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Abstract

We address the problem of counting the number of strings in a collection
where a given pattern appears, which has applications in information retrieval
and data mining. Existing solutions are in a theoretical stage. In this pa-
per we implement these solutions and explore compressed variants, aiming to
reduce data structure size. Our main result is to uncover some unexpected
compressibility properties of the fastest known data structure for the problem.
By taking advantage of these properties, we can reduce the size of the structure
by a factor of 5-400, depending on the dataset.

1 Introduction

In the classic pattern matching problem, we are given a text string T [1, n] and a
pattern string P [1,m], and must count or report all the positions in T at which P
occurs. Document retrieval problems are natural variants of this classic problem in
which T is composed of d smaller strings, or documents. The three main document
retrieval problems considered to date are: document counting, where the task is to
compute the number of documents containing P ; document listing, where we must
return a list of all the documents that contain P ; and top-k listing, returning the
k documents most relevant to P , given some relevance measure (for example, the k
documents that contain P most often). From an algorithmic point of view, these
problems are interesting because the number of occurrences of P in T , denoted occ,
may be very much larger than docc, the number of distinct documents in which the
pattern occurs, and so tailored solutions may outperform those based on brute-force
application of classical pattern matching.

In recent years, document retrieval problems have been the subject of intense
research in both the string algorithms and information retrieval communities (see
recent surveys [8, 11]). The vast majority of this work has been on the latter two
problems (listing and top-k). Indeed, there have been only two results on document
counting [15, 5], and no investigation into their practicality has been undertaken.

∗Funded in part by Fondecyt Project 1-140796; Basal Funds FB0001, Conicyt, Chile; the Jenny
and Antti Wihuri Foundation, Finland; and by Academy of Finland grants 268324 and 258308.

1



However, competitive listing and top-k solutions require fast algorithms for count-
ing. In recent work [13] it was shown that the best choice of listing and top-k algorithm
in practice strongly depends on the docc/occ ratio, and thus the ability to compute
docc quickly may allow the efficient selection of an appropriate listing/top-k algorithm
at query time. Secondly, from an information retrieval point of view, docc (known
in that community as document frequency, or df) is a necessary component of most
ranking formulas [16, 2], and so fast computation of it is desirable. Document count-
ing is also important for data mining applications on strings (or string mining, see,
e.g., [3]), where the value docc/d for a given pattern is its support in the collection.

Results. Our main result is to show that Sadakane’s data structure inherits the
repetitiveness present in the underlying data, which can be exploited to reduce its
space occupancy, obtaining a compressed data structure. Surprisingly, the structure
also becomes repetitive with random and near-random data, such as DNA sequences.
We show how to take advantage of this redundancy in a number of different ways,
leading to different space-time trade-offs. The best of these compressed representa-
tions are 5–400 times smaller than the original, depending on the dataset, while being
only marginally slower, and sometimes faster, at answering counting queries.

2 Background

Let T [1, n] be a concatenation of a collection of d documents. We assume that each
document ends with a special character $ that is lexicographically smaller than any
other character of the alphabet. The suffix array (SA) of the collection is an array
SA[1, n] of pointers to the suffixes of T in lexicographic order. The document array
(DA) DA[1, n] is a related array, where DA[i] is the identifier of the document where
suffix T [SA[i], n] begins. The suffix tree (ST) is a versatile text index based on building
a trie for the suffixes of the text, and compacting unary paths into single edges. If
we list the leaves of the suffix tree in lexicographic order, we get the suffix array.

Many succinct and compressed data structures are based on bitvectors. A bitvector
is a binary sequence B[1, n], with additional data structures to support rank and
select. Operation rank1(B, i) counts the number of 1-bits in the prefix B[1, i], while
select1(B, i) finds the 1-bit of rank i. These operations can also be defined for 0-bits,
as well as on general sequences. Several different encodings are commonly used for the
binary sequence. Plain bitvectors store the sequence as-is, while entropy-compressed
bitvectors reduce its size to close to the zero-order entropy. Gap encoding stores
the distances between successive minority bits, while run-length encoding stores the
lengths of successive runs of 1-bits and 0-bits. Grammar-compressed bitvectors use a
context-free grammar to encode the sequence.

The compressed suffix array (CSA) [7] and the FM-index (FMI) [4] are space-
efficient text indexes based on the Burrows-Wheeler transform (BWT) [1] — a per-
mutation of the text originally developed for data compression. The Burrows-Wheeler
transform BWT[1, n] is easily obtained from the text and the suffix array: BWT[i] =
T [SA[i]−1], with T [0] = $. As the CSA and the FMI are very similar data structures,
we collectively name them compressed suffix arrays (CSAs) in this paper.
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We consider text indexes supporting four kinds of queries: 1) find(P ) returns
the range [sp, ep], where the suffixes in SA[sp, ep] start with pattern P ; 2) locate(P )
returns SA[sp, ep]; 3) count(P ) returns the number of documents containing pattern
P ; 4) list(P ) returns the identifiers of the distinct documents containing pattern P .
For queries 2–4, we also consider variants, where the parameter is the suffix array
range [sp, ep] or the suffix tree node v corresponding to pattern P . CSAs support the
first two queries; find is relatively fast, while locate can be much slower. The main
time/space trade-off in a CSA, the suffix array sample period, affects the performance
of locate queries. Larger sample periods result in slower and smaller indexes.

3 Prior Methods for Document Counting

In this section we review the two prior methods for document counting, one by
Sadakane [15] and another by Gagie et al. [5].

Sadakane’s method. Sadakane [15] showed how to solve count in constant time
adding just 2n + o(n) bits of space. We start with the suffix tree of the text, and
add new internal nodes to it to make it a binary tree.1 For each internal node
v of the binary suffix tree, with nodes u and w as its children, we determine the
number of redundant suffixes h(v) = |list(u) ∩ list(w)|. This allows us to compute
count recursively: count(v) = count(u) + count(w) − h(v). By using the leaf nodes
descending from v, [sp, ep], as base cases, we can solve the recurrence:

count(v) = count(sp, ep) = (ep+ 1− sp)−
∑
u

h(u),

where the summation goes over the internal nodes of the subtree rooted at v.
We form array H[1, n− 1] by traversing the internal nodes in inorder and listing

the h(v) values. As the nodes are listed in inorder, subtrees form contiguous ranges
in the array. We can therefore rewrite the solution as

count(sp, ep) = (ep+ 1− sp)−
ep−1∑
i=sp

H[i].

To speed up the computation, we encode the array in unary as bitvector H ′. Each
cell H[i] is encoded as an 1-bit, followed by H[i] 0-bits. We can now compute the
sum by counting the number of 0-bits between the 1-bits of ranks sp and ep:

count(sp, ep) = 2(ep− sp)− (select1(H
′, ep)− select1(H

′, sp)) + 1.

As there are n− 1 1-bits and n− d 0-bits, bitvector H ′ takes at most 2n+ o(n) bits.

1We generalize queries count and list for the binary tree by counting or listing the distinct docu-
ment identifiers in range DA[sp, ep] or in the leaves of the subtree rooted at v.

3



Counting with the interleaved LCP array. Muthukrishnan [10] defined, for
efficiently computing list(P ), an array C[1, n] so that C[i] = j if j is the rightmost
position preceding i such that DA[i] = DA[j]. He uses the property that the first
occurrence DA[i] of each document in DA[sp, ep] is the only one for which C[i] < sp.
This property makes C useful for counting, as we only have to determine the number
of values below sp in C[sp, ep]. This can be done in O(log n) time using a wavelet tree
[7] on C, of size n log n + o(n log n) bits. Gagie et al. [6] used a more sophisticated
representation, achieving n log d + o(n log d) + O(n) bits of space and query time
O(log(ep− sp+ 1)) to compute count(sp, ep).

Both time and space are not competitive with Sadakane’s method. However, a
more recent approach [5] could be space-competitive, especially on repetitive doc-
ument collections. Let lcp(S, T ) be the length of the longest common prefix of se-
quences S and T . The LCP array of T [1, n] is an array LCP[1, n], where LCP[i] =
lcp(T [SA[i−1], n], T [SA[i], n]). We get the interleaved LCP array ILCP[1, n] by build-
ing separate LCP arrays for each of the documents, and interleaving them according
to the document array. As ILCP[i] < |P | iff position i contains the first occurrence of
DA[i] in [sp, ep], we can solve count by counting the number of values less than |P |
in ILCP[sp, ep]. This is efficiently done with a wavelet tree of ILCP. The advantage
of using ILCP is that, if the documents are similar to each other, then ILCP will have
many runs of about d equal values (i.e., the same suffix coming from all the d docu-
ments), and thus it can be run-length compressed. The wavelet tree is built only on
the run heads, and count(sp, ep) is computed from the run heads and the run lengths.

4 Compressed Document Counting

As described above, Sadakane’s structures requires 2n + o(n) bits, irrespective of
the underlying data. This can be a considerable overhead on highly compressible
collections, taking significantly more space than the CSA (on top of which Sadakane’s
structure operates). Fortunately, as we now show, the bitvector H ′ used in Sadakane’s
method is highly compressible. There are five main ways of compressing the bitvector,
with different combinations of them working better with different datasets.

1. Let Vv be the set of nodes of the binary suffix tree corresponding to node v of
the original suffix tree. As we only need to compute count(v) for the nodes of the
original suffix tree, the individual values of h(u), u ∈ Vv, do not matter, as long as
the sum

∑
u∈Vv h(u) remains the same. We can therefore make bitvector H ′ more

compressible by setting H[i] =
∑

u∈Vv h(u), where i is the inorder rank of node v, and
H[j] = 0 for the rest of the nodes. As there are no real drawbacks in this reordering,
we will use it with all of our variants of Sadakane’s method.

2. Run-length encoding works well with versioned collections and collections of ran-
dom documents. When a pattern occurs in many documents, but no more than once
in each, the corresponding subtree will be encoded as a run of 1-bits in H ′.

3. When the documents in the collection have a versioned structure, we can also
use grammar compression. To see this, consider a substring x that occurs in many
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documents, but at most once in each document. If each occurrence of substring x
is preceded by character a, the subtrees of the binary suffix tree corresponding to
patterns x and ax have identical structure, and DA[find(x)] = DA[find(ax)]. Hence
the subtrees are encoded identically in bitvector H ′.

4. If the documents are internally repetitive but unrelated to each other, the suffix
tree has many subtrees with suffixes from just one document. We can prune these
subtrees into leaves in the binary suffix tree, using a filter bitvector F [1, n−1] to mark
the remaining nodes. Let v be a node of the binary suffix tree with inorder rank i. We
will set F [i] = 1 iff count(v) > 1. Given a range [sp, ep−1] of nodes in the binary suffix
tree, the corresponding subtree of the pruned tree is [rank1(F, sp), rank1(F, ep − 1)].
The filtered structure consists of H ′ (pruned tree), and a compressed encoding of F .

5. We can also use filters based on array H instead of count. If H[i] = 0 for the
most cells, we can use a sparse filter FS[1, n − 1], where FS[i] = 1 iff H[i] > 0, and
build bitvector H ′ only for those nodes. We can also encode positions with H[i] = 1
separately with an 1-filter F1[1, n− 1], where F1[i] = 1 iff H[i] = 1. With an 1-filter,
we do not write 0-bits in H ′ for nodes with H[i] = 1, but subtract the number of
1-bits in F1[sp, ep−1] from the result of the query instead. It is also possible to use a
sparse filter and an 1-filter simultaneously. In that case, we set FS[i] = 1 iff H[i] > 1.

We analyze the number of runs of 1-bits in bitvector H ′ in the expected case.
Assume that our document collection consists of d random documents of length m
each, over an alphabet of size σ. We call string S unique, if it occurs at most once
in every document. The subtree of the binary suffix tree corresponding to a unique
string is encoded as a run of 1-bits in bitvector H ′. If we can cover all leaves of the
tree with u unique strings, bitvector H ′ has at most 2u runs of 1-bits.

Consider a random string of length k. The probability that the string is non-
unique is at most dm2/(2σ2k). Let N(i) be the number of non-unique strings of
length ki = logσ(m

√
d)+ i. As there are σki strings of length ki, the expected value of

N(i) is at most m
√
d/(2σi). The expected size of the smallest cover of unique strings

is therefore at most

(σk0 −N(0)) +
∞∑
i=1

(σN(i− 1)−N(i)) = m
√
d+ (σ − 1)

∞∑
i=0

N(i) ≤
(σ

2
+ 1
)
m
√
d,

where σN(i − 1) − N(i) is the number of strings that become unique at length ki.
The number of runs of 1-bits in H ′ is therefore sublinear in the size of the collection
(dm). See Figure 1 for an experimental confirmation of this analysis.

5 Experiments

5.1 Implementation

We use two fast document listing algorithms as baseline document counting methods.
Brute-D uses an explicit document array, sorting a copy of the query range DA[sp, ep]
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Figure 1: The number of runs of 1-bits in Sadakane’s bitvector H ′ on synthetic collections
of DNA sequences (σ = 4). Each collection has been generated by taking a random sequence
of length m = 27 to 217, duplicating it d = 217 to 27 times (making the total size of the
collection 224), and mutating the sequences with random point mutations at probability
p = 0.001 to 1. The dashed line represents the expected case upper bound for p = 1.

to count the number of distinct document identifiers. PDL-RP [13] is a variant of
precomputed document listing, using grammar compression to space-efficiently store
the answers for list queries for a carefully selected subset of suffix tree nodes. As
the basic text index, both algorithms use RLCSA [9], a practical implementation of
the compressed suffix array intended for repetitive datasets. The suffix array sample
period was set to 32 on non-repetitive datasets, and to 128 on repetitive datasets.

We used both RLCSA components and newly implemented bitvectors for several
variants of Sadakane’s method. First, we have a set of basic (i.e., not applying
filtering) versions of this method, depending on how bitvector H ′ is encoded:

Sada uses a plain bitvector representation.

Sada-RR uses a run-length encoded bitvector as supplied in the RLCSA implemen-
tation. It uses δ-codes to represent run lengths and packs them into blocks of 32 bytes
of encoded data. Each block stores the number of bits and 1-bits up to its beginning.

Sada-RS uses a run-length encoded bitvector, represented with a sparse bitvector
(see Sada-S below) marking the beginnings of the 0-runs and another for the 1-runs.

Sada-RD uses run-length encoding with δ-codes to represent the lengths. The bitvec-
tor is cut into blocks of 128 1-bits, and three sparse bitvectors (as in Sada-S) are used
to mark the number of bits, 1-bits, and starting positions of block encodings.

Sada-grammar uses grammar-compressed bitvectors [12].

There are also various versions that include filtering, and differ on how the bitvec-
tor F is represented (we only study the most promising combinations):

Sada-P-G uses Sada for H ′ and a gap-encoded bitvector for F . This gap-encoding
is provided in the RLCSA implementation, which is similar to that of run-length
encoding but only runs of 0-bits are considered.
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Table 1: Statistics for document collections. Collection size in megabytes, RLCSA size
without suffix array samples in megabytes and in bits per character, number of documents,
average document length, number of patterns, average number of occurrences and document
occurrences, and the ratio of occurrences to document occurrences.

Size RLCSA

Collection MB MB bpc d n/d Patterns occ docc occ/docc

Page 641 9.00 0.11 190 3534921 14286 2601 6 444.79
Revision 640 9.04 0.11 31208 21490 14284 2592 1065 2.43
Enwiki 639 309.31 3.87 44000 15236 19628 10316 2856 3.61
Influenza 321 10.53 0.26 227356 1480 1000 59997 44012 1.36
Swissprot 54 25.19 3.71 143244 398 10000 160 121 1.33

Sada-P-RR uses Sada for H ′ and a run-length encoded bitvector (as Sada-RR) for F .

Sada-RR-G uses Sada-RR for H ′ and a gap-encoded bitvector for F .

Sada-RR-RR uses Sada-RR for H ′ and the same encoding for F .

Sada-S uses sparse bitmaps for both H ′ and the sparse filter FS. Sparse bitmaps
store the lower w bits of the position of each 1-bit in an array, and use gap encoding in
a plain bitvector for the high-order bits. Value w is selected to minimize the size [14].

Sada-S-S is Sada-S with an additional sparse bitmap for F1

Sada-RS-S uses Sada-RS for H ′ and a sparse bitmap (as in Sada-S) for F1.

Sada-RD-S uses Sada-RD for H ′ and a sparse bitmap (as in Sada-S) for F1.

Finally, ILCP implements the technique described in Section 3, using the same
encoding as in Sada-RS to represent the bitvectors of the wavelet tree.

The implementations were written in C++ and compiled on g++ version 4.8.1.2

Our test environment was a machine with two 2.40 GHz quad-core Xeon E5620 pro-
cessors (12 MB cache each) and 96 GB memory. Only one core was used for the
queries. The operating system was Ubuntu 12.04 with Linux kernel 3.2.0.

5.2 Experimental data

We compared the performance of the document counting methods on five real datasets.
Three of the datasets consist of natural language texts in XML format, while two con-
tain biological sequences. See Table 1 for some basic statistics on the datasets.

Page is a repetitive collection of 190 pages with a total of 31208 revisions from a
Finnish language Wikipedia archive with full version history. The revisions of each
page are concatenated to form a single document. For patterns, we chose all Finnish
words of length ≥ 5 that occur in the collection.

2The implementations are available at http://jltsiren.kapsi.fi/rlcsa and https://

github.com/ahartik/succinct.
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Revision is the same as Page, except that each revision is a separate document.

Enwiki is a nonrepetitive collection of 44000 pages from a snapshot of the English
language Wikipedia. As patterns, we used search terms from an MSN query log with
stop words filtered out. We generated 20000 patterns according to term frequencies,
and selected those that occur in the collection.

Influenza is a repetitive collection of the genomes of 227356 influenza viruses. For
patterns, we extracted 100000 random substrings of length 7, filtered out duplicates,
and kept the 1000 patterns with the largest occ/docc ratios.

Swissprot is a nonrepetitive collection of 143244 protein sequences. Patterns are
10000 substrings of length 5 with the largest occ/docc ratio out of a sample of 200000.

5.3 Results

Results are shown in Figure 2. As plain Sada was almost always the fastest method,
we scaled plots to leave out anything much larger than it. The baseline document
listing methods have size 0, as they exploit functionality already present in the index.

On Page, the filtered methods Sada-P-RR and Sada-RR-RR were clearly the best
choices. Plain Sada was much faster, but took much more space than the rest of the
index. Only Sada-grammar, which was quite slow, compressed the structure much.
On Revision, there were many small encodings with similar performance. Among the
very small encodings, Sada-RS-S was the fastest. Sada-S was somewhat larger and
faster. Like with Page, plain Sada was even faster, but took much more space.

The situation changed on the non-repetitive Enwiki. Only Sada-RD-S, Sada-RS-S,
and Sada-grammar could compress the bitvector well below 1 bpc, and Sada-grammar
was much slower than the other two. Sada-S was the fastest method among those
requiring around 1 bpc. Plain Sada was twice as large as and twice faster than Sada-S.

Influenza and Swissprot contain, respectively, DNA and protein sequences, so each
individual sequence is quite random. Such collections are easy cases for Sadakane’s
method and many encodings compressed the bitvector very well. On both datasets,
Sada-S was the fastest small encoding. On Influenza the small encodings easily fit in
CPU cache, and so were often faster than plain Sada.

It is interesting that different compression techniques succeed in different collec-
tions. Sada-grammar was the only consistently small variant.

The ILCP-based structure, ILCP, was always significantly larger and slower than
compressed variants of Sada.

6 Conclusions

We investigated the time/space trade-offs in document counting data structures, im-
plementing both known solutions and new methods. While Sadakane’s method was
the fastest choice, we found that it can be compressed significantly below the original
2n + o(n) bits, for a document collection of total size n. We compressed the struc-
ture 5-fold on the natural language Enwiki dataset. When the dataset was repetitive
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or contained random sequences, but not both, the best compressed encodings were
around 20 times smaller than Sadakane’s original structure. With both repetitive
data and random sequences in the Influenza collection, we achieved up to 400-fold
compression. In all cases, the query times were around 1 microsecond or less.
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Figure 2: Document counting on different datasets. We show the average time in mi-
croseconds required by a count query, as a function of the size of the document counting
structure in bits per character.
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