
Springer Nature 2021 LATEX template

Computational graph pangenomics: a tutorial

on data structures and their applications

Jasmijn A. Baaijens1,2, Paola Bonizzoni3*, Christina
Boucher4, Gianluca Della Vedova3, Yuri Pirola3, Raffaella

Rizzi3 and Jouni Sirén5

1Dept. of Intelligent Systems, Delft University of Technology, Van
Mourik Broekmanweg 6, Delft, 2628XE, Netherlands.

2Dept. of Biomedical Informatics, Harvard University, 10
Shattuck St, Boston, 02115, MA, USA.

3Dept. of Informatics, Systems and Communication (DISCo),
University of Milano – Bicocca, V.le Sarca, 336, Milan, 20126,

Italy.
4Dept. of Computer and Information Science and Engineering,

University of Florida, 432 Newell Dr, Gainesville, 32603, FL, USA.
5Genomics Institute, University of California, Santa Cruz,

1156 High St, Santa Cruz, 95064, CA, USA.

*Corresponding author(s). E-mail(s): paola.bonizzoni@unimib.it;
Contributing authors: j.a.baaijens@tudelft.nl;

christinaboucher@ufl.edu; gianluca.dellavedova@unimib.it;
yuri.pirola@unimib.it; raffaella.rizzi@unimib.it; jlsiren@ucsc.edu;

Abstract

Computational pangenomics is an emerging research field that is chang-
ing the way computer scientists are facing challenges in biological
sequence analysis. In past decades, contributions from combinatorics,
stringology, graph theory and data structures were essential in the devel-
opment of a plethora of software tools for the analysis of the human
genome. These tools allowed computational biologists to approach ambi-
tious projects at population scale, such as the 1000 Genomes Project.
A major contribution of the 1000 Genomes Project is the characteriza-
tion of a broad spectrum of genetic variations in the human genome,
including the discovery of novel variations in the South Asian, African
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and European populations—thus enhancing the catalogue of variability
within the reference genome. Currently, the need to take into account
the high variability in population genomes as well as the specificity of
an individual genome in a personalized approach to medicine is rapidly
pushing the abandonment of the traditional paradigm of using a sin-
gle reference genome. A graph-based representation of multiple genomes,
or a graph pangenome, is replacing the linear reference genome. This
means completely rethinking well-established procedures to analyze,
store, and access information from genome representations. Properly
addressing these challenges is crucial to face the computational tasks
of ambitious healthcare projects aiming to characterize human diver-
sity by sequencing 1M individuals (Stark et al, 2019). This tutorial
aims to introduce readers to the most recent advances in the the-
ory of data structures for the representation of graph pangenomes.
We discuss efficient representations of haplotypes and the variability of
genotypes in graph pangenomes, and highlight applications in solving
computational problems in human and microbial (viral) pangenomes.

1 Introduction

The 1000 Genomes Project (The 1000 Genomes Project Consortium, 2015)
marks the beginning of new computational approaches to genomic studies.
The high variation rate among individuals, and the availability of thousands of
human genomes have accelerated computational efforts towards graph models
as a new paradigm for representing a reference genome. The question “what is
an ideal reference genome?” is becoming the focus of investigations that also
involve theoreticians in the computer science community. In this direction,
algorithmic approaches have been proposed to implement pangenome graphs.
Moreover, the literature presents experimental evidence of the advantages of
those approaches (Rakocevic et al, 2019; Sibbesen et al, 2018; Dilthey et al,
2015; Garrison et al, 2018). Various reviews have presented this new research
field (Paten et al, 2017; Eizenga et al, 2020b), while challenges from different
domains are outlined by Computational Pan-Genomics Consortium (2018).

The aim of this tutorial is to discuss the main algorithmic approaches and
issues that will represent the focus of computer science research in the next
years. After illustrating the motivation for computational pangenomics, the
tutorial discusses recent succinct data structures that are highly promising in
main applications of pangenomics. The tutorial is organized as follows. First,
the basics of computational pangenomics are presented, including construc-
tion of a pangenome graph, possible graph representations, operations over a
pangenome, and data structures that index a pangenome. Second, related to
this last concept, we present recent data structures in pangenomics, the posi-
tional Burrows–Wheeler Transform and its generalization to manage graphs,
called graph BWT. Third, issues related to time and space complexity are
addressed by illustrating the essentials of the r-index based data structure that
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allows efficient implementation of well known queries, such as finding maximum
exact matches (MEMs). Lastly, we conclude with exemplifications of the uses
of the above mentioned methods to application scenarios aimed at detecting
and representing pangenome variation such as in haplotyping and genotyping
computational problems. A final section is devoted to the discussion of open
problems.

2 From a linear sequence to a graph reference
of a genome

The term pangenome goes back more than fifteen years ago, to the framework
of microbial analysis of the entire genomic repertoire of a given phylogenetic
clade (Tettelin et al, 2005). A pangenome describes the union of sequence
entities, such as genes or open reading frames, shared by genomes of a clade.
Its main purpose is to represent commonly present and frequently absent
sequences (e.g., genes) of interest. While the word “pangenome” in the micro-
biology literature is often used to describe core genes and strain specific genes,
pangenomics is becoming the conceptual framework to deal with the trends
in genomics of the last decade: the extraordinary growth of information on
human genomes, and the discovery of significant levels of large-scale genomic
variation in many eukaryotic species.

In contrast to a linear-genome reference, a pangenome is a reference sys-
tem for representing sequence variations of the genomic sequence of a species.
In particular, a pangenome graph is conceived to be the ideal representation
for a variety of bioinformatics tasks, which were originally performed on a lin-
ear reference genome. This graph encodes the commonalities and differences
among a collection of genomes of the same species at the sequence level. The
interest in replacing linear reference genomes with pangenome graph models
has largely increased with the discovery of limitations in performing various
tasks, such as read mapping and variant calling.

2.1 Limitations of a linear reference genome

Conventionally, a structural variant (SV) is a genomic mutation involving 50
or more base pairs. SVs can take several forms such as deletions, insertions,
inversions, translocations, or more complex events. The study of the 1000
Genomes Project with short reads technologies has enabled the discovery of
more than 88 million variants of variable length – 84.7 million single nucleotide
polymorphisms (SNPs) and 3.6 million short insertions/deletions (indels) – and
60,000 structural variants. On the other hand, it is estimated that the typical
genome contains about 2500 large SVs in total, and one SNP every 1200 to
1450 bases (The 1000 Genomes Project Consortium, 2015). The introduction
of accurate long read sequencing technology to the detection of SVs revealed an
even larger number of candidate variations in an individual genome w.r.t. the
reference genome (Khorsand et al, 2021). The discovery of so many variants
has shed light on major limitation of linear references: reads sampled from
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Fig. 1 A toy example of how a pangenome graph improves the quality of mapping
reads to a reference genome. (a) A multiple sequence alignment of a linear reference
genome and other three genomes that contain variations w.r.t. the reference. (b) A vari-
ation graph built from the matrix of the multiple alignment of the genomes; in red the
edges that represent variations in the graph and form the typical “bubbles” in the graph.
Observe that the graph may contain a path that does not represent any input genome
(for example, ACCGTTAAGGGCGATCGAACTCGTTTT). (c) Mapping of two reads (ACCGTTAAGCGA and
ACCGTTAAGCGA) to the linear reference genome. Observe that the alignments induces mis-
matches and indels. (d) Mapping of the same reads to the variation graph. Observe that, in
this case, the mapping is possible without any mismatch.

an individual carrying certain SVs may not align to the reference – in which
case, the read is frequently considered an artifact and discarded. Moreover, the
presence of rare alleles in the reference introduces a bias when mapping reads
(see Figure 1). Since mapping reads is still a crucial step in most analyses
for the identification of genetic variants that are linked to disease, clinical
applications need to go beyond the linear reference genome.

Ballouz et al (2019) identified other limitations of a linear reference, such
as the difficulties in introducing changes in the current reference, and the fact
that it does not sufficiently capture population diversity. A reference genome is
often thought of as a healthy baseline, while it is not a healthy genome, nor the
most common, nor the longest, nor an ancestral haplotype. Moreover, there are
some clear advantages in using a pangenome reference (Ballouz et al, 2019):
reducing reference bias, increasing mapping accuracy when sequencing a new
individual (Rakocevic et al, 2019), increasing rare variant identification accu-
racy, and improving de novo assembly of a new individual. At the same time,
representing population diversity is essential in genome-wide association stud-
ies for precision medicine (Popejoy and Fullerton, 2016). Approaches based on
linear reference genomes underlie a particular consensus model of the genome
which is convenient but not fully realistic. When using such a model, recon-
structed genomes are often more similar to the reference than they actually
are (Rakocevic et al, 2019).

A reference genome stored as a linear sequence would fail in representing
the diversity in the human population – ignoring the need to represent the
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diversity, for example, in the African population, which has been tradition-
ally under-represented in biomedical research. In 2016, Popejoy and Fullerton
(2016) state that 81% of the genome-wide association study data were from
European ancestry, with the other percentage mainly given by Asian popu-
lations. Moreover, African populations, which show high variability, are not
captured in association studies (Choudhury et al, 2020a). The fact that a
single donor of admixed African and European ancestry has contributed the
majority (more than 70%) of the current human reference genome (Schneider
et al, 2017; Green et al, 2010), the known GRCh38, is a clear limitation since
a single individual cannot be representative of the variability in a large popu-
lation. The above observation that the majority of DNA in the reference from
the human genome project is likely to come from African-American ancestry
is also confirmed by the evaluation study of rare reference alleles (RRA) by
Magi et al (2015), where it is shown that more than 25% of GRCh38 RRAs
are only found in African populations of the 1000 Genomes Project, while 4%
are European, 2.1% are Asian, and 1.1% are American. Consequently, more
variation will be missing from the reference genome in cohorts with higher
diversity (African populations) and drift from donors (East Asian) who pro-
vided material for it and with lower diversity. It is expected that even a larger
number of variations will be incorporated into the reference genome with the
expansion of several ongoing sequencing projects.

At the same time, the development of approaches relying on linear genomes
is well consolidated. For instance, the Variant Call Format (VCF) (Danecek
et al, 2011) has been widely adopted by the scientific community as the core file
format to represent the information of a collection of multiple genomes. This
format allows for the representation of relatively simple variations that can be
easily reconciled with a linear reference: insertions, deletions, and nucleotide
mutations called single nucleotide polymorphisms (SNPs).

2.2 Graph representations for multiple genomes

Graphs have been extensively used in the literature to model genome
sequences. Assembly graphs (i.e., de Bruijn graphs (Compeau et al, 2011) and
string graphs (Myers, 2005)) are the most well-known type of graph used to
store and represent biological data. These graphs are built from fragments of
a genome which are commonly referred to as sequence reads, and represent the
common regions between reads (fixed or of variable length) as edges in the
graph. These graphs will be discussed in detail in Section 6.2. Sequence reads
are produced by sequencing technologies and have different characteristics in
terms of length, errors and throughput, meaning the amount of data that can
be produced in a single run of the machine.

Overlap graphs form a specific type of string graphs, where vertices rep-
resent sequence reads and arcs indicate non-empty overlap (either exact or
inexact) between the reads reads (Rizzi et al, 2019). In particular, string
graphs (Myers, 2005), introduced to assemble genomes from sequence reads,
provide a graph representation of genome sequences with some features that
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are especially useful: (1) each vertex is labeled by a sequence and its reverse-
complement, (2) arcs connect two sequences that appear consecutively in the
genome (possibly with an overlap), and (3) walks correspond to portions of
the genome.

Assembly graphs introduce another complication, since we cannot know
the strand from which the read has been extracted. In this case, each vertex
has two labels, where one is the reverse complement of the other. As custom-
ary for assembly graphs, we represent only the canonical label – the label that
is lexicographically smaller – but each walk must distinguish between the two
labels. Partially ordered graphs (Lee et al, 2002) have also been used to rep-
resent the sequence alignment of multiple genomes. This is one of the first
approaches used for representing shared sequences among multiple genomes.
Partially ordered graphs have been investigated in the literature and at the
same time some graph representations have been proposed to store multiple
sequences or assembly graphs (Li et al, 2017).

2.3 Pangenome graphs and their main applications

Pangenome graphs have been proposed as a new paradigm for representing
reference genomes. This is a natural representation since graphs provide a
compact and concise data structure for performing several tasks, including
classical search operations. Graph-based representations of the human genome
may encode a large number of variants, such as those reported by The 1000
Genomes Project Consortium (2015). However, the size and number of such
graphs is likely to further increase with the completion of ongoing sequenc-
ing projects. The adoption of pangenome graphs in performing tasks for the
analysis and comparison of genomes in presence of variations is only at the
beginning, but such pangenomics approaches have shown to outperform single
reference genome approaches.

• Structural variant graph representation is a computational problem that is
relevant for many tasks. It is not possible to represent complex structural
variants with use of a single reference genome. Structural variants may
change a genome into a similar but functionally different genome, and are
the result of rearrangements of sequence segments in the genome, such as
for example the duplication, inversions and translocation of segments of
the genome. A graph is a more appropriate structure to represent rear-
rangements among multiple genomes, since orientation of edges, cycles
and complex structures in a graph, such as bubbles, represent structural
variants in a way that they can be managed by algorithms and suitable
data structures to index and query graphs. A bubble is a directed acyclic
subgraph determined by a pair of vertices, a source vertex s and a terminal
vertex t such that all paths from s to t are vertex disjoint.

• Highly accurate read alignment to regions of high variability. Read align-
ment to a sequence is the operation of establishing the location in the
sequence where the read originated as a fragment. There are regions in
the human genome that are important for immunology studies but very



Springer Nature 2021 LATEX template

Computational graph pangenomics 7

challenging for read alignment due to the large number of variations. An
example is given by the ∼5 million base region in the human genome
called the Major Histocompatibility Complex (MHC). Providing a suit-
able pangenomic representation for read alignment – especially within
these regions of the human genome – is an important computational
challenge.

• Genotyping variants is the problem of reconstructing the allele variants
that characterize an individual. Due to the diploid nature of the human
genome, chromosomes come in pairs that are highly similar but present
differences at the nucleotide level. For example, nucleotide differences can
occur, and determine the homozygous or heterozygous state of positions
or loci of the chromosomes: homozygous loci bear the same value on
both chromosome copies, while heterozygous loci bear different values on
the two copies. Genotyping an individual is a computational task that is
performed by having as input a sample of reads from the individual (Denti
et al, 2019). Typical genotyping approaches make use of read alignment to
a linear reference, in which case SVs or any main difference at the sequence
level between the reference and the individual sample may potentially
lead to bias and erroneous and incomplete genotyping.

• Haplotype resolved pangenome analysis is a computational task aiming
to specify haplotype information in a graph representation. While geno-
typing an individual means to specify the fact that a site is homozygous
or heterozygous, haplotyping (or phasing) of the genome consists in
determining on which chromosomal copy, i.e., paternal or maternal, the
different alleles are located (Bonizzoni et al, 2016).

It is interesting to note that solving the problem of genotyping variants
means combining some of the above listed tasks, starting from a suitable
representation of highly polymorphic regions and finally considering the align-
ment of reads to that representation. Giraffe (Sirén et al, 2021) is a recent
approach based on short read alignment for genotyping of SNPs, indels, and
SVs genome-wide. Highly polymorphic or repetitive regions represent a chal-
lenge for SV prediction tools due to the fact that a linear reference model is
unable to capture the complexity of such information. Genotyping tasks are
usually performed by mapping of reads: this is a task which is very fast in
BWA-MEM (Li, 2013) on a single linear reference, but it may be slower on a
graph. Giraffe is a fast mapper of short reads to a pangenome graph consist-
ing of aligned haplotypes indexed by the graph BWT described in one of the
next sections. An important ingredient for read alignment to a pangenome in
Giraffe is the ability to efficiently match queries over the graph by the graph
BWT.

In Section 6 we will detail two main application scenarios of the concepts
presented in the following sections.



Springer Nature 2021 LATEX template

8 Computational graph pangenomics

2.4 On the structure of the paper

First, we will focus on formally introducing the definition of sequence graphs
and variation graphs. Indeed, to the best of our knowledge, the literature
does not present a widely accepted formal definition of variation (or sequence)
graphs: most of the papers either have a focus on graphs, where the labels of
the vertices are almost neglected (for example, Paten et al, 2017), or the focus
is on strings and the graph is implicit (see Ukkonen, 2002; Huang et al, 2013).
One of the few papers that considers a notion of variation graph similar to the
one we propose in the tutorial is presented by Sirén (2017), but the focus of
that paper is on indexing graphs. For this reason, we focus on defining variation
graphs. Secondly, we discuss relevant computational problems, such as:

• how to define a pangenome graph and inspect its properties,
• how to build a pangenome graph from a collection of genomes,
• how to store a pangenome graph and index the information contained

therein, so that reads can be efficiently mapped to the pangenome.
Despite the fact that computational pangenomics is in its early stages,

several competing and/or complementary approaches have been proposed,
such as VG (Garrison et al, 2018), SevenBridges (Rakocevic et al, 2019),
PaSGAL (Jain et al, 2019), GraphAligner (Rautiainen et al, 2019), and
odgi (Guarracino et al, 2021). Next, we describe some data structures and algo-
rithms that can index pangenomes techniques. In particular, we present the
positional BWT, the graph positional BWT, and the r-index. We show how
the positional BWT allows to store and query in compact space a collection
of haplotype sequences. The graph BWT is a generalization of the positional
BWT that allows to store the structure of a pangenome graph, the r-index
leverages the high similarity of multiple genomes to generate in a scalable way
to index collections of genomes. These aspects require us to also give a brief
introduction of the BWT and the FM-index.

We proceed with an important application of the notions discussed in this
tutorial: viral haplotype reconstruction, where we want to build the pangenome
of different viral strains.

Finally, we conclude the paper with a discussion of the limitations of the
current state of research in computational pangenomics and we provide some
open problems.

To simplify the presentation, we assume that the reader is familiar with
the basic terminology on graphs (Diestel, 2005).

3 Pangenome graphs: basic definitions

Given a collection of genome sequences, a fundamental computational problem
in pangenomics is how to construct a graph that represents all the genomes.
In this tutorial, a variation graph is vertex-labeled, and its paths correspond
to the genome sequences that we want to encode (Garrison et al, 2018). The
next two definitions synthesize those that have appeared in literature.
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Definition 1 (variation graph) A variation graph G = 〈V,A,W 〉 is a directed graph
whose vertices are labeled by nonempty strings, with λ : V 7→ Σ+ being the labeling
function, and where A denotes the set of arcs and W denotes a nonempty set of
distinguished walks.

In Definition 1 walks correspond to variants (i.e. sequences) that we want to
retain in our representation. We note that in some application we do not specify
the variants that we represent, but the set of possible variants (sequences) are
in the graph. This leads to the definition of sequence graphs (Rakocevic et al,
2019), which represent the set of walks of a variation graph. Sequence graphs
represent variants that not in the input set since they are induced by the arcs
of the variation graph. Hence, such walks are not explicitly labeled. See Figure
1 for an example of a genome that contains a variant that is represented in
the graph but not in the input genomes.

Definition 2 (sequence graph) A sequence graph G = 〈V,A〉 is a directed graph
whose vertices are labeled by nonempty strings, with λ : V 7→ Σ+ being the labeling
function, and where A denotes the set of arcs.

We note that a sequence graph G = 〈V,A〉 is a variation graph G =
〈V,A,W 〉 with the same set of vertices with W consisting of all possible walks
in the graph. For this reason, the properties of variation graphs also hold for
sequence graphs. To follow the usual nomenclature that is based on the notion
of a path, we will mostly use the term “path” even when we refer to a walk. To
simplify the exposition, we make the assumption that we will normally have
a source and a sink of the graph, which are unlabeled (see Fig. 2). Moreover,
we make the assumption that a variation graph models a single chromosome.
A distinct variation graph for each chromosome for modeling genomes with
multiple chromosomes. Next, we note that we can extend the definition of
label of a vertex to define also the label of a path. This essentially requires
that an arc connects two non-overlapping strings; in this case the graph is
blunt (Eizenga et al, 2021).

Definition 3 (path label) Let G be a variation graph, and let w =< v1, e1, . . . , vl >
be a walk of G. Then the label of the walk w is the concatenation λ(w) =
λ(v1) · · ·λ(vl) of the labels of the vertices of the walk.

Definition 4 (expresses) Let g be a string, and let G be a variation graph. Then G
expresses g if there is a source-sink walk w of G such that the label of the walk w is
exactly g, that is λ(w) = g.

The definition of a variation graph that we have provided is simple and
can be adapted to different contexts. In the case, where we want to represent
a set of genomes, the variation graph is called a genome graph (Eizenga et al,
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TAC C
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Fig. 2 Example of a variation graph with two dummy vertices: a source and a sink.

2020b). A variation graph can be used also to represent an assembly graph
– albeit more specialized and efficient representations are used for assembling
sequence reads .

We can consider a variation graph as an abstract data structure for which
some concrete implementations have been proposed (Eizenga et al, 2020a).
Those implementations present different trade-offs. For example, not all of
them easily allow updates in the variation graph, i,e., use dynamic data struc-
tures. Moreover, most representations use different compression strategies, and
also differ in how strand information is stored, where strand information allows
a vertex to represent two reverse-complemented strings. We describe a slightly
simplified implementation that represents two reverse-complemented strings
as two different vertices that are linked together via a shared identifier. The
first implementation, VG (Garrison et al, 2018), uses a hash table to represent
arcs. Although it was adequate, it was not memory efficient. A second imple-
mentation, XG (Garrison, 2019), uses bitvectors to encode the vertices and the
adjacency lists, resulting in greater time and memory efficiency. XG is static,
meaning the vertices and arcs cannot be updated. A third implementation,
odgi (Guarracino et al, 2021), represents arcs and walks via delta encoding,
where only the difference between the identifiers of two consecutive vertices
are stored. Observe that when the graph is similar to a single walk (which is
true in almost all practical cases). This implementation leads to superior time
and memory efficiency.

A more practical problem is how to store a pangenome graph in a file. The
most widely used format for this purpose is GFA, which was initially proposed
for representing assembly graphs (Li et al, 2017). It is a textual format to
represent labeled graphs. The main limitation of GFA stems from its original
purpose. Since assembly graphs are not constructed from a reference genome, a
GFA file is not guaranteed to provide a coordinate system that is valid for the
entire graph. To overcome this problem, an extension, called rGFA (Li et al,
2020), has been proposed, where a reference walk is selected and determines
a coordinate system for the walk. Then each vertex of the graph is associated
with a vertex of the reference walk to obtain a coordinate system for the entire
graph. In other words, rGFA only considers walks corresponding to simple
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variants of the reference walk, i.e., the graph is acyclic. We note that other
approaches that provide a coordinate system based on the set of paths exist,
for example odgi (Guarracino et al, 2021). While being a clear improvement
on the previous methods, odgi has two limitations: the coordinate of a vertex
belonging to two different walks is not intuitive, and a vertex that does not
belong to any of the walks in W has no coordinate. Overcoming these two
limitations is a theoretical challenge that is worthy of further investigation.

3.1 The construction of a pangenome graph from
multiple genomes

A basic problem in computational pangenomics is to build a variation graph.
This problem comes in two flavours, depending on whether the input is a set
of sequences, or a multiple alignment of the sequences. The latter problem is
easier but the quality of the graph is highly dependent on the method used
to build the alignment. Since we want to find a variation graph that is able
to represent one or more genomes, we need to formally define this notion of
representation. Notice that, constructing such a variation graph can be seen
as a two-step process: first, we compute a sequence graph representing the
genomes, and then we extract the set of walks expressing the genomes.

We note that there can exist more than one variation graph expressing a
given set of genomes, and some of these graphs do not resemble an alignment,
e.g., they might contain a cycle. While we refer the reader to Gusfield (1997)
for a more detailed exposition of multiple sequence alignments, in our context,
given a sequence s = s1s2 · · · sl an aligned sequence t is obtained from s by
inserting gaps, where a gap is a string made of the character -. An alignment
of a set of sequences consists of a set of equal-length aligned sequences, one for
each input sequence. Moreover, given two strings s1 and s2 we write s1=̂s2 if
removing all gaps from s1 and s2 results in the same string.

Definition 5 (compatible with an alignment) Let G = {g1, . . . , gm} be a set of
m aligned genomes, all of length n. Let G = 〈V,A,W 〉 be a variation graph that
expresses all genomes in G. Then G is compatible with the alignment G if there exists:

1. a set I of disjoint intervals covering [1, n], that is (a) given two intervals [b1, e1]
and [b2, e2] of I, either b1 > e2 or b2 > e1, and (b) for each integer i between 1
and n there exists an interval [b, e] ∈ I such that b ≤ i ≤ e.

2. a surjective function φ : B 7→ V where B is the set of blocks, that is the set of
pairs (g, [b, e]) with g ∈ G, [b, e] ∈ I and the string g[b : e] does not consists of
only a gap, such that:

(a) λ(φ(g, [b, e]))=̂g[b : e],
(b) given the sequence 〈c1, . . . , ck〉 of blocks corresponding to the aligned

genome g, the sequence 〈φ(c1), . . . , φ(ck)〉 of the vertices associated to such
blocks is a walk of G;

(c) for each arc (v, w) ∈ A, there exist two blocks (g, [b1, e1]), (g, [b2, e2]) ∈ B
with e1 < b2, φ((g, [b1, e1])) = v, φ((g, [b2, e2])) = w and such that there
does not exist another block (g, [b3, e3]) ∈ B with e1 < b3 < e3 < b2.
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AT -C TAC C A

AC GC TAC C A

AT GC ATC - A

AC GC ATG A A

[1, 2] [3, 4] [5, 7] [8, 8] [9, 9]

TAC C

AT C

ATC A
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ATG A

Fig. 3 Example of an alignment (left) of four genomes and a corresponding variation
graph (right). The set I of disjoint intervals is in the lower left part of the figures, and each
interval is connected with the corresponding set of columns of the alignment. The variation
graph has two dummy vertices: a source and a sink, so that each genome corresponds to
source-sink walk in the graph. The alignment of the third genome has a block consisting of
only a gap; hence it does not correspond to any vertex of the graph. The red and the green
paths identify a variant, also called bubble, in the graph, since they have the same source
and sink, while all other vertices are disjoint

The intuition behind Definition 5 is that we can split the alignment into
aligned blocks, where each block that does not consist only of a gap is mapped
to a vertex of the variation graph whose label is identical to the block, once
all gaps are removed (condition 2a). Moreover, each genome in the alignment
corresponds to a walk in the graph (condition 2b), and each arc of the graph
corresponds to two consecutive aligned blocks. Once we discard all aligned
blocks consisting only of a gap (condition 2c) in some input aligned sequence.
The computational problem is then to compute a variation graph compatible
with a given alignment.

Problem 1 (graph construction from alignment) Let G = {g1, . . . , gm} be a set of
m aligned genomes, all of length n. Then the graph construction from alignment
problem asks to find a variation graph G that is compatible with G.

The formulation of compatibility in Definition 5 is similar to the formula-
tion of block graphs (Ukkonen, 2002; Mäkinen et al, 2020) – albeit the latter
is quite restrictive, e.g., it does not allow cycles.

We note that Problem 1 does not have an objective function that allows
us to discriminate among all possible graphs that express the genomes in G.
Consequently, the problem is ill-posed. Moreover, some objective functions do
not lead to desirable graphs. Given a variation graph G = 〈V,A,W 〉, we let
W (G) be the set of maximal walks of G (i.e., that is walks starting at a source
and ending at a sink of G), and note that a walk in W (G) is not necessarily
in W . Then a desirable property of a variation graph, which is to express all
genomes in G, corresponds to the set of labels of all walks in W (G) being
equal to G. Hence, the objective function that we want to minimize is equal
to | {λ(p) : p ∈ W (G)} |, however, this is trivially minimized by a graph with
vertices (and labels) gi and no arcs. Unfortunately, such a solution means that
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shared portions among input genomes label different vertices of the graph,
while a fundamental motivation of introducing variation graphs is that shared
portions should belong to the same vertex. Two possible objective functions
that address this shortcoming are to minimize: (1) the number of vertices
of the graph G, or (2) the sum of the length of the labels of G. The same
trivial graph with vertices (and labels) gi and no arcs is also the optimum
for almost all instances of the first formulation. The second objective function
does not discriminate between compacted graphs (whose vertices are labeled
by strings) and non-compacted graphs (where all vertices are labeled by a
single characters), provided that the total length of the labels is the same –
instead we would favor a compacted graph, since it is more informative.

The fact that it is hard to find a simple objective function implies we should
explore different directions if we want to find a formal definition to the underly-
ing computational problem, including minimum description length (Grunwald,
2004) or multicriteria optimization (Ehrgott, 2005) to incorporate different
aspects of the desired graph. On the other hand, the literature largely avoids
providing a complete formulation of the problem and focuses on the method.
For example, seqwish (Garrison et al, 2019) is one of the most widely tools
for building a variation graph from an alignment. While the paper contains a
very detailed description of the data structures used to represent the result-
ing graph, almost no mention of the combinatorial properties is present.
Clearly, the lack of a formulation of the objective function does not decrease
its usefulness, however, it makes its comparison different approaches more
challenging.

Moreover, a multiple alignment is not able to explicitly represent certain
structural variations, such as inversions or transpositions. For this reason, we
are not guaranteed to have a reliable alignment that can be the building block
for constructing a variation graph. In these cases where we do not have a
reliable alignment, we have a set of sequences, each representing a genome, and
the corresponding computational problem becomes the following to reconstruct
the variation graph from them.

Problem 2 (graph construction from genomes) Let G = {g1, . . . , gm} be a set of m
genomes. Then the graph construction from genomes problem asks to find a variation
graph G that expresses all genomes in G.

This new problem is more general than Problem 1 since there is no division
into blocks to be respected for all genomes (see Fig. 4 for an example). More-
over, the same argument on the lack of a widely accepted objective function
holds also in this case where we are constructing a variantion graph from the
sequences.

For this problem, a simple incremental approach, like the one employed
by Minigraph (Li et al, 2020) can be surprisingly effective. In this case, each
sequence is aligned against the variation graph (the first sequence is also the
initial graph); each portion of the sequence that corresponds to a low quality
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ATCTACCA

ACGCTACCA

ATGCATCGA

ACGCATGAA

AC GC ATCG

AT C TAC C A

GA

Fig. 4 Example of a variation graph constructed from four sequences, each represented by
a different colored symbol. We color only vertices to simplify the figure.

ATCTACCA

ACGCTACCA

ATGCATCGA

ACGCATGAA

AC GC ATCG

AT C TAC C A

GA

Fig. 5 A toy example of how a pattern matches on a variation graph. The pattern is the
string TGCAT and the variation graph is the one of Fig. 4. The walk with red vertices and
arcs contains the match, but the actual match consists of the underlined portions of the
vertex labels. More precisely, the match takes a suffix of the first vertex and a prefix of the
last vertex.

alignment is a variant that needs to be added to the variation graph. We note
that this approach relies heavily on a string-to-graph mapper. The minigraph
method incorporates an alignment procedure that is inspired by minimap2 (Li,
2018), and based on the idea of building (sub)graph chains. Observe that in
minigraph the mapping between genomes and the graph is lost during the
construction process. A base-level alignment of the genomes relative to the
resulting graph can be obtained by an extension of the Cactus whole genome
alignment toolkit (Paten et al, 2011).

4 Indexing pangenome graphs

Graphs as large as genome graphs need to be efficiently indexed to achieve
adequate efficiency for basic operations such as pattern matching or read map-
ping. Since variation graphs represent walk labels, a simple strategy is to
index all relevant walk labels – therefore, mostly reusing the tools that have
been developed in text indexing. Most notably, an index can be built to store
either k-mers, signatures or suffixes of the walk labels. A k-mer or q-gram of
a sequence T is a substring of length k (q, respectively) of a sequence T , and
is the building block of de Brujin graphs and of some methods for mapping
reads to a genome. In particular, k-mer indexing is becoming a popular way
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of storing huge collections of genomic data (Karasikov et al, 2020). Alterna-
tively, a signature or sketch of a sequence T is a short summary of the sequence
given by a vector of numbers that, with high probability, summarizes some k-
mers of the sequence – see for example MinHash (Berlin et al, 2015). Finally, a
suffix sort-based representation of a sequence T is given by the self-index struc-
tures built upon the notion of Burrows-Wheeler Transform and the FM-index.
Generalizing these notions to graphs is a first possible approach to designing
pangenome graph representations. The most common approach has been to
extend the notion of XBWT (Ferragina et al, 2009) to graphs, first with the
GCSA (Sirén et al, 2014; Sirén, 2017), which is an index of the prefixes of the
strings that can be traversed from each vertex of a directed graph. It has a
vertex for each symbol of the sequence, and edges connect symbols that are
consecutive in at least one genome sequence (or walk) of the pangenome graph.
An alternative approach to indexing is given in (Rakocevic et al, 2019), where
pangenome graphs are indexed by using a hash table for k-mers extracted from
the sequence paths of the graph.

4.1 Preliminaries on the BWT

To make this tutorial self-contained, we briefly introduce here the main notions
related to the Burrows–Wheeler Transform (BWT). Let S be a string that is
terminated by a special symbol $ (called sentinel). A sentinel appears only at
the end of a string and it is smaller than any other symbol of the alphabet Σ.
Given a string S, its i-th character is denoted by S[i], its substring S[i]S[i +
1] · · ·S[t] is denoted by S[i : t], and its suffix starting at position i is denoted
by S[i :]. Sometimes, instead of the [i : t] notation, we might use the right-
open notation S[i : t) for a substring: in this case the t-th character of S is not
included in the substring, that is S[i : t) = S[i] · · ·S[t− 1].

The Suffix Array of S (Manber and Myers, 1993; Shi, 1996) is the array
SA s.t. SA[i] is equal to p if p is the starting position in S of the suffix of S
that is the i-th suffix of S in the lexicographic order of the set of suffixes. The
Longest Common Prefix (LCP) array of S is the array LCP s.t. LCP[i] is the
length of the longest prefix between the (i− 1)-th suffix and the i-th suffix of
S in their lexicographic order. Conventionally, LCP[1] = −1.

Given a n-long string S and the SA of S, we denote the inverse suffix array
as ISA, and define it as ISA[SA[i]] = i for all i = 1, . . . , n. The permutation
φ (Kärkkäinen et al, 2009) is defined as follows: φ(i) = SA[ISA[i]−1] if ISA[i] >
1; and φ(i) = SA[n] otherwise. In other words, φ(SA[j]) = SA[j − 1], for all
j > 1.

The Burrows Wheeler Transform (Burrows and Wheeler, 1994) of the string
S, denoted by BWT, is a reversible permutation of the characters of S. It is
the last column of the matrix of the sorted rotations of the text S, and can
be computed from the suffix array of S as BWT[i] = S[SA[i]− 1], where S is
considered to be cyclic, i.e., S[0] = S[n]. Informally, BWT[i] is just the symbol
of S in position p− 1 preceding the ith-suffix of S. The lexicographic ordering
of the suffix starting in position p− 1 of S is then given by the LF-mapping :



Springer Nature 2021 LATEX template

16 Computational graph pangenomics

it is a permutation on [1, n] such that SA[LF(i)] = (SA[i] − 1) mod n. More
precisely, the LF-mapping LF(i) allows to compute the lexicographic ordering
of the suffix of position SA[i]−1 in S. Then the LF-mapping allows to virtually
traverse the string S backwards as explained below using only BWT(S).

The backward search is an operation introduced by Ferragina and Manzini
(2005) in order to compute left extension of a given string as follows: given a
string S, if we know the range BWT[i : j] occupied by characters immediately
preceding occurrences of a pattern P in S, then we can compute the range
BWT[i′ : j′] occupied by characters immediately preceding occurrences of cP
in S, for any character c. This operation is implemented using: (1) an array
C[σ] that stores the number of symbols in S that are smaller than σ for each
character σ and, (2) a (rank) data structure for BWT(S) that returns how
many times a given character occurs up to a specific position of BWT(S).

Based on the above data structures, a LF-mapping is a last-to-first mapping
that associates to a position in the BWT a position in the suffix-array and is
used by iterations to reconstruct the text from right to left since we are able
to compute the preceding symbol of each symbol BWT[i].

In particular, we can relate function LF(i) also to character c that occurs
in BWT[i] and thus LF(i, c) is given as the sum C[c] + BWT.rank(i, c), being
BWT.rank(i, c) the number of c symbols occurring in the range BWT[1, i]. In
other words, LF(i, c) gives the position of the specific occurrence of the c symbol
in the text S. Indeed BWT(S) has the property of preserving the ranking of
symbols in S. Observe that BWT[LF(i, c)] is just the symbol c′ preceding c in
the text S, where c is in position SA[i]. Those functions allow us to quickly
solve the pattern matching problem, using only a small space, since the BWT
itself can be easily compressed via a run-length encoding and the BWT.rank()
shows increasing values, so we can encode only the difference with the previous
value (i.e., a delta encoding). In fact, the backward search strategy leads to an
O(|P |) time complexity for counting the number of occurrences of a pattern P
in a text S, given its FM-index. Computing the location of those occurrences is
slightly more complex, since it requires a sample of the suffix array of the text,
with a time complexity that is very close to that of using a suffix array, that
is O(|P |+ k log1+ε|S|) where k is the number of occurrences of the pattern P .

The definition of suffix array has been extended to a set X = {S1, . . . , Sm}
of strings by considering the set of the lexicographically sorted suffixes of X
and by replacing each entry of SA with a pair (p, j) indicating the length of
the suffix (p) and the index of the string (j) which the suffix belongs to. The
multi-string Burrows–Wheeler Transform (Mantaci et al, 2007) of X is the
array BWT s.t. if SA[i] = (p, j), then BWT[i] is the first symbol of the suffix
of Sj starting in position p. In other words BWT is the concatenation of the
symbols preceding the ordered suffixes of S.

4.2 The positional BWT

The positional BWT (PBWT) is a data structure (Durbin, 2014) that repre-
sents a set X, or panel, of m haplotypes with n bi-allelic sites. The notion of
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PBWT has been generalized to the multi-allelic case (Naseri et al, 2019). From
a string-theoretic point of view, the panel X is a set of m n-long strings over
alphabet {0, 1} (for the bi-allelic case) or a generic finite alphabet Σ (for the
multi-allelic case). In the following, we introduce the data structure for the
multi-allelic case since it is a straightforward extension of the bi-allelic case.
All the results that we discuss have been presented by Durbin (2014); Naseri
et al (2019). We note that the PBWT has many resemblances with the wavelet
matrix proposed by Claude et al (2015).

The goal of the PBWT is to find matches among the haplotypes of X, or
with respect to an external haplotype and the panel X, where a match must
involve substrings in the same positions, i.e., two substrings s[i : i + l] and
t[j : j+l] with i 6= j are not considered a match even in the case they are equal.
To underline this difference, we use the term haplotype for an n-long string
over the (ordered) alphabet Σ with t symbols. Let X be a set of m haplotypes
x1, x2, . . . , xm; the positions on each haplotype are indexed from 1 to n. Given
the haplotype x, its prefix at position k is its k-long prefix x[1 : k] = x[1 : k+1),
denoted pref(x, k). The reversed prefix at position k is the reverse of pref(x, k),
that is the string x[k] · · ·x[1], and is denoted by revpref(x, k). With a slight
abuse of notation, we assume that x[i : j] with i > j is the empty string.
Hence, pref(x, 0) = revpref(x, 0) is the empty string. Given two haplotypes, we
can define an order for each position.

Definition 6 (Position order) Let xi, xj be two haplotypes of X, and let k be an
integer not greater than n. Then xi is smaller than xj at position k if and only if:

1. revpref(xi, k) is lexicographically smaller than revpref(xj , k), or

2. revpref(xi, k) = revpref(xj , k) and i < j.

Observe that the ordering at position 0 produces the same ordering as the
set X, that is x1, . . . , xm. A match between two haplotypes xi and xj are
two identical substrings xi[k1 : k2] and xj [k1 : k2] spanning the same position
interval [k1 : k2]. The match xi[k1 : k2] = xj [k1 : k2] is left-maximal (right-
maximal, resp.) if it cannot be extended on the left (right, resp.), that is either
k1 = 1 or xi[k1 − 1] 6= xj [k1 − 1] (either k2 = n or xi[k2 + 1] 6= xj [k2 + 1],
resp.). We can now define formally the positional BWT.

Definition 7 (Positional BWT (Durbin, 2014)) Let X = {x1, · · · , xm} be a set of
m haplotypes. The positional BWT of X is a collection of n + 1 pairs of arrays,
(ak, dk) for 0 ≤ k ≤ n, where each ak is called a prefix array and each dk is called a
divergence array, defined as follows:

• the prefix array ak is a permutation of the indexes 1, 2, · · · ,m such that ak[i] = j
iff xj is the i-th haplotype of X in the ordering at position k, i.e., considering
the k-long reverse prefixes,

• the divergence array dk is such that dk[i] is the starting position of the left-
maximal match ending at position k between the i-th and (i−1)-th haplotypes
in the ordering at position k.
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a0 X
1 y0

1 = 11010011111001001001

2 y0
2 = 01000011111001110010

3 y0
3 = 00010000011110001010

4 y0
4 = 10011010100011100010

5 y0
5 = 01101111100100111100

6 y0
6 = 11001010101010001111

7 y0
7 = 00010111111100100011

a14 X d14
5 y14

1 = 01101111100100 1 11100 15
7 y14

2 = 00010111111100 1 00011 12
6 y14

3 = 11001010101010 0 01111 14
3 y14

4 = 00010000011110 0 01010 13
2 y14

5 = 01000011111001 1 10010 15
1 y14

6 = 11010011111001 0 01001 5
4 y14

7 = 10011010100011 1 00010 14
y15

Fig. 6 Example of a panel X of haplotypes with the original order (left) and with the
order induced by a14 (right). The arrow highlights that x1 is the 6th haplotype in the order
induced by the lexicographic order of the 14-long reverse prefixes (hence it is denoted with
y146 ). On the right, we reported also the divergence array d14 and we underlined the left-
maximal matches ending at position 14 between each xa14[i−1] and xa14[i]. Position 15 is
highlighted and the permutation of the symbols (alleles) at that position induced by a14 is
denoted by y15. That permutation of symbols will be used to compute a15.

Definition 7 departs from the original definition of Durbin (2014) in that
the original definition describes the positional BWT as the concatenation of
the columns of X reordered according to revprefs. We argue that the latter is
essentially a compact representation of the former, just as the FM-index (Fer-
ragina and Manzini, 2005) compactly represents the enhanced suffix array
of the text (Abouelhoda et al, 2004). We will conclude this section with an
explanation of this fact.

For ease of notation, let yki be xak[i]. Figure 6 presents an example of
the prefix array a14 and of the divergence array d14 of a panel X of seven
haplotypes.

Notice that the Definition 7 means that, for each position k and each i > 1,
there is a left-maximal match between xak[i−1][dk[i] : k] and xak[i][dk[i] : k].
Also, notice that the prefix array a0 is the sequence 1, . . . ,m since all such
prefixes are empty, and d0 contains only zeroes for the same reason.

If we consider the set of reversed haplotypes, the prefix array ak is the
usual generalized suffix array, restricted to k-long suffixes, while the divergence
array dk can be trivially obtained from the LCP array between two consecutive
k-long suffixes.

Observe that dk[i] = k+1 means that no match ending at position k exists
between haplotypes yki and yki−1. The following proposition, which is a direct
consequence of its definition, is used to compute the divergence array.

Proposition 1 Let X be a set of haplotypes and let ak, dk be the associated prefix and
divergence arrays at position k. Let i and j be two integers with 1 ≤ i < j ≤ m. Then
the starting position of the left-maximal match ending at position k of yki = xak[i]

and ykj = xak[j] is equal to maxi<h≤j{dk[h]}.

Computing the Prefix and the Divergence Arrays

The array ak can be computed from ak−1 with a single scan of all characters
at position k, with a procedure that is essentially a pass of radix sort.
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X (sorted by a14) a14
y14

1 = 01101111100100 1 11100 5
y14

2 = 00010111111100 1 00011 7
y14

3 = 11001010101010 0 01111 6
y14

4 = 00010000011110 0 01010 3
y14

5 = 01000011111001 1 10010 2
y14

6 = 11010011111001 0 01001 1
y14

7 = 10011010100011 1 00010 4
y15

a15 X (sorted by a15)
6 y15

1 = 11001010101010 0 01111

3 y15
2 = 00010000011110 0 01010

1 y15
3 = 11010011111001 0 01001

5 y15
4 = 01101111100100 1 11100

7 y15
5 = 00010111111100 1 00011

2 y15
6 = 01000011111001 1 10010

4 y15
7 = 10011010100011 1 00010

Fig. 7 Computing array a15 from a14. All the elements of a14 whose corresponding charac-
ter in y15 (i.e.,, xak[·][k]) is 0 are placed in a15 before the elements of a14 whose corresponding
character in y15 is 1.

Let yk be the m haplotype characters at position k in the order specified
by ak−1, that is yk = 〈yk−11 [k], yk−12 [k], · · · , yk−1m [k]〉. Array ak is computed by
sweeping yk for reordering appropriately the indexes in ak−1. Two observations
allow to compute ak from ak−1: (1) haplotype yki comes before ykj in the

ordering at k if yki [k] < ykj [k] and (2) yki comes before ykj in the ordering at

k if yki [k] = ykj [k] and i < j. As a consequence, intuitively, in the bi-allelic
case we can compute ak by first placing all the elements of ak−1[i] such that
yki [k] = 0 and then all the elements of ak−1[i] such that yki [k] = 1 while
keeping the relative order of the elements in each part. Figure 7 represents this
intuition. Clearly, such an idea can be easily extended to the multi-allelic case
by considering all the possible symbols.

Also the divergence array dk can be computed from dk−1 with a single scan
of the characters at position k.

Let xp be a haplotype of X and let i be the index such that ak[i] = p
(hence xp = yki ). Two cases may arise: either (1) yki [k] 6= yki−1[k] or (2) yki [k] =
yki−1[k]. In the first case, as the two characters differ, we do not have a non-
empty left-maximal match ending at position k between yki [k] and yki−1[k],
thus dk[i] can be conventionally set to k + 1. In the second case, there exists
a non-empty match ending at position k between yki [k] and yki−1[k]. Let j and
j′ be the indexes such that ak−1[j] = ak[i] and ak−1[j′] = ak[i − 1]. Since
yki [k] = yki−1[k] = c, we have that j′ < j. Then, the starting position of the left-
maximal match between yki−1 and yki ending at position k (i.e., dk[i]) is equal to

the starting position of the left-maximal match between yk−1j′ and yk−1j ending
at position k − 1 which, by Proposition 1, is equal to maxj′<h≤j{dk−1[h]}.

The key observation for obtaining an efficient algorithm is that yk−1j′ is
the most recently seen haplotype with character c at position k. Hence, while
sweeping the characters at position k, it suffices to keep, for each allele σ ∈ Σ,
the running maximum of dk−1 between the current haplotype and the most
recently seen haplotype (according to the order induced by ak−1) having σ at
position k. If at some haplotype yki we have that yki [k] is an allele not seen yet
then we must be in case (1) and we set dk[i] to k+ 1. Otherwise, we will be in
case (2) and we can set dk[i] to the running maximum kept for the allele yki [k].

Algorithm 1 formalizes the procedure for computing the entire series of
prefix and divergence arrays in a single pass over the panel X of t-allelic
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Algorithm 1 The algorithm to compute the PBWT.

Require: A set X = {x1, . . . , xm} of n-long sequences on the ordered
alphabet Σ = 〈σ1, . . . , σt〉.

Ensure: The arrays ai and di representing the PBWT of X.
1: a0 ← the array [1, . . . ,m]
2: d0 ← the array with m elements, all equal to 1
3: for k ← 1 to n do
4: for σ ∈ Σ do
5: a[σ]← an empty list
6: d[σ]← an empty list
7: seen[σ]← false
8: end for
9: for i← 1 to m do

10: c← xak−1[i][k]
11: Append ak−1[i] to the list a[c]
12: for σ ∈ Σ do
13: if seen[σ] and dk−1[i] > max[σ] then
14: max[σ]← dk−1[i]
15: end if
16: end for
17: if seen[c] then
18: Append max[c] to the list d[c]
19: else
20: Append k + 1 to the list d[c]
21: seen[c]← true
22: end if
23: max[c]← 0
24: end for
25: ak ← the concatenation of the lists a[σ1] · · · a[σt]
26: dk ← the concatenation of the lists d[σ1] · · · d[σt]
27: end for

haplotypes. Each iteration k of the outer for-loop computes ak and dk from
ak−1 and dk−1 in O(mt) time. Hence, the total running time is O(nmt).

As an example, we will describe how to compute the arrays a15 and d15,
given the arrays a14 and d14 for the set of haplotypes of Figure 6. We will use
Figure 8 for illustrative purposes. At the beginning of the scan (lines 9–23), all
characters are unseen and the lists a[·] and d[·] are both empty. The first time
we see character 0 (at iteration i = 3, corresponding to haplotype x6) and 1 (at
iteration i = 1, corresponding to haplotype x5), the corresponding value of d[·]
is 15, since the reverse prefix at position 15 and the one that is immediately
smaller do not share the character at position 15. For any other haplotype,
we check the interval between the most recently seen haplotype that has at
position 15 the same character as the current haplotype, and we compute the
left-maximal match between those two haplotypes. Consider for example when
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a14 d14
5 15
7 12
6 14
3 13
2 15
1 5
4 14

X (sorted by a14)
x5 = 01101111100100111100

x7 = 00010111111100100011

x6 = 11001010101010001111

x3 = 00010000011110001010

x2 = 01000011111001110010

x1 = 11010011111001001001

x4 = 10011010100011100010

X (sorted by a15)
x6 = 11001010101010001111

x3 = 00010000011110001010

x1 = 11010011111001001001

x5 = 01101111100100111100

x7 = 00010111111100100011

x2 = 01000011111001110010

x4 = 10011010100011100010

a15 d15
6 16
3 13
1 15
5 16
7 12
2 15
4 14

Fig. 8 Computing the arrays a15 and d15. On the left there are the arrays a14 and d14 and
the set X sorted by the revpref at position 14. On the right there are the set X sorted by
the revpref at position 15 and the arrays a15 and d15. Notice that the set X is not sorted
explicitly by the algorithm, and is reported here to make easier to understand the algorithm.
The interval that is analyzed to compute the value of the divergence array at position 15
associated with x2 is represented with a square bracket.

the current haplotype is x2 that has the character 1 at position 15. The most
recently seen haplotype with the character 1 at position 15 is x7, and their
left-maximal match at position 15 starts at position 15, which is stored in the
corresponding entry of d15. Such position is stored in max[1]; the effect of the
if at lines 17–23 is that max[1] contains the maximum value among all entries
of d14 corresponding to the interval of haplotypes from x7 (excluded) to x2
(included) which, by construction of d14, is exactly the desired starting point.

Maximal matches with at least L characters

Using the PBWT we can compute the pairs of haplotypes having a maximal
match ending at position k with at least L characters. Haplotypes between
positions i and j of ak−1, such that all values dk−1[i+1], dk−1[i+2], · · · , dk−1[j]
are at most k − L, share a common (left-maximal) match ending at position
k − 1 whose length is at least L. Such an interval is called an L-block at
position k. Observe that only for ykp and ykq (p, q ∈ [i, j]), such that ykp [k] 6=
ykq [k], the match ending at k − 1 is right-maximal and its starting position
can be obtained by performing a range maximum query over the divergence
array dk. The algorithm separates dk−1 in L-blocks and, for each L-block the
related haplotypes are divided in t lists c[σ] accordingly to their character σ
at position k, i.e., similar to the algorithm for computing the prefix and the
divergence arrays. While scanning dk−1, each time a position i delimiting the
end of a L-block is encountered, all the elements of the Cartesian products
between all the pairs of lists c[σ1] and c[σ2] (with σ1 6= σ2) are produced
in output. This computation could be performed even in conjunction with
the construction of the prefix array ak and the divergence array dk – thus
avoiding keeping in memory the previously computed arrays ak−1 and dk−1
– using O(m) in space instead of O(nm). The running time is bounded by
O(max(nmt, no. of matches)).
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Set-maximal matches

A left and right-maximal match xi[h : k] = xj [h : k] between haplotypes xi and
xj such that there is no other haplotype with a match with xi that properly
includes the interval [h, k], is called a set-maximal match of xi with xj . We
note that xi may have a set-maximal match from h to k with more than a
haplotype in X. Observe that haplotype yki may have a set-maximal match
ending at k only with the preceding or the following haplotypes in the ordering
at k. We discuss three cases. The first case occurs when dk[i] < dk[i+ 1], that
is, the left-maximal match between yki and yki−1 is longer than the left-maximal
match between yki and yki+1. Observe that yki has a left-maximal match starting
at dk[i] with all the haplotypes between positions p and i − 1, where p is the
smallest position before i, such that dk[j] ≤ dk[i] for p < j < i. In conclusion,
yki may have a set-maximal match ending at k with each haplotype between
positions p and i− 1. Haplotype yki has actually a set-maximal match with all
of these haplotypes if each one of their characters at position k+ 1 is different
from the character at position k + 1 of haplotype yki . On the contrary, if even
one of those characters is equal to yki [k + 1] then it will be possible to extend
the match to the right. Hence, yki does not have a set-maximal match ending
at k with such haplotypes. The second case is when dk[i + 1] < dk[i], that is,
the left-maximal match between yki and yki+1 is longer than the left-maximal
match between yki and yki−1. Again, observe that yki has a left-maximal match
starting at dk[i + 1] with all the haplotypes between positions i + 1 and q,
where q is the largest position after i, such that dk[j] ≤ dk[i + 1] for each
i < j ≤ q. In conclusion, yki may have a set-maximal match ending at k with
all the haplotypes from position i+1 to position q. Haplotype yki has an actual
set-maximal match with all of these haplotypes if each one of their characters
at position k+ 1 is different from the character at position k+ 1 of haplotype
yki . On the contrary, if even one of those characters is equal to yki [k+1], then it
will be possible to extend the match to the right, hence yki does not have a set-
maximal match ending at k with the considered haplotypes. The third case is
when dk[i] = dk[i+ 1]. It is easy to see that this case is the combination of the
other two cases, and hence, the set-maximal matches of haplotype yki ending
at position k can be found by scanning upwards and downwards in order to
find the two position p and q as described above. Figure 9 represents a panel
of haplotypes on which two candidates set-matches have been depicted.

Computing the set-maximal matches is performed while scanning (or com-
puting) the arrays ak and dk and checking the characters at position k + 1 in
the interval [p, i− 1] or in the interval [i+ 1, q], depending on the values dk[i]
and dk[i+ 1]. Since we can stop the upward or downward scan as soon as the
check of the following characters fails, the procedure requires O(nmt) time.

Set-maximal matches between an external haplotype and X

The PBWT allows to compute the set-maximal matches of an external hap-
lotype z with respect to the panel X. Let ek be the starting position of the
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X a20 d20
y20

1 = 20211022100001011210 2 222210010 5 21
y20

2 = 11221020121200111210 2 100212200 7 16
y20

3 = 12200021212201211210 2 221201002 1 16
y20

4 = 01221021102021121210 1 012210111 10 17
y20

5 = 21000201010112000021 1 221110011 6 21
y20

6 = 02211002022122002021 1 100111221 2 18
y20

7 = 12120112021202112021 2 120220210 4 17
y20

8 = 02001210020121022021 2 221001121 8 17
y20

9 = 02102210102122102022 2 201212201 9 21
y20

10 = 12012120200121100122 2 122022210 3 19
y20

i [21]

Fig. 9 A panel of ten tri-allelic haplotypes in their ordering at 20. Haplotype y202 (which
is haplotype x7 in the original panel X) has a candidate set-maximal match from position
16 to position 20 with haplotypes y201 (x5) and y203 (x1) since d20[2] = d20[3] while d20[1]
and d20[4] are both greater that d20[2]. However, since y201 [21] and y203 [21] are both equal to
y202 [21], then the match is not right-maximal and, hence, is not set-maximal. It will be found
while scanning column 21 or later. Similarly, y206 has a candidate set-maximal match from 17
to 20 with y207 and y208 . It is an actual set-maximal match because y206 [21] is different from
both y207 [21] and y208 [21]. Observe that y207 has not a set-maximal match ending at position
20 because the candidate match from 17 to 20 is with y206 and y208 but y207 [21] = y208 [21]
(hence it will be found while scanning column 21 or later).

longest (left-maximal) match ending at k between z and some haplotypes of
X and let ak[fk : gk) be the portion of ak related to such haplotypes. While
sweeping z from left to right, the algorithm computes the values ek, fk and
gk from the values obtained for k − 1. More precisely, it scans the column
yk = 〈yk−11 [k], · · · , yk−1m [k]〉 of the k-th symbols in the ordering at k−1 and at
the same time maintains ck[σ], the total number of σ ∈ Σ in yk, and wk(i, σ),
the number of characters in the prefix yk[1 : i] not greater than σ ∈ Σ. Those
values allow to compute the interval [fk, gk) of ak (if it exists) related to the
subset of haplotypes in ak−1[fk−1 : gk−1) whose match with z starting at ek
can be extended by one position to the right (with character z[k]). For those
familiar with the FM-index, the procedure is similar to the backward search
operation. If fk < gk, then there exists some haplotypes (namely, those indi-
cated by ak[fk : gk)) such that the match can be extended to position k while
keeping the starting position at ek−1, hence we can set ek = ek−1. Otherwise,
if fk = gk, then no match with haplotypes in ak−1[fk−1 : gk−1) can be further
extended. Hence, the haplotypes ak−1[fk−1 : gk−1) have a set-maximal match
with z from ek−1 to k−1 and such matches are reported. In this case, the algo-
rithm must find the new values ek, fk, and gk and go on through sweeping z.
Let q be the current value of fk. Since it is possible to prove that z is between
haplotypes ykq−1 and ykq in the ordering at k, the algorithm scans the diver-
gence array dk between those two haplotypes in order to find the left-maximal
match with z and, in that way, computing the new values ek, fk, and gk.

The running time is O(n) if we assume that ck[·] and wk(·, ·) have been
pre-computed (since they can be used to find the set-maximal matches with
different haplotypes external to the panel X), while it is O(nmt) if those values
must be computed.



Springer Nature 2021 LATEX template

24 Computational graph pangenomics

Compact representation of the positional BWT

The first observation that allows to store the panel of haplotypes in a com-
pressed form is that the query algorithms do not directly use ak[i], which are
expensive to store since they are permutations of the range 1 . . .m. Indeed,
they use the permutation of the symbols in column k based on the order of the
revpref at that position. Similar to the case of BWT (Burrows and Wheeler,
1994), such a permutation tends to form long runs of symbols (as those symbols
are preceded by similar revprefs) that are highly compressible. The information
needed to compute the extension of matches – i.e., the rank of the symbols –
is similar to those used by the FM-index (Ferragina and Manzini, 2005) and
thus, can can be stored using similar techniques. Using the rank information
is also possible to recover the ak arrays (for reporting purposes) from their
sampled representation with negligible impact on performances. Finally, the
divergence arrays can be represented as differences between adjacent values.
Most of these differences will be close to zero since adjacent values are simi-
lar with high probability. Thus, these these differences can be stored in fewer
bits. In his experiments, Durbin (2014) reports that the GZip-ed storage of
the panel requires from ∼ 6 to ∼ 133 times the space required by the PBWT,
with the ratio be more favorable as the number of haplotypes increases.

4.3 The Graph BWT

Observe that the PBWT stores haplotype sequences by encoding which allele
each haplotype contains at each position. We can interpret it as a pangenome
graph representation restricted to graph topologies where each vertex at posi-
tion i is connected (only) to each vertex at position i + 1. The approach
was later generalized to arbitrary topologies in the graph extension of the
PBWT (Novak et al, 2017). The Graph BWT (GBWT) (Sirén et al, 2020) dis-
cussed in this section simplifies the graph extension and makes it more efficient
by reducing the problem to indexing strings.

One of the main goals of the GBWT is storing and indexing a variation
graph compactly, so that a good locality of reference of the data is maintained.
Global information regarding the graph is kept to a minimum, and is usually
inferred from local, i.e. vertex-based, information. To achieve this goal, the
GBWT stores a set of paths, while the variation graph is only inferred from
those paths. While the vertices of a genome graph are labeled with a string,
the GBWT does not store the labels but only the topology of the graph, where
each path is encoded as a sequence of vertex identifiers (Figure 12).

In other words, each path is a string over the alphabet of vertices, and the
graph is a collection of such strings. The GBWT is essentially a multi-string
BWT of the collection of strings encoding the paths of the graph. To improve
locality of reference, we do not store the BWT as a single string but as a set of
strings BWTv, each corresponding to vertex v. The concatenation of all strings
BWTv is the entire BWT. The GBWT inherits the properties of the multi-
string BWT. Most notably, given a pattern (i.e., a sequence of vertices) Q and
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the GBWT of a variation graph G = (V,E,W ), we can answer the following
queries:

1. Determine if Q is a subpath of at least one path in W .
2. Count how many paths in W contain Q and determine the identifiers of

the matching paths.
3. Find the extensions of Q that are subpaths of a path in W . We may be

interested in all maximal extensions in a subgraph, or we may want extend
the most promising matches iteratively as long as certain conditions hold.

For each vertex v, the GBWT stores the string BWTv and some additional
information to enable fast queries (see Figure 11).

While the BWT is usually based on sorting the suffixes of the strings and
listing the character preceding each suffix in the sorted order, the GBWT works
on the reverse strings. It sorts the reverse prefixes of the strings and lists the
character following each prefix. Since the strings are the paths of the graph,
this allows us to extend a path in the forward direction (that is, according to
the path). Consequently, for each vertex v, the substring BWTv corresponds
to the prefixes ending with v, that is the initial portions terminating in v of all
paths. Notice the analogy with the fact that each symbol in a regular BWT
corresponds to a suffix of the string.

Definition 8 (Graph BWT) Let G = (V,E,W ) be a variation graph where each
walk (path) Wi ∈ W is a sequence of vertices 〈vi,1, vi,2, . . .〉. Then, the graph BWT
of G is the multi-string BWT of the collection of strings 〈wi = vi,1vi,2 · · · vi,|Wi| :
Wi = 〈vi,1, vi,2, . . . vi,|Wi|〉 ∈ W 〉 (under the reverse prefix lexicographic ordering).
Moreover, each string BWTv is the interval of BWT corresponding to prefixes of
some wi that end with the vertex v.

In the following, we describe the GBWT data structure. Recall that we need
to have a compact data structure with a strong locality of reference, which is
able to represent a graph version of the LF-mapping of the usual string-based
BWT, since the LF-mapping is the main ingredient that is used to answer the
queries.

Given a graph G = (V,E,W ), we store the ordered sequence v1, . . . , vn of
vertices. We write v < w if vertex v ∈ V is before vertex w ∈ V in the ordering,
and use v−1 and v+1 to refer to the predecessor and the successor of v in that
order. As pangenome graphs typically have an almost linear structure, with
|E| = O(|V |), we can use the adjacency list representation for the graph and
still obtain, on average, O(1)-time access to each outgoing arc. For each vertex
v ∈ V , we store the string BWTv = BWT[C[v] + 1 : C[v + 1]] that consists of
the vertices following v in a path of W (see Figure 10). This is based on the
same array C as used with the string BWT. For a vertex v ∈ V , the array
stores the overall number of occurrences of all vertices w such that w < v on
all paths in W as C[v].

The actual data stored for each vertex v ∈ V is the following:
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BWTv1 BWTv2 BWTv BWTvnBWTv−1

C[v] i′ = i− C[v]

i

Fig. 10 Partitioning the BWT into substrings BWTv corresponding to vertices v ∈ V and
the representation of BWT offsets i as pairs (v, i′).

• The list N of vertices w such that (v, w) is an arc of G. Notice that
this list can be shorter than BWTv if there are several paths traversing
the same arc. For each destination vertex w, we also store the number
BWT.rank(C[v], w) that is equal to the number of times a path traverses
an arc (v′, w) from a vertex v′ < v (Figure 11). In the BWT parliance,
BWT.rank(i, c) for an integer 1 ≤ i ≤ |BWT| and a character c denotes
the number of occurrences of c in the prefix BWT[1 : i].

• String BWTv encoding all visits to vertex v. For each visit, the string
stores the next vertex w on the path. The destination vertex is encoded as
an arc rank i such that N [i] = w. This reduces the space for representing
the visits from |BWTv| log |V | bits to |BWTv| log d bits, where d is the
outdegree of v. Since d is constant on the average, a constant number of
bits per visit suffices. In addition, we run-length encode the string BWTv,
which can further reduce the space usage if the paths are similar enough
(see Section 5.2 for a discussion and the definition of run-length encoded
BWT).

To avoid storing the array C explicitly, we use (v, i′) to refer to the BWT
offset BWT[i]. Here v is a vertex such that C[v] < i ≤ C[v+ 1] and i′ = i−C[v]
is the relative offset in BWTv (see Figure 10). This simplifies the compu-
tation of the values BWT.rank(i, w) that are needed for answering queries.
Since i = C[v] + i′, we compute BWT.rank(i, w) as BWT.rank(C[v], w) +
BWTv.rank(i′, w), where the first term is stored in the record for vertex v.
The second term, BWTv.rank(i′, w), is the number of occurrences of w in the
substring BWTv until relative offset i′. If the assumptions about the struc-
ture of the graph hold, we can compute it efficiently with a linear scan of the
compressed BWTv.

The key function for answering queries in a BWT is the LF-mapping
LF(i, w) = C[w] + BWT.rank(i, w) – see Section 4.1. Following our discus-
sion on the substrings BWTv, BWT offsets, and rank queries in the GBWT,
we can replace the first term C[w] with a reference to vertex w. The second
term BWT.rank(i, w) is the relative offset in BWTw. It can be computed as
BWT.rank(C[v], w)+BWTv.rank(i′, w), where i′ is the relative offset in BWTv.
Because all information needed for computing LF-mapping is stored locally in
vertex v, the memory locality of GBWT queries is better than in ordinary FM-
indexes. This is especially true if we store adjacent vertices near each other in
memory.
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v1

(v4, 2)

1

v2
v3

v4

v5

v6

(v5, 0)
(v6, 0)

1
1
2
3

Fig. 11 The record for vertex v3 with outgoing paths to v4, v5, and v6. The top part of
the record is the vertex identifier. The middle part stores a pair (w,BWT.rank(C[v], w)) for
each outgoing edge (v, w). The bottom part is BWTv encoded using edge ranks. Observe
that there are two paths visiting vertex v4 from vertices smaller than v3. Hence record for
vertex v3 stores the pair (v4, 2).

Example 1 Consider the record for vertex v3 in Figure 11. Let us compute the LF-
mapping value LF((v3, 4), v4). Recall that LF(i, c) is the the number of suffixes smaller
than or equal to a hypothetical suffix that starts with c and continues with the suffix
corresponding to offset i. In the GBWT, LF((v, i′), w) = (w, j), where j is the number
path prefixes ending with w that are (in reverse lexicographic order) smaller than or
equal to a hypothetical prefix that starts with the prefix corresponding to (v, i′) and
ends with w. We compute j as the sum of visits to vertex w from vertices smaller
than v and the number of times a path visiting v at offset k ≤ i′ continues to w.
The former is stored in the record for vertex v and the latter can be computed from
BWTv. Since v4 has 2 visits from vertices with indexes less than v3 and there are 3
occurrences of v4 (edge rank 1) in BWTv3 [1 : 4], we get LF((v3, 4), v4) = (v4, 5).

Example 2 Figure 12 illustrates the GBWT of the graph induced by three paths
S1, S2, S3, one colored purple and consisting of vertices v1, v2, v4, v6, v7, one green
and consisting of vertices v1, v2, v5, v7 and finally the orange one consisting of vertices
v1, v3, v4, v5, v7. The encoded BWT substrings BWTv for each vertex v are:

• v1 : 112 corresponding to order (S1, S2, S3) of the paths, with the edge of rank
1 to v2 and edge 2 to v3;

• v2 : 12 corresponding to paths (S1, S2), with edge 1 to v4 and 2 to v5;

• v3 : 1 corresponding to paths (S3), with edge 1 to v4;

• v4 : 21 corresponding to paths (S1, S3), with edge 1 to v5 and 2 to v6;

• v5 : 11 corresponding to paths (S2, S3), with edge 1 to v7;

• v6 : 1 corresponding to paths (S1), with edge 1 to v7; and

• v7 : 111 corresponding to paths (S2, S3, S1), with edge 1 to nowhere.
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v1
(v2, 0)
(v3, 0)

1
1
2

(v4, 0)
(v5, 0)

1
2

(v4, 1)

1

(v5, 1)
(v6, 0)

2
1

(v7, 0)

1
1

(v7, 2)

1

($, 0)

1
1
1

v2

v3 v4

v5

v6

v7

Fig. 12 The GBWT in Example 2. As in Figure 11, the top part of each record is the
vertex identifier v. The middle part stores a pair (w,BWT.rank(C[v], w)) for each outgoing
edge (v, w). The bottom part is BWTv encoded using edge ranks.

Example 3 Let us examine another example consisting of paths S1, S2, S3, S4 where
S1 = v1, v2, v4, S2 = v1, v2, v4, S3 = v1, v2, v3, and S4 = v1, v3, v4. The substrings
BWTv for each vertex are:

• v1 : 1112 corresponding to paths (S1, S2, S3, S4), with edge 1 to v2 and 2 to v3;

• v2 : 221 corresponding to paths (S1, S2, S3), with edge 1 to v3 and 2 to v4;

• v3 : 21 corresponding to paths (S4, S3), with edge 1 to nowhere and 2 to v4; and

• v4 : 111 corresponding to paths (S1, S2, S4), with edge 1 to nowhere.

Another version of the GBWT (Gagie et al, 2017) is a more direct gener-
alization of the positional BWT (Durbin, 2014) to graphs. Conceptually, we
have a pangenome graph representing some variation using graph topology,
with an option to represent rare or less important variants as alternate alle-
les using another alphabet Σ. The strings are now over alphabet V ×Σ. Each
character (v, c) represents a visit to vertex v ∈ V with allele c ∈ Σ. Again, we
can encode successor vertices with ranks. If N [i] = w, character (w, c) becomes
(i, c) in the BWT.

Example 4 Let us consider now the version that includes the alphabet symbols along
the path. We have four paths: S1 = (v1, t)(v2, c)(v4, g), S2 = (v1, c)(v2, t)(v4, c),
S3 = (v1, g)(v2, c)(v3, g), and S4 = (v1, c)(v3, t)(v4, c). In order to use allele symbols
in the first real vertex v1, we start all paths from a special vertex v0. The BWT is:

• v0 : (1, t)(1, c)(1, g)(1, c) corresponding to paths (S1, S2, S3, S4), with edge 1 to
v1;

• v1 : (1, t)(2, t)(1, c)(1, c) corresponding to paths (S2, S4, S3, S1), with edge 1 to
v2 and edge 2 to v3;

• v2 : (1, g)(2, g)(2, c) corresponding to paths (S3, S1, S2), with edge 1 to v3 and
edge 2 to v4;
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v0

(1, t)
(1, c)
(1, g)

(v2, 0)
(v3, 0)

(1, t)
(2, t)

($, 0)

(2, c)
(1, $)

(v3, 1)

(1, g)
(2, g)

($, 0)

(1, $)
(1, $)

v1

v3

v2
v4

(1, c)

(v1, 0)

(1, c)
(1, c)

(v4, 0)

(2, c)

(v4, 2)

(1, $)

Fig. 13 The GBWT from Example 4.

• v3 : (2, c)(1, $) corresponding to paths (S4, S3), with edge 1 to nowhere and
edge 2 to v4; and

• v4 : (1, $)(1, $)(1, $) corresponding to paths (S2, S1, S4), with edge 1 to nowhere.

See Figure 13. Note that in this version of the GBWT, the order of path visits
in each BWTw is affected by both the predecessor vertex v and the allele symbol c.

5 Indexing in sub-linear space

Differently from the previous section, we will now discuss a pangenome rep-
resentation that is not based on graphs, but it relies on the fact that the
concatenation G1 · · ·Gg of a set of g genomes can be viewed as a highly-
repetitive string S[1 : n] – each Gi is a substring of S and terminates with
a deliminator. The data structure we present, the r-index, allows to answer
two fundamental queries: counting the number of occurrences in a pattern
in S (count), and locating those occurrences in S (locate). More complicated
queries, such as aligning a sequence read to collection of genomes, can be bro-
ken down into count and locate queries. While linear-space indexes – such as
the FM-index (see Section 4.1) – are well known, they do not fully exploit
the repetitive nature of large pangenomes. For example, two terabytes of data
would roughly require two terabytes of memory to construct the FM-index.
Hence, there has been significant effort in reducing the space requirement of
the FM-index while still maintaining the efficiency of performing count and
locate queries. In this section, we denote with P the query string or pattern
to be P , and the number of occurrences of P in S as occ.

The main observation is that on large and repetitive data the BWT fre-
quently has long equal-character runs that could be exploited in order to reduce
the size of the construction. We denote r as the number of equal-character runs
in the BWT. Typically, the measure of n/r describes the extent of repetition
in the data and thus, the amount of compression any representation that is
dependent only on r will obtain—the larger the value, the more compression
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Table 1 Sequence length and n/r statistic with respect to number of whole genomes for
six collections in the 1,000 Genomes Project (1KG) and long-read assembly (LRA)
datasets. The table originates from Kuhnle et al (2020) and is recreated here with
permission from the authors.

No. of Genomes Sequence Length (MB) n/r

1KG LRA 1KG LRA

1 6,072 6,072 1.86 1.86
2 12,144 12,484 3.70 3.58
3 18,217 17,006 5.38 4.83
4 24,408 22,739 7.13 6.25
5 30,480 28,732 8.87 7.80
6 36,671 34,420 10.63 9.28

will likely be obtained. Table 1 illustrates how n/r varies as the size and num-
ber of genomes varies. In a step toward achieving a more efficient construction
of the BWT, Mäkinen and Navarro (2005) defined the Run-Length Burrows
Wheeler Transform (RLBWT).

Definition 9 Given an input string S[1 : n], the run-length encoded BWT of S
is the representation RLBWT[1 : r] of the BWT where each run is represented
as the character of the run and its length and where r is the number of maximal
equal-character runs in the BWT, e.g., runs of A’s, C’s and so forth.

The RLBWT can be constructed in a manner that it does not become
much slower or larger even for thousands of genomes, which is demonstrated
in the following result.

Theorem 2 (Mäkinen and Navarro, 2005) Given an input string S[1 : n], we can
construct its RLBWT in O(r)-space such that we can count the number of occurrences
of any pattern P [1 : m] in O(m logn)-time.

A compact representation of the RLBWT of the BWT of a string S consists
of a string containing a single character for each run in the RLBWT and a bit
vector that marks the beginning of the runs with a 1 (Mäkinen et al, 2010).
For example, given the BWT = TGCATTAA of the string GATTACAT the RLBWT
can be represented with the character string TGCATA and bit vector 11111010.
To complete the construction of an FM-index we need also the construction
of the suffix array samples in O(r) space while allowing for efficient queries;
this step has remained more elusive. The index of Mäkinen and Navarro can
support count queries in O(r)-space, in order to support locate queries in time
proportional to s, where s is the distance between two samples, they require
O(n/s)-space for the SA samples. In practice, these SA samples are orders
of magnitude larger in size than the RLBWT. Hence, it was unclear how
to sample the SA in a manner that the locate queries were efficient but the
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sampling of the SA was efficient in practice. More than a decade later, Policriti
and Prezza (2017) showed that for a given string S[1 : n] and a query string
P [1 : m], how to find the interval in the BWT containing the occ characters
preceding occurrences of P in S in O(m log log n)-time and O(r)-space. This
result, referred to as the Toehold Lemma, demonstrates how to find one SA
sample in the interval containing a query string P . However, it does not fully
support locate queries, i.e., locate all occ SA samples within that interval.
This was solved two years later by Gagie et al (2020) when they combined the
Toehold Lemma, RLBWT of Mäkinen and Navarro (2005), and the definition
of φ to show how to support locate queries in O(r)-space. In summary, they
give the following result.

Theorem 3 (Gagie et al, 2020) Given an input string S[1 : n], it is possible to store
S in O(r) space so that we can find all the occ occurrences of any pattern P [1 : m]
in S in O

(
(m+ occ) log logn

)
-time.

The authors refer to the data structure behind this result as the r-index.
More precisely, the r-index is an evolution of the FM-index and it consists of
the RLBWT and a SA sampling that stores the SA values in the positions cor-
responding to the beginning and the end of every equal-character run in the
RLBWT (Gagie et al, 2020). The elucidation of the r-index was deemed to be
a significant breakthrough as it indicates how the SA can be sampled in space
proportional to r while allowing for efficient locate queries. However, in some
sense it lacked practicality because it was unclear how to efficiently construct
it for large genomic databases. Lastly, it it worth nothing that since the intro-
duction of the r-index, other sub sampling approaches have been described
and shown to gain improvements in practice (Cobas et al, 2021).

5.1 How to construct the r-index

As previously mentioned, Gagie et al (2020) did not describe how to build
the r-index – this was shown in a series of papers (Kuhnle et al, 2020; Mun
et al, 2020; Boucher et al, 2019). In particular, Boucher et al (2019) introduced
Prefix Free Parsing (PFP), which takes as input a string S, window size w,
and a prime p and produces a dictionary of substrings of S and a parse of S,
that is a sequence of substrings in the alphabet (Kreft and Navarro, 2013) –
and showed how to build RLBWT from the dictionary and parse. Throughout
this section, we denote the dictionary as D and the parse as P . It was later
shown how to build the SA samples in addition to the RLBWT by Kuhnle
et al (2020).

We first describe how to construct the dictionary and parse using PFP.
The first step of PFP, is to append and prepend w copies of # to S, where #
is a special symbol that is lexicographically smaller than any element in the
alphabet. Hence, given a string S, we augment it to contain #wS#w. We note
that this definition is equivalent to the original that considers the circular string
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Input genomes GATTACAT, GATACAT, GATTAGATA
w = 2, T = ##, AC, T#, AGTrigger strings

Concatenation ##S## =##GATTACAT#GATACAT#GATTAGATA##

Covering substrings ##GATTAC ACAT# T#GATAC ACAT# T#GATTAG AGATA##

Dictionary Rank
##GATTAC 1
ACAT# 2
AGATA# 3
T#GATA 4
T#GATTA 5

1 2 4 2 5 3Parse
Fig. 14 Dictionary and parse of the set GATTACAT, GATACAT, and GATTAGATA of
genomes for w = 2

S#w. Next, we define the set of trigger strings T to consist of the string #w and
all w-length substrings of S whose hash is congruent to 0 (mod p) — any hash
function can be used. The dictionary D = {d1, . . . , d|D|} is the largest set of all
substrings of #wS#w such that the following holds for each di in D: exactly
one proper prefix and exactly one proper suffix of di are trigger strings, and no
other substring of di is a trigger string, where a proper prefix or suffix is one
that is non-empty. Notice that D can be obtained by traversing S from right
to left, and extracting the list of substrings (called covering substrings) that
begin and end with a trigger string and contain no other trigger string. Then,
the dictionary D is computed by removing duplicated covering substrings and
sorting them lexicograpically. Finally, given our dictionary, we determine the
parse P by replacing each covering string with its rank in the dictionary D.

From the dictionary and parse, we can construct some auxiliary data struc-
tures in time and space that are linear in the size of D and P , including the
BWT of P and the SA of D. Next, we lexicographically sort the proper suffixes
of the substrings in D that have length at least w, and store their frequency
in S. For each such suffix α, all the characters preceding occurrences of α in
S occur together in BWT, and the starting position of the interval containing
them is the total frequency in S of all such suffixes lexicographically smaller
than α. It may be that α is preceded by different characters in S, because α
is a suffix of more than one substring in D but then those characters’ order in
BWT is the same as the order of the phrases containing them in the BWT of
P . These observations lead to the following result.

Theorem 4 (Kuhnle et al, 2020) Given an input string S, we can compute RLBWT
and SA samples in space and time linear in the size of the dictionary and parse
constructed from PFP.
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Next, we use the example in Figure 14 to give some intuition as to how to
build the suffix array and BWT from the dictionary and parse. We remind the
reader that suffix array considers all possible rotations of S in lexicographical
order. These rotations can be obtained using D and P . To see this, let us
consider an expanded form of D where we consider all suffixes of D that have
length greater than w, D′ = {##GATTAC,#GATTAC, . . . , TAG}. We can now
restate the goal as to how put all sequences of D′ in lexicographical order.
To see how to accomplish this, we consider all sequences in D′ from the first
sequences in D, ##GATTAC, #GATTAC, GATTAC, ATTAC, TTAC, and TAC, and how
to place the second sequence #GATTAC in lexicographical order. To accomplish
this we need to consider three cases: (1) if #GATTAC is a prefix of another
sequence in D′, (2) #GATTAC is a suffix of another sequence in D′, or (3) neither
is true. Because #GATTAC ends with a trigger strings, it follows that the first
case cannot occur. Hence, we only need to consider (2) and (3). If #GATTAC

is unique to the first sequence in D then it follows that we can place it in
lexicographical order without considering P . However, if #GATTAC is a suffix
of another sequence then P can be used to identify the correct lexicographical
order. Hence, as the name suggests, that the parse produced by PFP has the
property that no suffix of length greater than w of any string in D is a proper
prefix of any other suffix in D, which is useful for avoiding the difficult cases
in producing the suffix array and BWT .

Lastly, we mention that PFP only requires one sequential pass through
S and thus, can be easily parallelized and performed in external memory.
Moreover, it has been recently shown by Boucher et al (2021) that the products
of PFP can be viewed as data structures and be extended to support the
following still in O(|P | + |D|)-space: longest common extension (LCE), SA,
longest common prefix (LCP) and BWT.

5.2 How to Query the r-index

As previously mentioned, the basic r-index can support both count and locate
queries but it does not immediately enable finding alignments between query
sequences (e.g., new sequence reads) and reference genomes efficiently. To
support these queries, we need to revisit how traditional read aligners use
the FM-index (or another index that can perform efficient count and locate
queries); after building an index from a small number of reference genomes,
majority of them find short exact matches between each read and the reference
genome(s), and then extend these to find approximate matches for each entire
read. Maximal exact matches (MEMs), which are exact matches between a
read R and genome G that cannot be extended to the left or right, have been
shown to be effective seeds for finding full alignments (Li, 2013; Miclotte et al,
2016; Vyverman et al, 2015).

Definition 10 Given a genome G[1 : n] and a sequence read R[1 : m], a substring
R[i : i+`−1] of length ` is a Maximal Exact Match (MEM) of R in G if R[i : i+`−1]
is also a substring of G, but R[i−1 : i+ `−1] and R[i : i+ `] are not substrings of G.
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Computing MEMs is equivalent to computing matching statistics for
R (Bannai et al, 2020) which gives, for each position i of R, the length of
the longest substring of R starting at position i that is also a substring of G,
and the initial position in G of such a substring. We now define formally this
notion as follows:

Definition 11 The matching statistics of R with respect to S is an array M [1 : |R|]
of (pos, len) pairs such that: (1) S[M [i].pos : M [i].pos + M [i].len − 1] = R[i : i +
M [i].len− 1]; and (2) R[i : i+M [i].len] does not occur in S.

We can compute the matching statistics using a simple two-pass algorithm:
first, working right to left, for each suffix of R we find the position in S of an
occurrence of the longest prefix of that suffix that occurs in S; then, working
left to right, we use random access to S to determine the length of those
matches. After computing the positions and lengths, you can find the MEMs
in a left to right pass of the matching statistics. We note that it is not difficult
to see that left to right pass to calculate the lengths and the left to right
pass to calculate the MEMs can be done simultaneously. In Figure 15 we have
a query string R = TATACAT and S = GATTACAT$GATTTACAT#. The position
(POS) in the suffix array are determined from a right to left pass (which we
describe later). For example, we consider the longest common prefix of the
suffixes in the following order: T, AT, CAT, . . . , TATACAT. Considering, ATACAT,
which is the second to last suffix considered, we see the longest common prefix
of ATACAT that occurs in S is AT and one of the occurrences is at position
7 in the suffix array. Next, we can go from left to right to find the lengths
and thus, the length of longest match. For example, if we consider ATACAT,
we go to S[7] and extract all characters until we have a mismatch. On first
consideration this may appear to be slow in practice but as Bannai et al (2020)
pointed out, using a compact data structure that supports random access to
S in O(log log n)-time, this can be accomplished in O(m log log n)-time and
small space. We should note that after finding the position, say p, of a single
MEM φ can be used to access the SA from p and find all MEMs.

Given the definition of matching statistics, the next question arises as to
how to compute them efficiently. A small auxiliary data structure that gives
random access to S is needed for computing the lengths of the matches. Thus,
we need an auxiliary data structure to compute positions—we will clarify why
this is needed using our previous example. Given our string R = TATACAT, we
assume that we have found the position in S of the longest prefix of the suffix
of ACAT, which is the string itself and occurs in S at position 14. We next move
to right by one position and attempt at finding the longest match for TACAT,
this can be accomplished using the backward search algorithm. This allows us
to obtain the position 13 for TACAT. Next, we attempt to extend this match by
the rightmost character (A) using backward search and we see that we have a
mismatch as ATACAT does not occur in S so we are stuck and it is not obvious
how to continue computing the matching statistics at the position. Bannai et al
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(2020) devised the ingenious concept of thresholds that guides the computation
of the matching statistics at such points. Collectively, the thresholds is a small
data structure that stores a position for each pair of consecutive runs of the
same character in the BWT, where the position corresponds to the minimum
LCP value in the interval between them. For example, in Figure 15, we see
that there exists a threshold at position 16 because it has the smallest LCP
value between the run of T’s ending at 17 and the run of T’s starting at 14. If
R[i − 1 : j] matches to some position within the range of 17 to 14 but there
does not exist a match to TR[i − 1 : j], then we know the longest common
prefix with TR[i− 1 : j] is either at the position of the last T of the preceding
run of T’s or the first position of the succeeding run of T’s. The thresholds
act as a guide to which of these positions it is. If the previous match is a
position prior to the threshold then you jump up to the previous run and if it
is below the threshold then you jump down to the previous run (Bannai et al,
2020). How to construct efficiently the thresholds with the r-index has been
later accomplished (Rossi et al, 2021), thanks to an equivalent definition of
thresholds (Definition 12), as an addition to PFP.

Definition 12 Given a text S, let BWT[j′ : j] and BWT[k : k′] be two consecutive
runs of the same character in BWT. We define a position j < i ≤ k to be a threshold
if it corresponds to the minimum value in LCP[j + 1 : k].

In Figure 15, we illustrate the thresholds and matching statistics. Revisiting
our previous example, we see that the current match of TACAT will occur at
position 13 and ATACAT does not occur within S. 13 is below the threshold for
A (14) so jump down to position 3 and then continue with backward search.
Together these concepts summarize how MEM queries can be supported using
the r-index:

• Construct the r-index with thresholds using the version of PFP of Rossi
et al (2021)

• Given a sequence read R calculate the matching statistics of R using the
thresholds.

• Find the MEMs for R using the two-pass algorithm defined above.
Lastly, we note that other exact matches – such as matching k-mers – can

be used as seeds for alignment and be found nearly identically to that of MEMs
in the r-index.

6 Application scenarios in pangenome graphs

In the following we discuss specific application frameworks.
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R = TATACAT

R Prefix M POS

T TA 2 4
A AT 2 7
T TACAT 5 13
A ACAT 4 14
C CAT 3 15
A AT 2 16
T T 1 17

S = GATTACAT$GATTTACAT#

SA LCP THR BWT
A T

19 0 ∗ ∗ T #GATTACAT$GATTTACAT
9 0 T $GATTTACAT#GATTACAT

15 0 T ACAT#GATTACAT$GATTT
5 4 T ACAT$GATTTACAT#GATT

17 1 C AT#GATTACAT$GATTTAC
7 2 C AT$GATTTACAT#GATTAC
2 2 G ATTACAT$GATTTACAT#G

11 2 G ATTTACAT#GATTACAT$G
16 0 ∗ A CAT#GATTACAT$GATTTA
6 3 A CAT$GATTTACAT#GATTA
1 0 ∗ # GATTACAT$GATTTACAT#

10 4 $ GATTTACAT#GATTACAT$
18 0 A T#GATTACAT$GATTTACA
8 1 A T$GATTTACAT#GATTACA

14 1 ∗ T TACAT#GATTACAT$GATT
4 5 T TACAT$GATTTACAT#GAT

13 1 T TTACAT#GATTACAT$GAT
3 6 A TTACAT$GATTTACAT#GA

12 2 A TTTACAT#GATTACAT$GA

Fig. 15 An illustration of the thresholds and matching statistics for identifying pattern R
(left) in the string S (right). We give the longest prefix of the suffix of R that occurs in S, its
length (len), and its position S (pos). We give the SA, LCP, the thresholds (THR) and BWT
for S. The longest common prefix between each consecutive rotations of S is highlighted in
red.

6.1 Haplotype and genotyping in pangenomics and
pantrascriptomics

The data structures presented in the tutorial have various application in the
analysis of haplotypes, and in genotyping variants at population scale level. For
example, GBWT was used recently by Sirén et al (2020) to efficiently build a
whole-genome index of 5,008 haplotypes of 1KGP (The 1000 Genomes Project
Consortium, 2015). It is important to note that the GBWT presented by Sirén
et al (2020) is different from the original graph positional BWT proposed
by Novak et al (2017), and leads to a more practical and efficient represen-
tation of haplotype-aware indexes, i.e., indexes of pangenome graphs where
paths represent the distinct haplotypes in the individuals. These indexes are
becoming extremely useful in many applications, since haplotypes are able to
distinguish specific SNPs that are relevant in personalized medicine. Sibbesen
et al (2021) used the GBWT to represent a pangenome graph for haplotypes
that is annotated with the additional information of a splicing graph. Then
quantification of transcripts from RNA-data is obtained by taking into account
the haplotype information and then by implementing an RNA-seq aligner to
the pangenome graph. The alignment of RNA-seq data to splicing graphs is a
problem originally considered by Denti et al (2018). A splicing graph is a graph
representing a collection of transcripts and their relation in terms of shared
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exons. Vertices in the splicing graph are usually exons and edges connect exons
that are consecutive in some transcript (Beretta et al, 2014).

The main idea of Sibbesen et al (2021) is to represent the exons of a splicing
graph directly in a pangenome graph by mapping exons to haplotype sequences
of the pangenome graph. In this way, they propose a tool for mapping RNA-
seq data that is able to take into account haplotype variations in the analysis
of transcripts.

6.2 Viral haplotype reconstruction

Another application of computational pangenomics arises in viral genome
assembly. During infection, viruses replicate their genome billions of times
using error-prone replication machinery, resulting in many of the genomes
being inexact copies. These are also referred to as viral haplotypes, which
together form a viral pangenome. In order to study characteristics such as
virulence or drug resistance and to design effective treatments, it is impor-
tant to identify the different haplotypes present during infection. This can be
done through genome sequencing, which produces a collection of short genomic
fragments (reads) from all haplotypes, combined in a single data set; the goal
of viral haplotype reconstruction is to identify all haplotypes present and to
estimate the corresponding relative abundances.

One of the main challenges in viral haplotype reconstruction is the large
number of reads and the high degree of similarity between those reads. This
requires highly efficient graph construction algorithms. Another challenge is to
capture the variation within a sample while carefully filtering out any sequenc-
ing errors. These challenges are addressed using different types of graphs
and benefit greatly from advances in pangenome representations. Below, we
describe how different data structures have been used for viral haplotype recon-
struction and the advantages and disadvantages of each approach. Figure 16
then presents an instance of a viral sequence data set to illustrate the data
structures presented.

Overlap graphs in viral haplotyping

Viral haplotype reconstruction can strongly benefit from using overlap graphs.
Observe that the precise definition of the arcs in an overlap graph can be
adjusted to the application: for example, a minimal overlap length threshold δ
and maximal mismatch rate ε can be imposed, meaning that only overlaps of
length L ≥ δ with less than εL mismatches give an arc in the overlap graph. In
general, complex assembly tasks such as viral haplotype reconstruction require
strict arc criteria.

The main idea of approaches that make use of overlap graphs (e.g., Baaijens
et al, 2017; Chen et al, 2018; Töpfer et al, 2014) is that arcs in the graph
connect reads originating from the same haplotype. Overlaps between reads
are often inexact (i.e., Hamming distance > 0) due to sequencing errors. To
accommodate such overlaps in the overlap graph, the maximal mismatch rate
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Fig. 16 A toy example to illustrate the process of viral haplotype assembly. In this exam-
ple, the task is to obtain the genome variation graph (a viral pangenome) by reconstructing
the viral haplotypes from sequencing data, with haplotypes present at different abundances
(here 30% versus 70%). Stars below the original sequences indicate the three positions where
the two haplotypes differ. The three data structures involved in the assembly process are (1)
an overlap graph, where vertices represent sequencing reads and arcs indicate suffix-prefix
overlaps; (2) a de Bruijn graph, where vertexs represent k-mers and arcs indicate overlaps
of length k − 1; (3) a variation graph, first constructed from the extended sequences (con-
tigs) obtained through genome assembly, which can be transformed into a genome variation
graph that represents the full-length haplotypes. Note that this example is a simplistic rep-
resentation of reality: sequencing errors are not shown, hence all overlaps between reads are
exact.

ε should reflect expected sequencing error rates. Furthermore, by choosing a
relatively large δ one can avoid short overlaps that occur by chance. Finally,
base calling quality scores can be used to compute the probability that a pair
of overlapping reads originate from the same haplotype; after removing any
edges where this probability is below a certain threshold, viral haplotypes can
be identified through clique enumeration on the overlap graph (Baaijens et al,
2017; Chen et al, 2018; Töpfer et al, 2014).

The biggest challenge in working with overlap graphs is the graph construc-
tion step since the number of potential overlaps is quadratic in the number of
input sequences. Naively checking whether a given pair of sequences have any
overlap takes O(l2) time, where l is the sequence length. Therefore, checking
all possible overlaps this way would take O(l2n2) time, with n the number of
input sequences. Luckily, there are more efficient algorithms to do this com-
putation. Exact overlaps can be computed efficiently using an FM-index, but
this does not work for inexact overlaps. Instead, one can use suffix filters in
combination with an FM-index to find approximate overlaps; theoretical run-
time remains O(l2n2) but is much faster in practice (Kucherov and Tsur, 2014;
Välimälki et al, 2010). This is an exact solution to the approximate suffix prefix
overlap problem: it guarantees finding all overlaps within specified Hamming
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distance. Alternatively, heuristic approaches like minimap2 (Li, 2018) enable
a more efficient, yet approximate, solution to overlap graph construction.

De Bruijn graphs in viral haplotyping

A de Bruijn graph stores the information from the sequencing reads in the
form of k-mers: each vertex represents a k-mer occurring in the set of reads,
and arcs indicate exact suffix-prefix overlaps of length k − 1. Such a graph
captures shared sequence between haplotypes by collapsing identical k-mers
and genome assembly is performed by merging simple paths into so-called
unitigs. De Bruijn graphs are constructed by enumerating and counting all
k-mers present in the sequencing reads; most algorithms make use of either
sorting (e.g., Kaplinski et al, 2015; Kokot et al, 2017) or hashing (e.g., Chikhi
et al, 2016; Mohamadi et al, 2016) to solve this task efficiently.

In the application of viral haplotype reconstruction, building a de Bruijn
graph is very fast because the number of input reads is small compared to
mammalian genomes. The main challenge in working with de Bruijn graphs in
this setting, is distinguishing sequencing errors from genomic mutations. Stan-
dard de Bruijn graph-based assembly algorithms eliminate sequencing errors
from the graph by removing low-frequency k-mers. This approach is not suit-
able for viral haplotype reconstruction because low-frequency k-mers can also
correspond to low-frequency haplotypes. To avoid this issue, some methods
attempt to remove sequencing errors before de Bruijn graph construction by
applying error correction software tailored to viral sequencing data (Freire
et al, 2020; Malhotra et al, 2016). Alternatively, information on differential
coverage (i.e., differences in relative abundance between haplotypes) has been
used to deconvolute the de Bruijn graph into haplotype assemblies (Fritz et al,
2021).

Variation graphs

Finally, variation graphs are very suitable representations of the genomic diver-
sity found in a viral infection. Given a collection of viral haplotypes, a variation
graph can be obtained using the construction techniques discussed earlier.
Each viral haplotype can be stored as a path through the graph and relative
abundances per haplotype can be added as an additional feature.

In addition to being a suitable representation, variation graphs can also
be used as a data structure for haplotype reconstruction. Although algorithms
making use of overlap graphs and de Bruijn graphs can assemble haplotype-
specific sequences (contigs), these are often unable to build complete (i.e.,
full-length) haplotypes: contigs remain shorter than the viral genome. In other
words, the assembly techniques described above provide only a partial solution,
which can be extended into a full solution using variation graphs (Baaijens
et al, 2019, 2020). These algorithms construct a contig variation graph from
a collection of haplotype-specific contigs, such that the graph organizes the
genetic variation that is present in the input contigs. The challenge of con-
structing this graph is that contigs can have little or no overlap, as they may
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represent different parts of the genome. Methods that have proven to be use-
ful in this context are VG-msga (Garrison et al, 2018) and poa (Lee et al,
2002), both of which are based on multiple sequence alignment. An alterna-
tive approach is to use an all-versus-all aligner like minimap2 (Li, 2018) to
find all contig overlaps, followed by seqwish (Garrison et al, 2019) for graph
construction, but this requires careful filtering of overlaps to obtain a clean
graph.

The goal of viral haplotype reconstruction is to find the genome varia-
tion graph which stores the haplotypes within a viral population, along with
an abundance function that gives haplotype abundances. Existing approaches
use sequence-to-graph alignment to obtain vertex abundances, from which the
haplotypes and their relative abundances are estimated by solving a combina-
torial optimization problem on the contig variation graph (Baaijens et al, 2019,
2020). Efficient and reliable variation graph construction is key to algorithms
like this.

7 Conclusions and open problems

This tutorial on computational pangenomics mainly focuses on presenting the
most relevant data structures that are currently used to represent and index
pangenomes in order to facilitate several operations, such as the basic pattern
matching and computing matching statistics. After presenting the compu-
tational problem of constructing a pangenome graph, we discussed how to
face genotyping and haplotyping inference and analysis within a pangenomics
framework. The most advanced techniques, namely the positional BWT, the
graph BWT, and the r-index have been introduced in the literature recently,
and therefore, lead to some important research challenges. We conclude with
a discussion on some open problems.

7.1 Computing a pangenome graph from overlapping
variation graphs

We described the problem of constructing a variation graph in Section 3, and
most notably as Problem 2, where the instance is a multiple sequence align-
ment, and we have noticed that the objective function is not always explicit.
Devising useful objective functions, adapting the formulation to other instances
or desired outcomes are all relevant aspects whose study has already started,
for example by considering how to obtain a variation graph from an overlap
graph (Eizenga et al, 2021), which is usually considered when assembling a lin-
ear genome. This problem is worthy of a deeper investigation, given its relation
with the genome assembly problem, as discussed in Section 6.2.

An important limitation of current approaches is to avoid complex graph
configurations in the output, since those are usually artifacts of the con-
struction procedure, which are removed by manually tweaking some of the
parameters of the tool used for building the graph.



Springer Nature 2021 LATEX template

Computational graph pangenomics 41

A limitation of the formulation that starts from a multiple sequence align-
ment is that all those sequences have a symmetric role. Instead, it is interesting
to exploit the evolutionary history, usually represented by a phylogenetic tree.
In this case, we need to refine the objective function to also consider the
evolutionary aspects. A possible metaproblem becomes the following.

Problem 3 (graph construction from evolutionary related genomes) Let C a be col-
lection of genome sequences and a scenario of evolutionary events for the genomes.
Then the graph construction from evolutionary related genomes asks to find a
variation graph G that better explains the scenario.

A slightly different approach is based on considering recombination events,
which is especially relevant when dealing with a pangenome of haplotypes. In
this case, instead of a phylogenetic tree we consider a scenario of recombination
events which are described by ancestral recombination graphs (Shchur et al,
2019) or by founder graphs (Ukkonen, 2002; Mäkinen et al, 2020).

In the following, we give three additional generic open problems, where the
specific objective function is not specified since it depends on the property of
the data involved.

Problem 4 (graph construction from contigs) Let C a be collection of partially
overlapping sequences (contigs). Then the graph construction from contigs problem
asks to find a variation graph G that expresses all contigs in C.

We note that this problem is more general than Problem 2 since Problem 2
requires that the input sequences appear as source-sink paths in the graph,
and in Problem 4 the sequences can appear as any path. The reason is that
we expect the genomes to be highly similar, while contigs can have a small
overlap or no overlap at all since they can correspond to different regions in
the genome. This means that methods that are based on computing a multiple
sequence alignment of contigs are not ideal, since the problem is too hard.
In fact, most of the available tools apply a progressive alignment approach.
Therefore, the results depend heavily on the order in which the contigs are
provided. If the initial alignments regards non-overlapping sequences, then the
alignment is not very informative. Moreover, the number of contigs is likely
much larger than the number of genomes, making the problem even harder to
solve.

Problem 5 (graph construction from long reads) LetR a be collection of long reads.
Then the graph construction from long reads problem asks to find a variation graph
G that expresses all long reads in R.

We not there there exists equivalent problems to Problem 5 for contigs or
genomes. Recent sequencing technologies produce reads of 10 to 50 thousand
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base pairs (Logsdon et al, 2020) but are more error prone compared to short
reads or to assembled genomes (or contigs).

Related to these practical problems is the more theoretical problem of
building a pangenome graph in sub-linear space. For example, if we consider
building and storing a graph using the BWT, the question can be sharpened:
can we build and store a pangenome graph in O(r) space and time, where r is
the number of runs in the BWT.

Problem 6 (graph construction in sub-linear space) Let S a be collection of partially
overlapping sequences (contigs, genomes or read). Then the sub-linear graph con-
struction problem asks whether you can build a graph G that expresses all sequences
in S in sub-linear space and time.

7.2 Extending the PBWT and the GBWT to missing
and erroneous data

The genomes and haplotypes that are indexed by a PBWT or a GBWT are
assumed to be complete and error-free, but this is not the case in practice
for muitlple reasons including that the raw data contain errors, the tools that
manage them are mostly heuristics, and some regions might be absent in the
reads. All these prospective issues leads to errors in the data or missing data.

In the best case, errors in a genome or in a haplotype are discovered and
corrected; this means that we have to update the PBWT or the GBWT, ideally
without computing it from scratch and with a reduced the running time. While
there have been some efforts in that direction for the GBWT (Sirén et al, 2020;
Eizenga et al, 2020a) that make feasible to update individual genomes in the
GBWT, the current state of the art on the PBWT is still lacking. Moreover,
it is still unclear what the effect is of a large sequences of operations on the
GBWT and on the representations it uses. For example, some problems are (1)
to determine if we can build a sequence of operations such that the numbers in
the delta encoding explode, (2) if such a sequence can appear in real cases, and
(3) to develop a self-balancing procedure that gives some guaranteed sub-linear
time complexity for each operation.

Since missing data are fairly common in haplotype panels, it is not surpris-
ing that they have already been studied in the context of the positional BWT,
where they are represented by a wildcard (Williams and Mumey, 2020). A use-
ful notion is that of a haplotype block, that is a maximal interval of columns
such that (1) a subset of rows of the panel are identical, and (2) it is not pos-
sible to extend the interval in any direction. When there are no missing data,
blocks can be easily computed using the PBWT. Therefore, an interesting open
problem is extending the notion of PBWT to compute matches with miss-
ing data. Currently, the complexity of computing blocks with wildcards has
asymptotic runtime of O(nm) for each computed block (Williams and Mumey,
2020), with m the number of rows and n the number of SNP columns of the
haplotype panel. An open problem is to compute blocks in a more efficient
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way, i.e improving the O(nmT ) time complexity, where T is the total num-
ber of found blocks (Williams and Mumey, 2020). Another problem is how to
compute approximate blocks (i.e., with a small number of mismatches) using
the PBWT.

A related problem is to extend the notion of haplotype block to pangenome
graphs. In this case, one of the main difficulties is due to the fact that a block
consists of portions with the same coordinates, but the notion of coordinates on
graphs is not completely established. Moreover, it is interesting to generalize
some of the notions discussed in Section 5.2 to problems taking as input a
graph and a text. For example, defining a proper notion of maximal exact
match (MEM) between a sequence read and a graph encoded in the GBWT.

Finally, another problem is the design of a hierarchical GBWT that takes
the presence of nested structural variants in the pangenome graph into account.
Indeed, different genomes may arise from the accumulation of variations. A
data structure that allows querying the graph structure at different levels of
detail could be useful to represent complex structural variants.

7.3 Limitations of pangenome graphs

To provide a balanced point of view on pangenome graphs, we point out some
of its current limitations. One type of limitations stems from the fact that
stringology has been a wildly successful research field – in particular providing
some text indexing techniques (e.g., suffix arrays and the FM-index) that are
efficient both in theory and in practice. On the other hand, graph genomes
are a recent idea, spurning a research field that is still young. This means that
analysis on pangenome graphs becomes orders of magnitude slower than on
linear references, and the impact of such analysis needs to be assessed (Chen
et al, 2021). Recent research that attempts to ameliorate this shortcoming
has focused on variant selection approaches that aim to reduce the size of the
pangenome graph or order to speed up mapping (Jain et al, 2021). With the
maturation of the field of computational pangenomics, it is expected that tools
with better performance will be developed.

Another issue, that is also present in genomics and transcriptomics but
is exacerbated in pangenomics, is that a compact representation of several
variants can easily result in including spurious variants. In the case of graph
genomes, this happens if we näıvely consider all possible paths in a graph. For
this reason, variation graphs also store the set of paths corresponding to true
variants. Still, the construction of such true paths is not trivial, since it requires
the use of long reads (Logsdon et al, 2020) – in fact, short reads usually are
100 to 300 base pairs long and only rarely span more than one variant site,
while long reads can be 10 to 50 thousand base pairs long. On the other hand,
long reads may have a higher rate of sequencing errors than short reads; this
may negatively affect the accuracy of read mapping.

A final problem that we want to point out is the extension of pange-
nomic approaches to more diverse organisms than humans, e.g., a pangenomic
approach is also amenable for plants. However, plant genomes present a
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variability that is much higher than in humans. A recent study on maize
sequences showed that 40–50% of genomes is unalignable between pairs of
inbred lines (Sun et al, 2018), while a much smaller percentage of human
genome cannot be aligned between individuals of different descent (Choudhury
et al, 2020b; Sherman et al, 2019). For example, a recent study of African pop-
ulation revealed about 3 million previously undescribed variants (Choudhury
et al, 2020b) and Sherman et al (2019) demonstrated that approximately 10%
DNA of an African pangenome built on 910 individuals is not in the current
human reference genome.
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Mäkinen V, Cazaux B, Equi M, et al (2020) Linear time construction of
indexable founder block graphs. arXiv:2005.09342

Malhotra R, Wu MMS, Rodrigo A, et al (2016) Maximum likelihood de
novo reconstruction of viral populations using paired end sequencing data.
arXiv:1502.04239

Manber U, Myers G (1993) Suffix arrays: a new method for on-line string
searches. SIAM Journal on Computing 22(5):935–948

Mantaci S, Restivo A, Rosone G, et al (2007) An extension of the Burrows–
Wheeler Transform. Theoretical Computer Science 387(3):298–312. https:
//doi.org/10.1016/j.tcs.2007.07.014

Miclotte G, Heydari M, Demeester P, et al (2016) Jabba: hybrid error cor-
rection for long sequencing reads. Algorithms Molecular Biology 11:10.
https://doi.org/10.1186/s13015-016-0075-7

Mohamadi H, Chu J, Vandervalk BP, et al (2016) ntHash: recursive
nucleotide hashing. Bioinformatics 32(22):3492–3494. https://doi.org/10.
1093/bioinformatics/btw397

https://doi.org/10.1093/bioinformatics/18.3.452
https://doi.org/10.1093/bioinformatics/18.3.452
https://doi.org/10.1093/bioinformatics/bty191
http://gfa-spec.github.io/GFA-spec/
https://doi.org/10.1186/s13059-020-02168-z
https://doi.org/10.1186/s13059-020-02168-z
https://doi.org/10.1186/s12864-015-1481-9
https://doi.org/10.1016/j.tcs.2007.07.014
https://doi.org/10.1016/j.tcs.2007.07.014
https://doi.org/10.1186/s13015-016-0075-7
https://doi.org/10.1093/bioinformatics/btw397
https://doi.org/10.1093/bioinformatics/btw397


Springer Nature 2021 LATEX template

50 Computational graph pangenomics

Mun T, Kuhnle A, Boucher C, et al (2020) Matching reads to many genomes
with the r-index. Journal of Computational Biology 27(4):514–518. https:
//doi.org/10.1089/cmb.2019.0316

Myers E (2005) The fragment assembly string graph. Bioinformatics
21(Suppl. 2):ii79–ii85. https://doi.org/10.1093/bioinformatics/bti1114
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