
Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Subject Section

Distance Indexing and Seed Clustering in
Sequence Graphs
Xian Chang 1,∗, Jordan Eizenga 1, Adam M. Novak 1, Jouni Sirén 1 and
Benedict Paten 1,

1University of California Santa Cruz Genomics Institute, Santa Cruz, CA, USA

∗To whom correspondence should be addressed.

Abstract

Motivation: Graph representations of genomes are capable of expressing more genetic variation and
can therefore better represent a population than standard linear genomes. However, due to the greater
complexity of genome graphs relative to linear genomes, some functions that are trivial on linear genomes
become much more difficult in genome graphs. Calculating distance is one such function that is simple in a
linear genome but complicated in a graph context. In read mapping algorithms such distance calculations
are fundamental to determining if seed alignments could belong to the same mapping.
Results: We have developed an algorithm for quickly calculating the minimum distance between positions
on a sequence graph using a minimum distance index. We have also developed an algorithm that uses the
distance index to cluster seeds on a graph. We demonstrate that our implementations of these algorithms
are efficient and practical to use for a new generation of mapping algorithms based upon genome graphs.
Availability and Implementation: Our algorithms have been implemented as part of the vg toolkit and
are available at https://github.com/vgteam/vg.
Contact: xhchang@ucsc.edu

1 Introduction
Conventional reference genomes represent genomes as a string or
collection of strings. Accordingly, these so-called “linear reference
genomes” can only store one allele at each locus. The resulting lack
of diversity introduces a systematic bias that makes samples look more
like the reference genome [20]. This reference bias can be reduced
by using pangenomic models, which incorporate the genomic content
of populations of individuals [2]. Sequence graphs are a popular
representation of pangenomes that can express all of the variation in a
pangenome [13]. Sequence graphs have a more complex structure and the
potential to contain more data than linear genomes. This tends to make
functions on a sequence graph more computationally challenging than
analogous functions on linear genomes.

One such function is computing distance. In a linear genome, the exact
distance between two loci can be found by simply subtracting the offset
of one locus from the offset of the other. In a graph, calculating distance
is much more complicated; there may be multiple paths that connect the
two positions and different paths may be relevant for different problems.

Distance is a basic function that is necessary for many functions on
genome graphs; in particular, calculating distance is essential for efficient

mapping algorithms. In a seed-and-extend paradigm, short seed matches
between the query sequence and reference are used to identify small regions
for expensive alignment algorithms to align to [17, 10, 15, 6, 18, 16]. Often
these regions are identified by clusters of matches. Clustering requires
repeated distance calculations between seeds and can be very slow in
graphs as large as whole genome graphs. The prohibitive run time of
clustering algorithms can make them impractical for mapping and some
mapping algorithms omit this step entirely [16].

We have developed an algorithm to calculate the exact minimum
distance between any two positions in a sequence graph and designed a
index to support it. We also developed a clustering algorithm that clusters
seeds based on the minimum distance between them. Our algorithms are
implemented as part of vg, a variation graph toolkit [6].

2 Background

2.1 Sequence Graph Structure

A sequence graph is a bidirected graph in which each node is labeled by a
sequence of nucleotides. A nodeX has two sides, {x, x̄}. For convenience,
we will consider x to be the “left” side and x̄ to be the “right”. This induces
a directionality on X , so that we may consider a left-to-right (or x to
x̄) traversal of X to be forward, and a right-to-left traversal backward.

© The Author xxxx. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1



2 Chang et al.

However, we note that the designation of “left” and “right” is arbitrary.
They can be swapped without changing the underlying graph formalism.
Conceptually, a forward traversal corresponds to the forward strand, and
a backward traversal corresponds to the reverse complement strand.

Paths in a bidirected graph must obey restrictions on both nodes and
edges. Edges connect two node sides rather than nodes. A path consists
of an alternating series of oriented nodes and edges. The path must enter
and exit each (non-terminal) node through opposite node sides. In addition,
there must exist an edge connecting consecutive nodes in the path, between
the node side that is exited and the node side that is entered.

In Figure 1, the graph has an edge between ā and b. A path including
this edge would go from A to B traversing both forward, or from B to A

traversing both backward.
Some applications use a specific articulation of a sequence graph called

a variation graph. A variation graph contains a set of embedded paths
through the graph. These paths typically correspond to the primary and
alternate scaffolds of a reference genome.

2.2 Snarl Decomposition

In previous work, we proposed a decomposition for sequence graphs
that describes their common topological features [12]. A simple variant,
such as an indel or SNP, will typically be represented as one or two
nodes (corresponding to the different alleles), flanked by two more nodes
(corresponding to adjacent conserved sequences. In Figure 1, nodes A, J ,
and M all represent conserved sequences. Nodes K and L represent two
alternative sequences that occur between J and M . The subgraph between
the two flanking nodes, in this case the subgraph containing nodes J ,K,
L, and M , is called a snarl. Snarls can be seen as a generalization of the
variant ’bubbles’ used in many genome assembly algorithms [12].

A snarl is defined by a pair of node sides, (x, y) that delimit a subgraph
between them. The nodes X and Y are called the boundary nodes of the
snarl. Two node sides define a snarl if they are (1) separable: splitting the
boundary nodes into their two node sides disconnects the snarl from the
rest of the graph, and (2) minimal: there is no node A in the snarl such that
(x, a) or (ā, y) are separable. In Figure 1, ḡ and i define a snarl (ḡ, i). We
will sometimes abuse the terminology and use “snarl” to refer to both the
pair of nodes and the subgraph that they separate from the rest of the graph.
Thus, we can say that the snarl (ḡ, i) contains node H and boundary nodes
G and I .

In sequence graphs, snarls often occur contiguously with a shared
boundary node between them; a sequence of contiguous snarls is called a
chain. In Figure 1, the snarls (b̄, d) and (d̄, f) comprise a chain between b̄

and f , which we refer to as [b̄, f ]. A trivial chain is one that contains only
one snarl; in Figure 1, snarl (ḡ, i) is part of a trivial chain, chain [ḡ, i].

Snarls and chains can be nested within other snarls. This nesting
behavior often occurs when the same genomic element is affected by both
point and structural variants, in which case the point variant’s snarl nests
inside the structural variant’s snarl. A snarl (x, y) contains another snarl
(a, b) if all nodes in (a, b) are contained in the subgraph of (x, y). In
Figure 1, the snarl (ā, j) contains snarls (ḡ, i), (b̄, d), and (d̄, f). A snarl
contains a chain if each of the chain’s snarls are in the subgraph of the
containing snarl.

The nesting relationships of snarls and chains in a sequence graph is
described by its snarl tree (Figure 1). Each snarl or chain is represented in
the snarl tree as a node. Since every snarl belongs to a (possibly trivial)
chain, snarl trees have alternating levels of snarls and chains with a chain
at the root of the tree. We also refer to the root as the top-level chain. A
snarl is the child of a chain if it is a component of the chain. A chain [a, b]

is a child of (x, y) if (x, y) contains [a, b] and there are no snarls contained
in (x, y) that also contain [a, b].

Fig. 1. Example sequence graph (top) and its snarl tree (bottom). Chains in the sequence
graph are represented as rectangular nodes in the snarl tree and snarls are represented as
elliptical nodes.

All nodes in a sequence graph will be contained by the decomposition
of its snarls and chains, described by the snarl tree. In general, the snarl
tree can be arbitrarily deep and have very short chains. However the snarl
tree of a typical sequence graph will be shallow and have a long chain as
the root. The majority of snarls will be contained in this top-level chain.
Small variants can nest within larger structural variants, contributing to
the depth of the snarl tree. However, in most parts of the genome, the rate
of polymorphism is low enough that two variants are unlikely to overlap
each other. As a result, the depth of these nested variants is usually very
small, typically less than 5 in our observations.

Nodes, snarls, and chains are all two-ended structures that are
connected to the rest of the graph by two node sides. It is sometimes
convenient to refer to a topological feature only by this shared property,
and to be opaque about which topological feature it actually is. In these
cases, we will refer to the node, snarl, or chain generically as a “structure”.
As with nodes of the sequence graph itself, structures are assigned an
arbitrary orientation but we will assume that they are oriented left to right
and refer to the left and right sides of structures as struct and struct

respectively. Because of their shared two-ended property, structures can
all be treated as single nodes in their parents. The netgraph of a snarl is a
view of the snarl where each of its child chains is replaced by a node.

2.3 Prior Research

2.3.1 Distance in graphs
Calculating distance in a graph is an extremely well studied topic. Many
graph distance algorithms improve upon classical algorithms, such as
Dijkstra’s algorithm [4] and A* [7], by storing precomputed data in
indexes. These methods index the identities of important edges [11, 9]
or distances between selected nodes [3, 14, 5, 1] then use the indexed
information to speed up distance calculations. Index-based algorithms
must make a tradeoff between the size of the index and the speed of the
distance query.

2.3.2 Distance in sequence graphs
Some sequence graph mapping algorithms use clustering steps based on
different estimations of distance [18, 6]. In vg, distance is approximated
from the embedded paths. This path-based method estimates the distance
between two positions based on a nearby shared path. The algorithm
performs a bidirectional Dijkstra search from both positions until it finds
at least one path in common from both positions. This path is then used to
estimate the distance between them.

Some research has been done on finding solutions for more specific
distance queries in sequence graphs. PairG [8] is a method for determining



Distance indexing 3

Fig. 2. The minimum distance calculation from a position on C to a position on K can be
broken up into the distances from each position to the ends of each of its ancestor structures
in the snarl tree. Each colored arrow in the graph represents a distance query from a structure
to a boundary node of its parent. The snarl tree node that each query occurs in is outlined
with the same color. At the common ancestor of the positions, chain [ā,m], the distance
is calculated between two of the chain’s children, (ā, j) and (j̄, m).

the validity of independent mappings of reads in a pair by deciding whether
there is a path between the mappings whose distance is within a given range.
This algorithm uses an index to determine if there is a valid path between
two vertices in a single O(1) lookup. Although this is an efficient solution
for this particular problem, it cannot be used to query the exact distance
between two nodes. Rather, it returns a boolean value indicating whether
two nodes are reachable within a range of distances, which is defined at
index construction time.

3 Minimum Distance
Our minimum distance algorithm finds the minimum oriented traversal
distance between two positions on a sequence graph. A position consists
of a node, offset in the sequence, and orientation. The oriented distance
must originate from a path that starts traversing the first position in its
given orientation and ends at the second position in its given orientation.

Our algorithm uses the snarl decomposition of sequence graphs to
guide the calculation. Because structures are connected to the rest of
the graph by their boundary nodes, any path from a node inside a
structure to any node not in that structure must pass through the structure’s
boundary nodes. Similarly, any path between boundary nodes of snarls in
a chain must pass through the boundary nodes of every snarl that occurs
between them in the chain. Because of this property, we can break up
the minimum distance calculation into minimum distances from node
and chain boundaries to the boundaries of their parent snarl, from snarl
boundaries to their parent chain boundaries, and the distance between
sibling structures in their parent structure (Figure 2). We refer to this
property of minimum distance calculation in structures as the split distance
property.

3.1 Minimum Distance Index

We designed our minimum distance index to support distance queries
between child structures in snarls and between boundary nodes of snarls in
chains in constant time. The overall minimum distance index consists of
a snarl index for each snarl and a chain index for each chain in the graph.

3.1.1 Snarl Index
For each snarl, the index stores the minimum distances between every
pair of node sides of child structures contained in the snarl, including the
boundary nodes. A distance query within a snarl is a simple constant time
lookup of the distance.

3.1.2 Chain Index
For each chain, the index stores three arrays, each with one entry for each
boundary node of the snarls in the chain. The first, a prefix sum array,
contains the minimum distance from the start of the chain to the left side
of each of the boundary nodes of the snarls that comprise the chain. This

array can be used to find the distance between two of these snarls’ boundary
nodes along the chain. Distances from a left-to-right traversal of the chain
can be computed directly from the prefix sum array, whereas distances from
a right-to-left traversal also require the length of the boundary nodes. Since
paths can reverse direction in the chain (Figure 3a), the index also stores
each boundary node’s “loop distance”. The loop distance is the minimum
distance to leave a boundary node, change direction in the chain, and
return to the same node side traversing in the opposite direction. These
loop distances are stored in final two arrays, one for each direction. In
Figure 3a, the forward loop distance for node C is two times the length
of E: the distance to leave c̄ traversing forward and return to c̄ traversing
backward by taking the bold looping edge on ē. These three arrays are
sufficient to find the minimum distance between any two node sides in the
chain in constant time (Figure 3).

Fig. 3. (a) The shortest path between two nodes in a chain can sometimes reverse direction
in the chain. The edges on the shortest path between the positions on B and D are bolded.
(b) A and B are boundary nodes of snarls in a chain. Distances stored in the chain index are
shown in black. For each boundary node in the chain, the chain index stores the minimum
distance from the start of the chain to the left side of that node as well as the loop distances
for a forward and backward traversal. These loop distances are the minimum distance to
leave a node, reverse direction in the chain, and return to the same node side. (c) There are
four possible minimum-distance paths between two nodes, connecting either node side of
the two nodes. The lengths of these paths can be found using the distances stored in the
chain index and the lengths of the nodes.

Chains that are not top-level chains cannot form a closed cycle so any
path that traverses a chain’s boundary node going out of the chain must
leave the chain. Therefore any connectivity between the boundaries of
the chain will be captured by the snarl index of the chain’s parent. The
top-level chain may form a closed cycle where the start and end boundary
nodes are the same node (Figure 4). In this case, the shortest path may
remain within the chain, but it may also leave the chain and re-enter it
from the other side. In Figure 4, the minimum distance from ā to d could
be d(ā, d̄) + d(d, d) or d(ā, ā) + d(a, d).

Fig. 4. A cyclic chain containing two snarls, (ā, d̄) and (d, a)

3.1.3 Index Construction
The minimum distance index is constructed in a post-order traversal of
the snarl tree. For each snarl, the construction algorithm does a Dijkstra
traversal starting from each child structure, using the child’s index to
find the distance to traverse child snarls or chains. For each chain, the



4 Chang et al.

construction algorithm traverses through each snarl in the chain and uses
the snarl’s index to find each of the relevant distances for the chain index.

3.1.4 Index Size
Naively, a minimum distance index could store the minimum distance
between every node in the graph. A distance calculation would be a
constant time lookup but the index size would be quadratic in the number
of nodes in the graph. For each snarl in the graph, our index stores the
distance between every pair of structures in the net graph. For each chain,
it stores three arrays, each the length of the chain. In a graph with a set of
snarls S and chains C, our index will take O(

∑
S n2

s +
∑

C nc) space
where ns is the number of structures in the netgraph of snarl s and nc is
the number of snarls in chain c.

3.2 Minimum Distance Algorithm

The first step of our minimum distance algorithm (Algorithm 2) is to find
the least common ancestor structure in the snarl tree that contains both
positions. We do this by traversing up the snarl tree from each position and
finding the first common structure. This traversal is O(d) where d is the
depth of the snarl tree.

Next, the algorithm finds the distance from each position to the ends of
the child of the least common ancestor (Algorithm 1). Starting at a position
on a node, we find the distances to the ends of the node. If both positions are
oriented forward, then we find the distance to the right side of the fist node
and the left side of the second, and we record the distances to the opposite
sides as infinite. In the case where a position is oriented backward, we find
the distance to the opposite side. The algorithm then traverses up the snarl
tree to the least common ancestor and at each structure, finds the minimum
distances to the ends of the structure. Because of the split distance property,
this distance can be found by adding the distances to the ends of the child,
found in the previous step in the traversal, to the distances from the child
to the boundary nodes of the structure, found using the minimum distance
index (Figure 5). Since this requires only four constant-time queries to the
minimum distance index, each step in the traversal is constant time and
the overall traversal is O(d).

At this point in the algorithm, we know the minimum distance from
each position to its ancestor structure that is a child of the common
ancestor. By composing these distances with the distances between the two
structures, the algorithm finds possible distances between the two positions
in the common ancestor structure. The algorithm continues to traverse the
snarl tree up to the root and finds a minimum distance between the positions
at each structure, checking for paths that leave the lowest common ancestor.
This traversal is also O(d). The minimum distance algorithm is done
in three O(d) traversals of the snarl tree, so the algorithm is O(d). In
variation graphs for moderately large genomes without extreme levels of
polymorphism, snarl trees are very shallow. In these graphs, the algorithm
is expected to be O(1). However, for variation graphs of small, highly
polymorphic genomes, the run time may grow with increasing amounts
of population variation. Complex sequence graphs derived from assembly
graphs also may demonstrate slower run time behavior.

4 Clustering
Seed-and-extend algorithms sometimes cluster seed alignments by their
location in the graph to find which might belong to the same mapping.
Using our minimum distance index, we developed an algorithm to cluster
positions based on the minimum distance between them in the graph.

Fig. 5. The distToEndsOfParent calculation described in Table 1. (a) S and E are the
boundary nodes of a structure that contains a child structure N . The minimum distances
from some object in N to the ends of N shown as black arrows. (b) The minimum distances
from each end of N to s̄ and e are found using the minimum distance index. (c) By adding
the appropriate distances and taking the minimums, we can get the minimum distances to
s and ē.

Table 1. Primitive functions for the minimum distance algorithm

Function Description Complexity
distToEndsOfParent(
struct,dist_left,
dist_right)

Given the distances from a position
in a structure struct to the ends
of struct, find the distance to the
ends of the parent (Figure 5)

O(1)

using the
distance
index

distWithinStructure(
struct, child_1,
child_2, dist1_l,
dist1_r, dist2_l,
dist2_r)

Given two children of a structure
and distances from positions to the
boundaries of the children, find
the minimum distance between the
positions in struct

O(1)

using the
distance
index

Algorithm 1: distToAncestor(position, ancestor): Given a
position and ancestor structure, return the minimum distance from
the position to both sides of a child of the ancestor and the child

begin
struct←− parentOf(position)
dist_l, dist_r ←− distances from position to ends of node,
one is∞

while parentOf(struct) is not ancestor do
/* Find the minimum distance from

position to the boundaries of each

ancestor */

dist_l, dist_r ←−
distToEndsOfParent(struct, dist_l, dist_r)
struct←− parentOf(struct)

return dist_l, dist_r, struct

4.1 Problem

We will cluster seeds by partitioning them based on the minimum distance
between their positions in a sequence graph. To define a cluster, we
consider a graph where each seed is a node and two seeds are connected if
the minimum distance between their positions is less than a given distance
limit. In this graph, each connected component is a cluster.

4.2 Algorithm

Our clustering algorithm starts with each position in a separate cluster
then progressively agglomerates the clusters (Figure 6). The algorithm
proceeds in a post-order traversal of the snarl tree and, at each structure,
produces clusters of all positions contained in that structure (Algorithm
5). After iterating over a structure, clusters are also annotated with two



Distance indexing 5

Algorithm 2: minDistance(position_1, position_2): Return
the minimum distance from position_1 to position_2, ∞ if
no path between them exists

begin
/* Get distances from each position to the

ends of a child of the least common

ancestor */

ancestor ←−
leastCommonAncestor(position_1, position_2)

dist1_l, dist1_r, struct_1←−
distToAncestor(position_1, ancestor)
dist2_l, dist2_r, struct_2←−
distToAncestor(position_2, ancestor)
min_dist←−∞
while ancestor is not root of snarl tree do

/* Given the distance from each position

to both sides of a child of ancestor,

find the minimum distance between the

two positions in ancestor */

min_dist←−
min(min_dist,distWithinStructure(ancestor, struct_1,
struct_2, dist1_l, dist1_r, dist2_l, dist2_r))

dist1_l, dist1_r ←−
distToEndsOfParent(struct_1, dist1_l, dist1_r)

dist2_l, dist2_r ←−
distToEndsOfParent(struct_2, dist2_l, dist2_r)

struct_1←− ancestor, struct_2←− ancestor

ancestor ←− parentOf(ancestor)

return min_dist

“boundary distances”: the shortest distance from any of its positions to the
boundary nodes of the structure. At every iteration, each cluster can be
unambiguously identified with a structure and so the boundary distances
are always measured to the structure the cluster is on.

The method of agglomerating clusters and computing boundary
distances vary according to the type of structure. For nodes, the algorithm
creates a sorted array of the positions contained in it and splits the array
into separate clusters when the distance between successive positions is
large enough . For each new cluster, the boundary distances are computed
from the positions’ offsets.

For structures that are snarls or chains, clusters are created from the
clusters on their children (Algorithm 3, Algorithm 4). Clusters associated
with child structures are compared and if the distance between any pair of
their positions is smaller than the distance limit, they are combined. Within
a structure, distances to clusters that are associated with child structures can
be calculated using the split distance property as in the minimum distance
algorithm. According to this property, the minimum distance can be split
into the cluster’s boundary distance and the distance to one of the boundary
nodes, which is found using the index. For snarls, all pairs of clusters are
compared to each other. For chains, clusters are combined in the order they
occur in the chain, so each cluster is compared to agglomerated clusters
that preceded it in the chain. Finally, for each of the resulting clusters, we
compute the boundary distances for the current structure, once again using
the boundary distances of the children and the index.

In the worst case, every position would belong to a separate cluster
and at every level of the snarl tree, every cluster would be compared to
every other cluster. This would be O(dn2) where d is the depth of the
snarl tree and n is the number of seeds, so in the worst case our clustering
algorithm is no better than the naive algorithm of comparing every pair

Fig. 6. Clustering of positions (Xs) is done by traversing up the snarl tree and progressively
agglomerating clusters. Positions are colored by the final clusters. (a) Each position starts
out in a separate cluster on a node. Each cluster is annotated with its boundary distances:
the minimum distances from any of its positions to the ends of the structure it is on. (b)
For each snarl on the lowest level of the snarl tree, the clusters on the snarl’s children are
agglomerated into new clusters on the snarl. The boundary distances are extended to the
ends of the snarl. (c) For each chain on the next level of the snarl tree, the clusters on the
chain’s snarls are agglomerated and the boundary distances are updated to reach the ends
of the chain. This process is repeated on each level of the snarl tree up to the root.

of positions with our minimum distance algorithm. In practice, however,
seeds that came from the same alignment would be near each other on
the graph and form clusters together, significantly reducing the number of
distance comparisons that would be made (see results below).

5 Methods and Results
Our algorithms are implemented as part of the vg toolkit. We conducted
experiments on two different graphs: a human genome variation graph
and a graph with simulated structural variants. The human genome
variation graph was constructed from GRCh37 and the variants from the
1000 Genomes Project. The structural variant graph was simulated with
10bp-1kbp insertions and deletions every 500bp.

The human genome variation graph had 306, 009, 792 nodes,
396, 177, 818 edges, and 3, 180, 963, 531 bps of sequence. The snarl tree
for this graph had a maximum depth of three snarls with 139, 418, 023

snarls and 11, 941 chains. The minimum distance index for the graph was
12.2 GB on disk and 17.7 GB in memory.

To assess the run time of our minimum distance algorithm, we
calculated distances between positions on the whole genome graph and
compared the run time of our algorithm to vg’s path-based algorithm and
Dijkstra’s algorithm (Figure 7). We chose random pairs of positions in two
ways. The first method sampled positions uniformly at random throughout
the graph. The second method first followed a random walk of 148 bp
through the graph and then sampled two positions uniformly at random
from this random walk. This approach was intended to approximate the
case of seeds from a next-generation sequencing read. On average, our
minimum distance algorithm is the fastest of the three algorithms for both
sets of positions. In addition, all three algorithms’ performance degraded



6 Chang et al.

Algorithm 3: clusterSnarl(snarl, child_to_clusters,
distance_limit): Given a snarl and map from children of
the snarl to their clusters, get clusters of the snarl

begin
snarl_clusters←− // Array of all clusters in

child_to_clusters

for struct, cluster in child_to_clusters do
/* Record the minimum distances from

each cluster to the boundaries of

snarl */

cluster.dist_left_parent, cluster.dist_right_parent←−
distToEndsOfParent(struct, cluster.dist_left, cluster.dist_right)

for struct_1, cluster_1 in child_to_clusters do
for struct_2, cluster_2 in child_to_clusters do

/* Compare each pair of clusters and

if they are close enough, combine

them */

cluster_dist←− distWithinStructure(snarl,
struct_1, struc_2, cluster_1.dist_left,
cluster_1.dist_right, cluster_2.dist_left,
cluster_2.dist_right)

if cluster_dist ≤ distance_limit then
Agglomerate cluster_1 and cluster_2, take the
minimum dist_left_parent and
dist_right_parent

for cluster in snarl_clusters do
/* Update boundary distances to reach

the ends of snarl */

cluster.dist_left, cluster.dist_right←−
cluster.dist_left_parent, cluster.dist_right_parent

return snarl_clusters

when the positions could be sampled arbitrarily far apart in the graph, but
our minimum distance algorithm’s performance degraded the least.

Our new minimum distance algorithm shows a distinct gain in
performance over the other methods, however the algorithm must trade
off speed with the memory consumed by the index. A hybrid approach
could be imagined where the index is used to compute the distance up
structures in the common ancestor, then Dijkstra’s algorithm could be
used to connect the structures. The runtime of such a hybrid algorithm is
in the worst case the same as Dijkstra’s algorithm. Using this approach,
the distance index would only need to store the distance from each node in
a snarl to the boundary nodes of the snarl, rather than the distance between
every pair of nodes, reducing the memory requirement of the index.

In the context of read mapping, we are often only interested in the
exact distance when the minimum distance is small, but when the minimum
distance is large enough the exact distance is not necessary. In this scenario,
the algorithm could be accelerated by stopping early when it is apparent
that the minimum distance will be too large.

We used the structural variant graph to assess whether the minimum
distance is a useful measure of distance for read mapping. We compared
our minimum distance algorithm to the path-based approximation, which
estimates distances based on linear paths corresponding to scaffolds of a
reference genome. To do so, we again used read-length random walks to
select pairs of positions. Further, we filtered random walks down to those
that overlapped a structural variant breakpoint. We then calculated the
distances between pairs of positions using our minimum distance algorithm
and the path-based approximation and compared these distances to the
actual distances in the random walk, which we take as an approximation

Algorithm 4: clusterChain(chain, child_to_clusters,
distance_limit): Given a chain and a map from each snarl in
the chain to its clusters, get clusters of the chain

begin
chain_clusters←− []// Empty array of

clusters of chain

for snarl, snarl_cluster in child_to_clusters do
/* Record the minimum distances from

snarl_cluster to the boundaries of chain

*/

snarl_cluster.dist_left_parent,
snarl_cluster.dist_right_parent←−
distToEndsOfParent(snarl, cluster.dist_left, dist_right)
for chain_cluster in chain_clusters do
/* Compare the snarl clusters with

each previously found chain cluster

*/

if chain_cluster.distance_right +

snarl_cluster.distance_left ≤ distance_limit

then
Agglomerate snarl_cluster and chain_cluster,
take the minimum dist_left_parent and
dist_right_parent

for cluster in chain_clusters do
/* Update the right distance of each

cluster to reach the end of snarl

*/

cluster.dist_right←−
cluster.dist_right + snarl.length

Add any uncombined snarl clusters to chain_clusters
return chain_clusters

of the true distance on a sequencing read. Overall, the minimum distance
was a much better estimate of distance along the random walk than the
path-based distance approximation (Figure 8).

For our clustering algorithm, we wanted to estimate the run time of
the algorithm in the context of read mapping. We simulated 148bp reads
from AshkenazimTrio HG002_NA24385_son from the Genome in a Bottle
Consortium [19]. For each read, we sampled 15-mer matches from the read
and found their positions in the human genome variation graph using a k-
mer lookup table. We then apply the clustering algorithm to the positions of
these k-mers. The regression line of the log-log plot of run times suggests
the run time of our algorithm is linear in the number of positions in practice,
despite the quadratic worst-case bound.

6 Conclusion
Pangenomes have the potential to eliminate reference bias and grow the
inclusiveness of reference structures used in genomics, but substantial
algorithmic challenges remain in adapting existing paradigms to use them.
We have developed a simple and elegant minimum distance algorithm with
run time that is linear in the depth of the snarl tree. In practice, the algorithm
exploits the observation that real-world genome graphs have an excess of
small, local variations and relatively fewer variations that connect disparate
parts of the graph. The result is that real genome graphs have a shallow snarl
tree, making the calculations fast and effectively constant time in practice;
indeed, we observe the algorithm is substantially faster than other distance
algorithms on queries of arbitrary distance. The minimum distance we
return is an exact distance, unlike the previous heuristic implementation



Distance indexing 7

Algorithm 5: cluster(snarl_tree, positions,
distance_limit): Cluster positions based on the distance
limit

begin
struct_to_clusters // Map each structure to

its clusters

for struct in snarl_tree do
/* Traverse structures in post-order */

if struct is a node then
struct_to_clusters[struct]←− clusters of positions
on struct

else if struct is a snarl then
child_clusters←− // Get map from each

child of struct to its clusters

struct_to_clusters[struct]←− clusterSnarl(struct,
child_clusters, distance_limit)

else
child_clusters←−// Get map from each

child of struct to its clusters

struct_to_clusters[struct]←−
clusterChain(struct, child_clusters, distance_limit)

return struct_to_clusters[snarl_tree.root]

Fig. 7. Run times for distance algorithms. Random pairs of positions were chosen from
either within a read-length random walk (dark colors) or randomly from the graph (light
colors).

of distance in vg, resulting in much more reasonable estimates of distance
around the breakpoints of structural variants. Our minimum distance
algorithm will also work with any sequence graph, whereas the preexisting
vg distance algorithm required pre-specified paths. Here we developed a
clustering algorithm for clustering positions on the graph based on the
minimum distances between them. Clustering is a major component of
many mapping algorithms and calculating distance is a bottleneck of
clustering in genome graphs. Our new clustering algorithm runs in linear
time relative to the number of seeds, whereas many existing algorithms,

Fig. 8. Distance calculations on a graph with simulated structural variants. Read-length
random walks were simulated near the junctions of structural variants. The distance between
two random positions along each walk was calculated using the path-based method and our
minimum distance algorithm and compared to the actual distance in the walk.

Fig. 9. Run time growth of our clustering algorithm. The regression line suggests that the
run time of our algorithm is approximately linear in the number of positions in practice.

including the current vg mapper’s path-based algorithm, are (at least)
quadratic due to pairwise distance calculations between seeds. We believe
this is an important step in generalizing efficient mapping algorithms to
work with genome graphs; we are now developing fast mapping algorithms
that use this clustering algorithm.

Funding
This work was supported, in part, by the National Institutes of Health
(award numbers: 5U54HG007990, 5T32HG008345-04, 1U01HL137183,
R01HG010053, U01HL137183, 2U41HG007234)

References
[1]Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Fast exact shortest-

path distance queries on large networks by pruned landmark labeling.
In Proceedings of the 2013 international conference on Management
of data - SIGMOD ’13, page 349, New York, New York, USA, 2013.
ACM Press.

[2]The Computational Pan-Genomics Consortium. Computational
pan-genomics: status, promises and challenges. Briefings in
Bioinformatics, page bbw089, October 2016.

[3]Vachik S. Dave and Mohammad Al Hasan. TopCom: Index for
Shortest Distance Query in Directed Graph. In Qiming Chen,
Abdelkader Hameurlain, Farouk Toumani, Roland Wagner, and



8 Chang et al.

Hendrik Decker, editors, Database and Expert Systems Applications,
Lecture Notes in Computer Science, pages 471–480, Cham, 2015.
Springer International Publishing.

[4]E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269–271, December 1959.

[5]Hristo N. Djidjev. Efficient algorithms for shortest path queries in
planar digraphs. In Gerhard Goos, Juris Hartmanis, Jan Leeuwen,
Fabrizio d’Amore, Paolo Giulio Franciosa, and Alberto Marchetti-
Spaccamela, editors, Graph-Theoretic Concepts in Computer Science,
volume 1197, pages 151–165. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1997.

[6]Erik Garrison, Jouni Sirén, Adam M Novak, Glenn Hickey, Jordan M
Eizenga, Eric T Dawson, William Jones, Shilpa Garg, Charles
Markello, Michael F Lin, Benedict Paten, and Richard Durbin.
Variation graph toolkit improves read mapping by representing genetic
variation in the reference. Nature Biotechnology, 36(9):875–879,
October 2018.

[7]Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A Formal
Basis for the Heuristic Determination of Minimum Cost Paths. IEEE
Transactions on Systems Science and Cybernetics, 4(2):100–107, July
1968.

[8]Chirag Jain, Haowen Zhang, Alexander Dilthey, and Srinivas Aluru.
Validating Paired-end Read Alignments in Sequence Graphs. bioRxiv,
page 682799, June 2019.

[9]Ulrich Lauther. An Extremely Fast, Exact Algorithm for Finding
Shortest Paths in Static Networks with Geographical Background.
In: Raubal, M., Sliwinski, A., Kuhn, W. (eds.) Geoinformation und
Mobilität - von der Forschung zur praktischen Anwendung, 22:12,
2004.

[10]Heng Li. Minimap and miniasm: fast mapping and de novo assembly
for noisy long sequences. Bioinformatics, 32(14):2103–2110, July
2016.

[11]Rolf H. Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner,
and Thomas Willhalm. Partitioning Graphs to Speed Up Dijkstra’s
Algorithm. In David Hutchison, Takeo Kanade, Josef Kittler,
Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni
Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu
Sudan, Demetri Terzopoulos, Dough Tygar, Moshe Y. Vardi, Gerhard
Weikum, and Sotiris E. Nikoletseas, editors, Experimental and
Efficient Algorithms, volume 3503, pages 189–202. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2005.

[12]Benedict Paten, Jordan M Eizenga, Yohei M Rosen, Adam M Novak,
Erik Garrison, and Glenn Hickey. Superbubbles, Ultrabubbles, and

Cacti. Journal of Computational Biology, 25:15, 2018.
[13]Benedict Paten, Adam M. Novak, Jordan M. Eizenga, and Erik

Garrison. Genome graphs and the evolution of genome inference.
Genome Research, 27(5):665–676, May 2017.

[14]Miao Qiao, Hong Cheng, Lijun Chang, and Jeffrey Xu Yu.
Approximate Shortest Distance Computing: A Query-Dependent
Local Landmark Scheme. In 2012 IEEE 28th International
Conference on Data Engineering, pages 462–473, April 2012. ISSN:
2375-026X, 1063-6382, 1063-6382.

[15]Goran Rakocevic. Fast and accurate genomic analyses using genome
graphs. Nature Genetics, 51:14, 2019.

[16]Mikko Rautiainen, Veli Mäkinen, and Tobias Marschall. Bit-parallel
sequence-to-graph alignment. Bioinformatics, 35(19):3599–3607,
October 2019.

[17]Korbinian Schneeberger, Jörg Hagmann, Stephan Ossowski, Norman
Warthmann, Sandra Gesing, Oliver Kohlbacher, and Detlef Weigel.
Simultaneous alignment of short reads against multiple genomes.
Genome Biology, 10(9):R98, September 2009.

[18]Kavya Vaddadi, Rajgopal Srinivasan, and Naveen Sivadasan. Read
Mapping on Genome Variation Graphs. In 19th International
Workshop on Algorithms in Bioinformatics (WABI 2019), 2019.

[19]Justin M. Zook, David Catoe, Jennifer McDaniel, Lindsay Vang,
Noah Spies, Arend Sidow, Ziming Weng, Yuling Liu, Christopher E.
Mason, Noah Alexander, Elizabeth Henaff, Alexa B.R. McIntyre,
Dhruva Chandramohan, Feng Chen, Erich Jaeger, Ali Moshrefi,
Khoa Pham, William Stedman, Tiffany Liang, Michael Saghbini,
Zeljko Dzakula, Alex Hastie, Han Cao, Gintaras Deikus, Eric
Schadt, Robert Sebra, Ali Bashir, Rebecca M. Truty, Christopher C.
Chang, Natali Gulbahce, Keyan Zhao, Srinka Ghosh, Fiona
Hyland, Yutao Fu, Mark Chaisson, Chunlin Xiao, Jonathan
Trow, Stephen T. Sherry, Alexander W. Zaranek, Madeleine Ball,
Jason Bobe, Preston Estep, George M. Church, Patrick Marks,
Sofia Kyriazopoulou-Panagiotopoulou, Grace X.Y. Zheng, Michael
Schnall-Levin, Heather S. Ordonez, Patrice A. Mudivarti, Kristina
Giorda, Ying Sheng, Karoline Bjarnesdatter Rypdal, and Marc
Salit. Extensive sequencing of seven human genomes to characterize
benchmark reference materials. Scientific Data, 3(1):160025,
December 2016.

[20]Justin M. Zook, Brad Chapman, Jason Wang, David Mittelman, Oliver
Hofmann, Winston Hide, and Marc Salit. Integrating human sequence
data sets provides a resource of benchmark SNP and indel genotype
calls. Nature Biotechnology, 32(3):246–251, March 2014.


