumption, C[c] < C[c+1] and
z; has all incoming edges labeled c if and only if Clc] < 37,<; ki < Cle+1].

Given an array Z we use the standard notation rank.(Z, i) to denote the
number of occurrences of ¢ in Z[1, 4], and select.(Z, j) to denote the position
of the j-th ¢ in Z. For simplicity we assume rank.(Z,0) = 0. The following
two properties are straightforward to prove; indeed, similar properties have
been established in many papers dealing with BWT-related data structures.

1. The out-degree ¢; of node z; is select; (O, i) —select; (O, i —1). The la-
bels in the edges leaving z; are L[w;—¢;+1, w;| where w; = select; (O, i)—
i.

2. If node z; has one or more outgoing edges labeled ¢, then the largest
index j such that (z;, ;) has label ¢ can be computed as follows.
Let w; be defined as above and let h; = rank.(L,w;). If we order
edges by label with ties broken by origin, (z;,x;) is the h;-th edge
labeled ¢. Since there are C[c] edges with a label smaller than e,
we have j = 1 + ranky(I,selecty(I, h; + Clc])). To find the smaller
indices j such that (z;,z;) has label ¢, we decrement h; and repeat
this procedure, until h; = rank (L, w; — ¢;) + 1.
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With a symmetric reasoning, given x; and ¢ we can establish whether there
exists an edge labeled c entering in x;, and, if this is the case, all indices 4
such that (z;,2;) has label c. Using standard data structures to represent
compactly arrays supporting rank and select queries [43], we can establish
the following result.

Lemma 4. It is possible to represent an n-node, e-edge Wheeler graph with
labels over the alphabet A in 2(e +n)+elog|A| + |Alloge+ o(n + elog|A|)
bits. The representation supports the forward and backward traversing of the
edges in O(log|A|) time. O

We can often reduce even further the space used to represent Wheeler
graphs. For example, suppose G is a Wheeler graph; V} is the set of nodes
of GG reachable in exactly k steps from some other nodes; S is a set of strings
of length k such that every node in Vj is reachable in k steps by following
edges whose labels when concatenated form a string in S; and f is a function
assigning to each node v € Vj, a string s € S such that v is reachable in k
steps by following edges whose labels when concatenated form s. Consider
the list Ly of labels of edges originating in V} in order by origin with ties
broken by label.

By Lemma [3| for s € S all the nodes v € V}, such that f(v) = s form
a consecutive interval. Therefore, we can partition Ly into |S| consecutive
intervals such that each interval L is the concatenation of the labels of edges
leaving nodes v such that f(v) = s; Lg is empty for s ¢ S. It follows that
if £ < (1—e¢)lg,|Vi|, where € > 0 is a constant and o = |A| is the size of
the alphabet of labels, then we can store Ly in Y, 4x |Ls|Ho(Ls) + o(|Vi])
bits, where Hy(Lys) is the Oth-order empirical entropy of Ls. Informally, this
means that if knowing how we can get to a node in k steps tells us a lot
about the labels that are likely to be on the edges leaving that node, then
we can compress Ly well. In some ways this generalizes the well-known
analyses [14], [39] of the compression achievable using the Burrows-Wheeler
Transform on a single string.

3. NFAs, Wheeler Graphs and FM-Indexes

Suppose we have never heard the words “Suffix Array” or “Burrows-
Wheeler Transform” but we want to build a data structure supporting ef-
ficient queries for the substrings of, say, s = ABRACADABRA. A simple
solution would be to build the Deterministic Finite Automaton (DFA) ac-
cepting all substrings of s, see Fig. 2| (left). Although there are techniques to
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Figure 2: Deterministic (left) and non-deterministic (right) finite automata accepting all
substrings of ABRACADABRA. All states are accepting.

compactly represent DFAs, such avenue will likely lead to a data structure
much larger than the O(nlog|A|) bits of the original text.

A more space economical alternative is to build the Nondeterministic
Finite Automaton (NFA) for the same set of substrings: It has a linear
structure, see Fig. [2[ (right), but because of nondeterminism, processing of
patterns appears to be a difficult task. It turns out that this difficulty is
only a matter of perspective: traversing the DFA becomes much simpler if
we recognize that it is a Wheeler graph in disguise.

The NFA of Fig. [2] is already a labelled directed graph. To make it a
Wheeler graph we only need to eliminate the e-transitions (which violate the
property that all the incoming edges to a node have the same label), make
all the states initial (so the language is not changed), and define an ordering
of the nodes such that the monotonicity properties hold. To this end,
we associate to each node of the NFA the prefix of s that takes us there
without an e-transition and order the NFA nodes according to the right-to-
left lexicographic rank of such strings, see Fig. [3| (left and center). With this
definition the NFA without e-transitions is a Wheeler graph. Once the node
ordering is established we can discard the prefixes and identify each node
with its rank in the ordering, see Fig. |3| (right).

In the Wheeler graph derived from the NFA of Fig. 3| every node has
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Figure 3: From the NFA (left) to the Wheeler graph (center) to the FM-index (right). All
states are initial and accepting and numbered on the right to show that the diagram is a
Wheeler graph.

out-degree 1 except from node 5, corresponding to the longest prefix, that
has out-degree zero. Hence, in the representation of the Wheeler graph
described in Sect. [2, we can get rid of the bitarray O and instead insert in
position 5 of L a symbol not occurring elsewhere in s, say $. Since all nodes
have in-degree 1 except node 0 (ignoring the sourceless edges indicating
that all nodes are initial) there is no need to store the bitarray I either.
Summing up, we can represent and navigate the Wheeler graph using the
string L = ABDBCSRRAAAA, enriched with data structures for rank/select
operations, and the the array C[1..|A|]. Since the string L coincides with
the last column of the BWT matrix of s%, the string s reversed, and C
is a well-known representation of the first column of such matrix, we have
established the following result.

Lemma 5. Given a string s, let NFA(s) denote the corresponding NFA
described above. The FM-index of s is a compact representation of NFA(s).
The Last-to-First and First-to-Last maps of the FM-index coincides with the
navigation operations in NFA(s). O

The attentive reader may ask why the Wheeler graph represents the FM-
index of s® while historically the FM-index was defined for s. The reason
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is that the FM-index was derived from the BWT of s. The consequence
is that the search of the pattern must be done right-to-left: the infamous
backward-search procedure [20]. Here, we have defined the NFA so that the
search is done left-to-right and through the Wheeler graph we have therefore
obtained the FM-index of s’.

Lemma [5| provides a new perspective on FM-indexes that may be in-
teresting in its own right and, more importantly, suggests a way we can
systematically generalize the ideas behind FM-indexes to indexing other
kinds of data than single strings. Using the concept of path coherence, we
now prove a more powerful version of this lemma:

Theorem 6. Consider a finite-state automaton over an alphabet A without
e-transitions and with either one initial state or all states initial. If its state
diagram is a Wheeler graph with n nodes and e edges then we can store it in
2(e+n) +elog|A| + |A|loge+ o(n+ elog|A|) bits such that, for any string
a, in O(|lallog|A|) time we can compute the set of states reachable from the
initial states on a.

Proof. Suppose the state diagram is a Wheeler graph by an ordering « on
its nodes so, by Lemma [3] it is path coherent by m. Since either one state
is initial or all are, the initial states form a consecutive range in w. By
Definition [2|, the nodes reachable from the initial states on each prefix of «
form a consecutive interval. We can use Lemma [4] to map from the interval
for each prefix to the interval for the next prefix in O(log|A|) time. O

Theorem [6] means that if we have a problem we can solve with a finite-
state automaton, then even if the automaton is non-deterministic we may
still be able to implement it without the usual blowups in space or query
time. In the rest of this paper we show that many data structures based on
variants of the BWT fit into this framework.

We note as an aside that FM-indexes usually include a sampled suffix
array which permits us to locate each occurrence of a pattern in the indexed
string. Extending this idea to automata seems straightforward, by sampling
the nodes, but we do not explore that in this paper.

4. Other Wheeler Graphs in Disguise

4.1. Multi-string BWT and Permuterm Index

The first natural generalization of the BWT is to extend it to a collection
of strings. This was done for the first time in [36H38] where the authors
described a reversible multi-string transformation inspired by the BWT,
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and showed its effectiveness for data compression and for measuring string
similarity.

In the context of pattern matching, given a collection of strings s1, ..., sq,
in addition to substring queries it is convenient to offer also the possibility
of prefiz/suffiz queries. In a prefix/suffix query, given two substring «, 8 we
want to find all strings s; such that s; is prefixed by « and suffixed by 3. As
first observed in [21] 22] with the Compressed Permuterm Index, such queries
can be solved by adding a special symbol $ to each string and searching for
the pattern S$« inside a circular version of each s;$. Fig. 4| (left) shows the
NFA supporting circular queries for the strings AT$, HOTS$, HATS$. To each
node we naturally associate a circular shift of one of the strings; if we sort
the nodes according to the right-to-left lexicographic order of such shifts the
resulting graph is a Wheeler graph, see Fig. 4] (right).

Since each node in the Wheeler graph has in-degree and out-degree 1, we
can represent it with the approach of Lemmal[d] using only the arrays L and
C. Note that the array L, L = AHHTTAOT$$$ in the example of Fig.
coincides with the multi-string BW'T defined in terms of the cyclic shifts
in [3§]. Instead, the Compressed Permuterm Index is built computing the
single-string BWT of the concatenation s1$ss - - - $s4 that does not support
naturally the search for circular patterns. The authors of [2I] got around
this problem by sorting the strings si, ..., sq before the concatenation and
by applying the so-called jump2end function. More recent algorithms using
circular pattern search all make use of the cyclic multi-string BWT [2, [7, 8,
30].

4.2. XBWT and trie representation

If we are only interested in the substrings of a collection sy, ..., sq, and
not in circular matches, a smaller automaton than the one considered in
the previous section is the one derived from the trie data structure, see
Fig. |5l Following the lead from [I6HI8]|, we associate to each node the string
formed by the labels in the node-to-root upward path, and we order all nodes
according to the lexicographic rank of such strings.

The resulting graph is a Wheeler graph with the same number of nodes
as the original trie. In a trie all nodes except the root have in-degree 1 so in
the representation of Lemma [l we do not need to store the in-degree binary
array. Hence the representation consists of the out-degree binary array O,
the labels array L and the count array C. For the trie in Fig. || we have

O = 0010001011110100101011
L = AB ABCC A ACA A

10
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Figure 4: Left: A finite automaton accepting all circular substrings of AT$, HOTS$, HATS;
all states are initial and accepting. Right: Sorting the states according to the associated
circular shifts gives us a Wheeler graph.

This representation is essentially equivalent to the XBWT (eXtended BWT)
introduced in [16] to represent labelled trees, with the arrays O and L cor-
responding respectively to St and S, in [16]. Note that we can restrict
the search to prefixes by setting the root as the only start state, and we can
restrict the search to suffixes by setting as accepting states only those cor-
responding to one of the input strings without affecting our representation.

4.83. de Bruijn graphs

Bowe, Onodera, Sadakane and Shibuya [6] (see also, e.g., [5l [10] 33])
extended the XBWT from trees to de Bruijn graphs, which are widely used
in bioinformatics for de novo assembly, read correction, identifying genetic
variations in a population, and other applications. A kth-order de Bruijn
graph for a string or set of strings contains a node for each distinct k-tuple
that occurs in those strings, and an edge (u,v) if there is a (k + 1)-tuple in
the strings that starts with v and ends with v (which implies that v can be
obtained from u by deleting u’s first character and appending a character).

Together with the GCSA, described in Section Bowe et al.’s repre-
sentation is really the prototypical BWT-based data structure that requires
us to think in terms of graphs instead of strings. The main difference be-

11
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Figure 5: A finite automaton accepting all substrings of AAC, ABA, ACAA, BA and BC.
All states are initial and accepting and numbered to show that the diagram is a Wheeler
graph.

tween representing a labelled tree and representing a de Bruijn graph is that,
in a graph, nodes can have in-degree more than 1, but this can be handled
using the in-degree array I as described in Lemma

We can also rederive Bowe et al.’s representation from Theorem [6} we
build a finite-state automaton that accepts all prefixes of length at least
k of strings containing only k-tuples and (k + 1)-tuples from a given list,
by building a trie for the k-tuples and then adding edges connecting the
leaves appropriately. Figure [] shows an example for the triples AAA, AAB,
AAC, ABA, BAA, BAB, CAB and CCA, with the edges for BAAA and CABA
missing: this automaton accepts all prefixes of length at least 3 of strings
in which the only triples are AAA, AAB, AAC, ABA, BAA, BAB, CAB and
CCA and in which BAAA and CABA do not occur. By numbering each node
according to the lexicographic rank of the string labelling the node-to-root
path, the state diagram is immediately seen to be a Wheeler graph.

4.4. FM-index of alignment

Let G be a Wheeler graph under node ordering 7. If all incoming edges
to nodes in range [i,j] have the same label, we can merge the range into
a single node v, and the resulting graph G’ will still be a Wheeler graph.
If graph G has an edge with label a from node u to a node in range [i, j],
graph G’ will have an edge (u,v) with label a. Similarly, if graph G has an
edge with label @’ from a node in range [i, j] to node w, graph G’ will have
an edge (v, w) with label a'.

12
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Figure 6: A finite automaton accepting all prefixes of length at least 3 of strings in which
the only triples are AAA, AAB, AAC, ABA, BAA, BAB, CAB and CCA and in which BAAA
and CABA do not occur. State 1 is initial, all states at distance 3 from the initial state
are accepting. States are numbered to show that the diagram is a Wheeler graph.

cCCcCT|C-A-]AACIC Cl-CTCA|AIACC
CCT|ICCA-|AAC|A CiICTCCAAIACA
CCT|T-AT|AAC|I- CICTTAT|AI-AC
cCcT|----]AACIC Cl---CT|A|IACC

Figure 7: Left: An alignment of strings CCTCAAACC, CCTCCAAACA, CCTTATAAC, and
CCTAACC. The alignment has been separated into common and non-common regions.
Right: The alignment transformed for FMA. The suffixes moved to the non-common
regions are CT for the first common region and AC for the second one.

If we have a multi-string BWT, we can transform its Wheeler graph into
a more compact representation of the strings by merging ranges of nodes.
This compact representation may contain false positives: path labels that
combine substrings from different original strings. The FM-index of align-
ment (FMA) [40, 41] has an efficient procedure for detecting false positives,
based on carefully choosing the nodes to merge.

We start with an alignment of the strings, and separate the alignment
into common regions X; shared between all strings, and non-common regions
Y; where some strings are different. We assume that each common region
has a proper suffix Z; that does not occur anywhere else in the strings.
If no such suffix exists, we merge the common region into the neighboring
non-common regions. We transform the alignment in two steps. First we
move the suffixes Z; into the following non-common regions Y;. Then we
justify each non-common region to the right, and use X; and Y; to denote

13
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Figure 8: Top: Wheeler graph of the multi-string BWT of the transformed alignment in
Figure Node ordering is based on the labels in the nodes. Gray nodes correspond to
the common regions. Bottom: Wheeler graph of the FMA for the same alignment. The
colors of each edge mark the original strings that cross the edge. The labels of non-merged
nodes are the same as in the top graph for convenience.

the common and non-common regions in the transformed alignment. See
Figure [7] for an example.

The transformed alignment guides us in merging the Wheeler graph of
the multi-string BWT into the FM-index of alignment. As we are building
an FM-index for the original strings, we need to build a Wheeler graph for
the reverse strings. We merge nodes corresponding to aligned positions, if
the nodes a) have in-degree 0; b) are in a common region; or ¢) correspond
to the same suffix of the non-common region. See Figure [§] for an example.

By Lemmal3] the Wheeler graph of a multi-string BWT is path coherent.
To see that the graph remains a Wheeler graph after merging, we note that:

1. Source nodes with in-degree 0 form a consecutive range by Definition [I]
2. A common region X is entered either from the source nodes or from
the following non-common region Y;/. In the latter case, the set of
nodes reachable with string Zl-R is the set of nodes with outgoing edges
to the common region X/. By Lemma these nodes form a consecutive

14
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range. As the common region is entered from a consecutive range of
nodes, we see by iterating Definition [2| that nodes corresponding to
aligned positions in the region also form consecutive ranges.

3. By the previous two cases, the non-common region is entered from a
consecutive range of nodes. By Definition 2] we see that the nodes
corresponding to a suffix of the region form consecutive ranges.

False positives are paths that do not correspond to any of the original
strings. They can occur when the path comes from a non-common region
Y/, enters a common region X; ;, and exits into another non-common
region Y;. Assume that for each node v we have stored the set of strings
Sy passing through the node. To check for false positives, we take the
intersection of sets 5, over all nodes v on the path. If the intersection is
non-empty, it contains the strings compatible with the path. If (u,v) is the
only outgoing edge from node u, we have S, C S,. Similarly, if (u,v) is
the only incoming edge to node v, we have S, C S,. Hence it is enough to
take the intersection a) at the final node; and b) at nodes u, where the path
crosses an edge (u,v) to a node v with multiple incoming edges. It is also
enough to store the set S, explicitly if a) node u has multiple or no outgoing
edges; or b) S, # S, for the only outgoing edge (u,v).

Let a be a string, let V, be the set of nodes reachable by following paths
with label «, and let S, be the set of strings compatible with the paths.
Because the graph is a DFA, the set of reachable nodes is monotonically
decreasing: |Via| < |Vo| and |Vao| < |V, for any character a € A. If Z; is

< 1 for any character a € A, as the paths can

a moved substring, ‘VZ_RG
only end at the rightmlost node of the common region X/. If set V&, is
non-empty, set S,r, contains all strings, as aZ; is a substring of all stfings.

When we search in FMA, we move from V, to V,,. We update the set of
compatible strings S lazily. Initially the set contains all strings. If |V,| > 1,
there cannot be false positives. Either none of the paths enters a common
region from a non-common region, or all such paths start within Z; and
enter X/ through every incoming edge. In either case, So = U,cy, So- If
|Vaa| = 1 and the node v € V,,, has multiple incoming edges, there is a risk
of false positives. We therefore update S < SN J,cy, Su- When the search
finishes at Vi, the set of compatible strings is S N U,ey. , So-

4.5. GCSA

While not all NFAs have an ordering of nodes that makes them Wheeler
graphs, we can use Wheeler graphs to index path labels of length up to &
in arbitrary graphs [49]. This is the idea behind Generalized Compressed

15



385

390

395

400

405

410

415

Suffix Arrays (GCSAs). We emphasize that Wheeler graphs can be larger
than the graphs they are used to index.

Definition 7. Let G be an NFA, let G’ be a Wheeler graph, let a be a
string, and let V,, and V. be the sets of nodes reachable with « in G and G,
respectively. Graph G’ is a kth-order path graph of G for a k > 0, if there is a
function f from nodes of G’ to sets of nodes of G such that V,, = Uvev: f(v)
for all |a| < k.

We can use a kth-order de Bruijn graph of path labels in graph G as a
kth-order path graph of G. See Figure[9]for an example. Function f has the
same role as the suffix array. As with the sets of strings in FMA, we must
store set f(u) explicitly, if a) node u has multiple or no outgoing edges; or b)
we cannot derive f(u) from f(v) for the only outgoing edge (u,v). We often
number the nodes of the NFA in a way such that f(u) ={z—1|z € f(v)},
if (u,v) is the only outgoing edge from u and the only incoming edge to v.

With large values of k, de Bruijn graphs often have many redundant
nodes when we use them as path graphs. If |a| < k, the nodes V reach-
able with « in the de Bruijn graph are the ones with « as a suffix of the
corresponding k-tuples. By Lemma [3] the nodes form a consecutive range.
If f(v) = f(v') for all v,v" € V!, we can merge the nodes without affecting
reachability. GCSA2 [49] uses such pruned de Bruijn graphs to save space
when indexing path labels in an NFA. See Figure [9] for an example.

The original GCSA [50] considers a different scenario. Instead of indexing
paths of length up to &k in an arbitrary NFA, it indexes paths of arbitrary
length in an acyclic DFA. Conceptually, GCSA construction searches for
a de Bruijn graph G’ that is equivalent to the input graph G as a DFA,
and then uses that de Bruijn graph as an infinite-order path graph of G.
Consecutive ranges of nodes are merged if f(v) = f(v') for all nodes v and
v' in the range, even if the ranges do not correspond to shared suffixes of
the k-tuples. See Figure |§| (bottom) for an example.

4.6. PBWT, wavelet trees and wavelet matrices

Another remarkable variant of the BWT is Durbin’s positional BWT [12]
(PBWT), which he introduced for haplotype matching but has also been
used for reconstructing ancestral recombination graphs [48]. Given d strings
of equal length the PBWT supports the matching of substrings starting at
a specified position in the strings.

We can view the PBWT as a Wheeler graph with the same structure as
that of the multi-string BWT. If the multi-string BWT has an edge (u,v)
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Figure 9: Top: A DFA. Second: A 3rd-order de Bruijn graph for path labels in the DFA.
Node labels indicate node ordering in the Wheeler graph. We also show the k-tuples
corresponding to each node (in reverse to match the sorting order) and the mapping f to
the nodes of the DFA. Third: A pruned de Bruijn graph for the DFA. Node labels are
compatible with the second graph. Gray color indicates nodes where the mapping must
be stored explicitly. Bottom: A path graph based on a 4th-order de Bruijn graph.
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with label a from text position i to position i+1, PBWT uses (i+1, a) as the
label. Because all edges from position 7 go to position ¢ + 1, the positional
component is always i + 1 for all outgoing edges in range [(i — 1)d + 1, 4d].
Hence, we can infer the position from the range and store just the character
a in the succinct representation (Lemmald]). A generalization [44] of PBWT
relaxes the requirements. Instead of storing strings of equal length, we store
the labels of paths in a graph. If edge (u, v) in the Wheeler graph corresponds
to edge (u',v’") with label a in the underlying graph, we use (v’,a) as the
label of the edge. As we can no longer infer the positional component, we
have to store it explicitly.

Although introduced for completely different applications, the PBWT
bears a striking resemblance to a data structure called a wavelet matrix,
which Claude, Navarro and Ordénez [I1] introduced as a version of the
wavelet tree [28] better suited for large alphabets. This suggests that even
wavelet trees and matrices can be viewed as Wheeler graphs. For the sake
of brevity, we assume the reader is familiar with these data structures with
“myriad virtues” [13],24], and note only that, while building a wavelet tree is
analogous to a most-significant-bit-first radix sort, building either a PBWT
or a wavelet matrix is analogous to a least-significant-bit-first radix sort.

Consider the wavelet tree shown on the left in Figure Since it is
a tree, we can use our construction from Subsection to build an FSA
(with one initial state) that accepts all the binary strings that are root-to-
leaf paths in the wavelet tree. This does not store all the information in the
wavelet tree, however, so we turn the graph from an FSA into a directed
multi-graph, as shown on the right in Figure which is still a Wheeler
graph. This graph has some interesting properties: e.g., the order of the
outgoing edges from each node encode the bitvector stored at that node in
the wavelet tree; as in the wavelet tree, for each internal node v except the
root, v’s in-degree and out-degree are equal and its in-degree is equal to the
sum of the in-degrees of its leaf descendants. It is beyond the scope of this
paper to investigate this representation of wavelet trees as a data structure,
but it seems like an interesting direction for future research that goes beyond
the reach of Theorem [6

Now consider the wavelet matrix show on the left in Figure We can
turn it into a Wheeler graph if, as in the wavelet tree, we transform it into
a directed multi-graph and then, as in the PBWT, we rename the label ¢
on each edge with the pair (i, c), where i is the level of the starting node, as
shown on the right in Figure Again, the Wheeler graph clearly encodes
the wavelet matrix, but we leave as future work investigating the possible
benefits of this alternative representation.
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Figure 10: A standard representation of a wavelet tree and its representation as a Wheeler
graph.

4 7 6 5 3 2 1 0 2 1 4 17
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3 1 0 2 1 1|4 7 6 5 4 7
1 10 0 1 0 0|0 1 1 0 0 1
/ x
1 01 1 4 5 4|13 2 2 7 6 7
1 01 1 0 1 011 0 O 1 0 1
/ \

01112 2 3 4 456 77

Figure 11: A standard representation of a wavelet matrix and its representation as a
Wheeler graph with edge labels over a larger alphabet.

5. Conclusions and Future Work

We have defined Wheeler graphs to try to capture the ideas behind many
of the variants of the BWT, and given a framework for developing new vari-
ants by solving problems with finite-state automata whose state diagrams
are Wheeler graphs. We did not pursue the topic here, but Wheeler graphs
seem able to capture properties also of string transformations not related to
pattern matching: by reversing the inequality u < u’ in we get a slightly
different notion of Wheeler graph that can be used to succinctly represent
the variant of the BWT defined in terms of the alternating lexicographic
order [26] (see also [27] for an ancestor of the multi-string BWT).
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There has been so much work involving the BWT, however, that it would
be surprising if one idea could subsume it all, and indeed some BWT-related
results, such as the positional BWT, seemingly cannot be reasonably mod-
elled by finite-state automata, even if they can still be viewed as Wheeler
graphs; other BWT-related results, such as Ganguly et al.’s parameterized
BWT [25] and the index for order-preserving matching in [23], seem not
even to be based on Wheeler graphs at all. We have not yet even considered
bidirectional FM-indexes [3, 31, [32] and bidirectional BWT-based de Bruijn
graphs [4].

Apart from applying and extending our framework, we hope to de-
velop algorithms to recognize Wheeler graphs efficiently, and to characterize
classes of finite-state diagrams that are Wheeler graphs or can be expanded
slightly to become Wheeler graphs without changing the language accepted
by the automata (although characterizing all such state diagrams might be
difficult). In this regard we observe that not all regular languages have
finite-state automata whose state diagrams are Wheeler graphs: e.g., in any
finite-state automaton for the language (ax*b)|(cx*d), there must be disjoint
paths for az¥b and cz¥d and both ends of all edges with label z must be
in the same order, so there must be separate nodes for z'b and z'd for all
values of i.

Finally, we hope our new perspective on BWT variants makes them more
accessible to computer scientists from areas outside string algorithms and
data structures.
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